irfb4020pbf

8

Click here to load reader

Transcript of irfb4020pbf

Page 1: irfb4020pbf

www.irf.com 103/03/06

IRFB4020PbF

Notesthrough are on page 2

DescriptionThis Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizesthe latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diodereverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performancefactors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junctiontemperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient,robust and reliable device for ClassD audio amplifier applications.

S

D

G

TO-220AB

Features• Key parameters optimized for Class-D audio

amplifier applications

• Low RDSON for improved efficiency

• Low QG and QSW for better THD and improved

efficiency

• Low QRR for better THD and lower EMI

• 175°C operating junction temperature for

ruggedness

• Can deliver up to 300W per channel into8Ωload in

half-bridge configuration amplifier

VDS 200 VRDS(ON) typ. @ 10V 80 m

Qg typ. 18 nCQsw typ. 6.7 nCRG(int) typ. 3.2 ΩTJ max 175 °C

Key Parameters

Absolute Maximum RatingsParameter Units

VDS Drain-to-Source Voltage VVGS Gate-to-Source VoltageID @ TC = 25°C Continuous Drain Current, VGS @ 10V AID @ TC = 100°C Continuous Drain Current, VGS @ 10V

IDM Pulsed Drain Current

PD @TC = 25°C Power Dissipation WPD @TC = 100°C Power Dissipation

Linear Derating Factor W/°CTJ Operating Junction and °CTSTG Storage Temperature Range

Soldering Temperature, for 10 seconds

(1.6mm from case)

Mounting torque, 6-32 or M3 screw

Thermal ResistanceParameter Typ. Max. Units

RθJC Junction-to-Case ––– 1.43RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/WRθJA Junction-to-Ambient ––– 62

Max.

13

52

±20

200

18

100

52

0.70

10lbin (1.1Nm)

-55 to + 175

300

Page 2: irfb4020pbf

2 www.irf.com

S

D

G

Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.62mH, RG = 25Ω, IAS = 11A. Pulse width ≤ 400µs; duty cycle ≤ 2%.

Rθ is measured at Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive avalanche information.

Electrical Characteristics @ TJ = 25°C (unless otherwise specified)Parameter Min. Typ. Max. Units

BVDSS Drain-to-Source Breakdown Voltage 200 ––– ––– V

∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.23 ––– V/°CRDS(on) Static Drain-to-Source On-Resistance ––– 80 100 mΩVGS(th) Gate Threshold Voltage 3.0 ––– 4.9 V∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -13 ––– mV/°CIDSS Drain-to-Source Leakage Current ––– ––– 20 µA

––– ––– 250IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA

Gate-to-Source Reverse Leakage ––– ––– -100gfs Forward Transconductance 24 ––– ––– SQg Total Gate Charge ––– 18 29

Qgs1 Pre-Vth Gate-to-Source Charge ––– 4.5 –––Qgs2 Post-Vth Gate-to-Source Charge ––– 1.4 ––– nCQgd Gate-to-Drain Charge ––– 5.3 –––Qgodr Gate Charge Overdrive ––– 6.8 ––– See Fig. 6 and 18

Qsw Switch Charge (Qgs2 + Qgd) ––– 6.7 –––RG(int) Internal Gate Resistance ––– 3.2 ––– Ωtd(on) Turn-On Delay Time ––– 7.8 –––tr Rise Time ––– 12 –––td(off) Turn-Off Delay Time ––– 16 ––– nstf Fall Time ––– 6.3 –––Ciss Input Capacitance ––– 1200 –––Coss Output Capacitance ––– 91 ––– pFCrss Reverse Transfer Capacitance ––– 20 –––Coss eff. Effective Output Capacitance ––– 110 –––LD Internal Drain Inductance ––– 4.5 ––– Between lead,

nH 6mm (0.25in.)LS Internal Source Inductance ––– 7.5 ––– from package

Avalanche CharacteristicsParameter Units

EAS Single Pulse Avalanche Energy mJ

IAR Avalanche Current A

EAR Repetitive Avalanche Energy mJ

Diode Characteristics Parameter Min. Typ. Max. Units

IS @ TC = 25°C Continuous Source Current ––– ––– 18

(Body Diode) AISM Pulsed Source Current ––– ––– 52

(Body Diode)VSD Diode Forward Voltage ––– ––– 1.3 V

trr Reverse Recovery Time ––– 82 120 nsQrr Reverse Recovery Charge ––– 280 420 nC

––– 94

See Fig. 14, 15, 16a, 16b

ID = 11A

Typ. Max.

ƒ = 1.0MHz, See Fig.5

TJ = 25°C, IF = 11Adi/dt = 100A/µs

TJ = 25°C, IS = 11A, VGS = 0V

showing theintegral reverse

p-n junction diode.

ConditionsVGS = 0V, ID = 250µA

Reference to 25°C, ID = 1mA

VGS = 10V, ID = 11A

VDS = VGS, ID = 100µA

VDS = 200V, VGS = 0V

VGS = 0V, VDS = 0V to 160V

VDS = 200V, VGS = 0V, TJ = 125°C

VGS = 20V

VGS = -20V

VGS = 10V

ID = 11A

VGS = 0V

MOSFET symbol

RG = 2.4Ω

VDS = 50V, ID = 11A

Conditions

and center of die contact

VDD = 100V, VGS = 10V

VDS = 100V

VDS = 50V

Page 3: irfb4020pbf

www.irf.com 3

Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs.Gate-to-Source VoltageFig 5. Typical Capacitance vs.Drain-to-Source Voltage

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

0.01

0.1

1

10

100I D

, Dra

in-t

o-S

ourc

e C

urre

nt (

A)

VGSTOP 15V

12V10V8.0V7.0V6.0V5.5V

BOTTOM 5.0V

≤60µs PULSE WIDTHTj = 25°C

5.0V

0.1 1 10 100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

5.0V

≤60µs PULSE WIDTHTj = 175°C

VGSTOP 15V

12V10V8.0V7.0V6.0V5.5V

BOTTOM 5.0V

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

RD

S(o

n) ,

Dra

in-t

o-S

ourc

e O

n R

esis

tanc

e

(

Nor

mal

ized

)

ID = 11A

VGS = 10V

1 10 100 1000

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

C, C

apac

itanc

e (p

F)

VGS = 0V, f = 1 MHZCiss = Cgs + Cgd, C ds SHORTED

Crss = Cgd Coss = Cds + Cgd

Coss

Crss

Ciss

0 5 10 15 20

QG, Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

VG

S, G

ate-

to-S

ourc

e V

olta

ge (

V)

VDS= 160V

VDS= 100V

VDS= 40V

ID= 11A

2 3 4 5 6 7 8

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

I D, D

rain

-to-

Sou

rce

Cur

rent

(A

)

TJ = 25°C

TJ = 175°C

VDS = 25V

≤60µs PULSE WIDTH

Page 4: irfb4020pbf

4 www.irf.comFig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 9. Maximum Drain Current vs. Junction Temperature

Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area

Fig 10. Threshold Voltage vs. Temperature

0.2 0.4 0.6 0.8 1.0 1.2

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100I S

D, R

ever

se D

rain

Cur

rent

(A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

25 50 75 100 125 150 175

TJ , Junction Temperature (°C)

0

2

4

6

8

10

12

14

16

18

20

I D,

Dra

in C

urre

nt (

A)

-75 -50 -25 0 25 50 75 100 125 150 175 200

TJ , Temperature ( °C )

1.0

2.0

3.0

4.0

5.0

VG

S(t

h), G

ate

Thr

esho

ld V

olta

ge (

V)

ID = 100µA

1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

The

rmal

Res

pons

e (

Z th

JC )

0.20

0.10

D = 0.50

0.020.01

0.05

SINGLE PULSE( THERMAL RESPONSE )

Notes:1. Duty Factor D = t1/t22. Peak Tj = P dm x Zthjc + Tc

τJ

τJ

τ1

τ1τ2

τ2 τ3

τ3

R1

R1 R2

R2 R3

R3

Ci i/RiCi= τi/Ri

ττC

τ4

τ4

R4

R4 Ri (°C/W) τi (sec)0.0283 0.000007

0.3659 0.000140

0.7264 0.001376

0.3093 0.007391

1 10 100 1000

VDS, Drain-to-Source Voltage (V)

0.001

0.01

0.1

1

10

100

1000

I D,

Dra

in-t

o-S

ourc

e C

urre

nt (

A)

OPERATION IN THIS AREA LIMITED BY R DS(on)

Tc = 25°CTj = 175°CSingle Pulse

100µsec

1msec

10msecDC

Page 5: irfb4020pbf

www.irf.com 5

Fig 13. Maximum Avalanche Energy vs. Drain CurrentFig 12. On-Resistance vs. Gate Voltage

Fig 14. Typical Avalanche Current Vs.Pulsewidth

Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15:(For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a

temperature far in excess of Tjmax. This is validated for every part type.2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.

3. Equation below based on circuit and waveforms shown in Figures 17a, 17b.

4. PD (ave) = Average power dissipation per single avalanche pulse.5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).6. Iav = Allowable avalanche current.7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11)

PD (ave) = 1/2 ( 1.3·BV·Iav) =T/ ZthJC

Iav = 2T/ [1.3·BV·Zth]EAS (AR) = PD (ave)·tav

5 6 7 8 9 10 11 12 13 14 15 16

VGS, Gate -to -Source Voltage (V)

50

75

100

125

150

175

200

225

250

275

300R

DS

(on)

, D

rain

-to

-Sou

rce

On

Res

ista

nce

(mΩ

)ID = 11A

TJ = 25°C

TJ = 125°C

25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

0

100

200

300

400

EA

S ,

Sin

gle

Pul

se A

vala

nche

Ene

rgy

(mJ) ID

TOP 1.6A2.4A

BOTTOM 11A

1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01

tav (sec)

0.01

0.1

1

10

100

1000

Ava

lanc

he C

urre

nt (

A)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses

0.01

25 50 75 100 125 150 175

Starting TJ , Junction Temperature (°C)

0

20

40

60

80

100

EA

R ,

Ava

lanc

he E

nerg

y (m

J)

TOP Single Pulse BOTTOM 1.0% Duty CycleID = 11A

Page 6: irfb4020pbf

6 www.irf.com

Fig 16b. Unclamped Inductive WaveformsFig 16a. Unclamped Inductive Test Circuit

tp

V(BR)DSS

IAS

RG

IAS

0.01Ωtp

D.U.T

LVDS

+- VDD

DRIVER

A

15V

20VVGS

Fig 17a. Switching Time Test Circuit Fig 17b. Switching Time Waveforms

VGS

VDS90%

10%

td(on) td(off)tr tf

VGS

Pulse Width < 1µsDuty Factor < 0.1%

VDD

VDS

LD

D.U.T

+

-

Fig 18a. Gate Charge Test Circuit Fig 18b Gate Charge Waveform

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2 Qgd Qgodr

1K

VCCDUT

0

L

Page 7: irfb4020pbf

www.irf.com 7

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR’s Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 03/06

TO-220AB packages are not recommended for Surface Mount Application.

Note: "P" in assembly lineposition indicates "Lead-Free"

Page 8: irfb4020pbf

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/