Ion Implantation in SiC: 365 MJ Target Spectra

30
HAPL-14: S. Sharafat 1/25 Ion Implantation in SiC: 365 MJ Target Spectra 14 th High Average Power Laser Program Workshop Oak Ridge National Laboratory Oak Ridge, TN March 21-22, 2006 S. Sharafat, M. Andersen, Hu Qiyang, and N. Ghoniem University of California Los Angeles Glenn Romanoski Oak Ridge National Laboratory

description

Ion Implantation in SiC: 365 MJ Target Spectra. S. Sharafat, M. Andersen, Hu Qiyang, and N. Ghoniem University of California Los Angeles. Glenn Romanoski Oak Ridge National Laboratory. - PowerPoint PPT Presentation

Transcript of Ion Implantation in SiC: 365 MJ Target Spectra

Page 1: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 1/25

Ion Implantation in SiC:365 MJ Target Spectra

14th High Average Power Laser Program WorkshopOak Ridge National Laboratory

Oak Ridge, TNMarch 21-22, 2006

S. Sharafat, M. Andersen, Hu Qiyang, and N. GhoniemUniversity of California Los Angeles

Glenn RomanoskiOak Ridge National Laboratory

Page 2: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 2/25

OUTLINE

• Ion Implantation Issues (9 slides)

• Possible New Concepts for SiC/SiC (3 slides)

• Supportive Activities: (2 slides)

Page 3: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 3/25

R. Raffray, HAPL March 2006

Page 4: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 4/25

Implantation CalculationFrom John Perkins' Data on HAPL 350 MJ-Class Baseline Target Design, 10/10/051 H

Elower (keV)

Eupper (keV)

Emid (keV) N (#/keV)

total particles (#)

Flux (#/cm2) [10.1 m Radius]

Percentage (#%)

1H 0.0000001 20 10 5.994E+17 1.1988E+19 1.9469E+12 16.635413720 38.39 29.19 7.535E+17 1.3857E+19 2.2504E+12 19.2287857

38.39 56.77 47.58 4.658E+17 8.5614E+18 1.3904E+12 11.880421956.77 83.94 70.35 3.948E+17 1.0727E+19 1.7421E+12 14.885165183.94 95.64 89.79 2.019E+17 2.3622E+18 3.8364E+11 3.2780007995.64 271.4 183.5 1.197E+17 2.1038E+19 3.4168E+12 29.1945018271.4 457.3 364.4 1.217E+15 2.2624E+17 3.6743E+10 0.31394736457.3 676.2 566.8 1.214E+15 2.6574E+17 4.3159E+10 0.36876638676.2 770.4 723.3 1.143E+15 1.0767E+17 1.7486E+10 0.14941149770.4 1000 885.2 1.11E+15 2.5486E+17 4.139E+10 0.353656571000 2800 1900 9.161E+14 1.649E+18 2.678E+11 2.288243632800 4472 3636 4.47E+14 7.4738E+17 1.2138E+11 1.037123974472 6503 5488 8.743E+13 1.7757E+17 2.8839E+10 0.24640946503 7843 7173 1.31E+13 1.7554E+16 2850880081 0.02435927843 10390 9114 1.209E+13 3.0793E+16 5001014357 0.04273091

10390 12520 11450 9.56E+12 2.0363E+16 3307046879 0.0282568912520 13750 13140 1.085E+13 1.3346E+16 2167393193 0.0185191813750 16590 15170 6.436E+12 1.8278E+16 2968501215 0.025364216590 18210 17400 3.512E+11 5.6894E+14 92400086.4 0.0007895118210 20000 19110 53270000000 9.5353E+13 15485976.1 0.00013232

7.2063E+19 1.1704E+13 95.102289

For each Ion:– Run SRIM at every energy– Add all profiles ( % weighted )

SiC

Page 5: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 5/25

Ion Implantation in SiC

• Sample Implantation Profiles using Perkin’s 365 MJ Target Spectra (SRIM2003)

• Profiles for all ions, 1H, 2H, 3H, 3He, 4He, 12C, 13C, Au, Pd were developed

Implantation Profile for 1H Implantation Profile for 12C

0.0E+00

5.0E+15

1.0E+16

1.5E+16

2.0E+16

2.5E+16

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Mid-Bin Range (Angstr.)12

C /

Mid

-Bin

Ran

ge (

Ato

m/A

ngst

r.)

.

12C Debris + Burn~6.8e19 /shot

R = 10.1 m365 MJ Target

CVD-SiC

0.0E+00

5.0E+15

1.0E+16

1.5E+16

2.0E+16

2.5E+16

0 2000 4000 6000 8000 10000 12000 14000

Mid-Bin Width (Angstr.)

1H

/ M

id-B

in W

idth

(a

tom

/An

gst

r) .

1H (Debris+Burn)~7.2e19/shotR = 10.1 m

365 MJ TargetCVD-SiC

Range

Ra

ng

e

Page 6: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 6/25

Ion appm (atomic parts per million) Profile in SiC Per Shot

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 5000 10000 15000 20000 25000

Mid-Bin Range (Angstr.)

Ato

m /

106

SiC

/ M

id-B

in R

an

ge

(a

pp

m/A

ng

str.

) .

1H

2H

3H

4He

12C

13C

Au

Pd

Pd

3H

12C

4He

2H

3H

4He

12C

1H

Debris + Burn IonsR = 10.1 m

365 MJ TargetCVD-SiC1H

13C 13

CAu

2H

13C

12C

13C

12C

Page 7: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 7/25

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000

Mid-bin Energy (keV)

Fra

ctio

n of

Ion

at

Mid

-Bin

Ene

rgy

(%)

2H

3H

4He

1H

3He

12C

13C

Fraction of Ions at Mid-Bin Energy

Page 8: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 8/25

Ion Damage in SiC per Shot

• Ion Damage Profile (SRIM2003) for: 1H, 2H, 3H, 3He, 4He, 12C, 13C, Au, Pd

0.0E+00

1.0E+18

2.0E+18

3.0E+18

4.0E+18

5.0E+18

6.0E+18

0 20000 40000 60000 80000 100000

Mid-Bin Range (Angstr.)

Vac

acny

/M

id-B

in R

an

ge (

#/A

ngst

r.)

.

Vacancy Generation Profile for 4He Vacancy Generation Profile for 12C

0.00E+00

1.00E+18

2.00E+18

3.00E+18

4.00E+18

5.00E+18

6.00E+18

7.00E+18

8.00E+18

9.00E+18

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1.40E+04

1.60E+04

1.80E+04

Mid-Bin Range (Angstr.)

Vac

ancy

/ M

id-B

in R

an g

e (#

/Ang

str.

)

Page 9: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 9/25

Ion Damage in SiC per Shot

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

0 5000 10000 15000 20000 25000 30000

Mid-Bin Range (Angstr.)

Da

ma

ge

/ M

id-B

in R

an

ge

(d

pa

/An

gs

tr.)

.

1H

2H

3H

12C

13C

Au

Pd

4He

Total

Pd

1H

3H

12C

13C

Au

4He

12C

Total

2H

3H

4He

Page 10: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 10/25

Carbon Implantation and Formation of WC

0.0E+00

2.0E+23

4.0E+23

6.0E+23

8.0E+23

1.0E+24

1.2E+24

0.0E+00 5.0E-07 1.0E-06 1.5E-06 2.0E-06 2.5E-06 3.0E-06

Depth (m)

Car

bo

n C

on

cen

trat

ion

(1/

m 3

) .

100 Shots

50 Shots

30 Shots

20 Shots

10 Shots

Carbon Impl.

W = 6.34x1028 /m3

R=10.1 m405 MJ Target

Carbon Concentration Profile Evolution in W

13th HAPL Meeting

Page 11: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 11/25

Formation of WC

• At 2000 oC solubility of C in Tungsten is of the order of 0.05 at. %

Solubility of C in W:

UCLA FusionNETWORK

fusionNET.seas.ucla.edu

• WC forms between 1150 and 1575 K

• W2C forms between 1575 and 1660 KD. Gupta, Met.Trans. A 1975

Carbon reacts with Tungsten to form WC and W2C inside the W-armor

Complex model: (1) Chemical reaction; (2) Diffusion; (3)T-swings; (4) T-gradients.

Need for Experiments on WC:

Effect of H and He implantation on

- Mechanical Properties of WC

- Helium and Hydrogen Release

Discussions with ORNL(G. Romanoski ) have identified testing facilities (G. Romanoski )

Page 12: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 12/25

Carbon Implantation in SiC

60.7 10C

SiC

0

0.005

0.01

0.015

0.02

0.025

0 5000 10000 15000 20000

Mid Bin Range (Angstr.)

C/1

06 SiC

/ M

id B

in (

ap

pm

/An

gstr

.) . 12C Debris + Burn

~6.8e19 /shotR = 10.1 m

365 MJ TargetCVD-SiC

Implantation of 12C per shot:

• Carbon Implantation range: 1.75 m

• For 10.1 m chamber implantation range has ~1x1026 SiC• Number of C per shot: ~6.8x1019 C/shot:

After 1x106 shots (~1.2 days) C/SiC ratio approaches unity (or SiC2) assuming

no diffusion

Concerns Regarding Excess Carbon in SiC:

• Carbon diffuses readily (int. + substit./detrapping)

• Carbon can bond chemically with H, D, and T

• Formation of Hydro-carbons CxHy T retention?

Chemical Trapping of H, D, T slows down proton diffusion, defect annealing, and may interact synergistically with He

Pursuing rate of Hydro-Carbon formation

[Huanchen, Ghoniem 1994]

Page 13: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 13/25

Hydrogen Implantation in SiCImplantation of H, D, T :

SEM micrograph image of blisters formed in the 6H-SiC

irradiated at 300 K (1.0x1017 H+/cm2) and then annealed at

1070 K for 20 min. [Jiang, NIMB2000]

HAPL:365 MJ Target

10.1 m Chamber

~ 1x1016 H/m2

Roughening of SiC (HAPL conditions?) Effect of Chemical Trapping of H, D, T on roughening? Experiments: H+-+ He beam (HAPL conditions)?

Taguchi, JNM2004: Synergistic effect of H, He, +Si implantation:

Only He-implantation no bubbles at 1300 oC (Timpl)

Dual/Tripple (He, H, Si) Helium bubbles formed at GB

Page 14: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 14/25

Possible New Concepts for SiC Armor

• Nanopillars and Dendrites

• Ion-Barrier Coating (IBC)

• Flexible Armor w/o Transpiration Cooling

Page 15: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 15/25

Possible New Concepts for SiC Armor: Nanopillar

Helium Implantation in CVD SiC:26.3 MeV with 51 degrader foils shows DENUDED ZONE ~0.5 m near Grain Boundary

[Poster by Hu Qyiang]

Nanopillars:[Chen, Jung, Trinkaus, PRB 2000]

{

Page 16: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 16/25

Possible New Concepts for SiC Armor: Nanopillars & Dendrites

Surface textures that were achieved in black W coatings applied to W [Ultramet 2005]

High emissivity CVD dendritic Re coatings applied to solid CVD Re surfaces [Ultramet,2005]

Dendrites “Cauliflower”

• Concept is based on:• Make use of characteristic diffusion length of helium (Denuded Zones in SiC ~0.5 um)• Choose materials which have <1 um size features: dendrites, pillars, cauliflower

Page 17: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 17/25

Possible New Concepts for SiC Armor: IBC Coating

The UEET (Ultra Efficient Engine Technology; NASA) is developing SiC/SiC composites with EBC

(EBC: Environmental Barrier Coatings)

• EBC have low thermal k

Ion-Barrier Coating (IBC) SiC Armor:

Doug Freitag301.570.3821

[email protected] April 2002

New EBC with no degradation: 300h, 1400oC (2552 F) 1h cycles, 90 H2O-bal O2

{Melt-Infiltrated SiC/SiC

Glass-forming materials have a relatively open crystal structure, which enhances ion release and self-healing.

Is there a combination of high thermal conductivity materials that could be combined with glass forming materials. (Si3Ni4-

MoSi2, Si3N4-SiC, SiOxNyBz ) that will allow for high release of

implanted ions ?

Page 18: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 18/25

Possible New Concepts for SiC Armor: Flexible w/o Transpiration Cooling

Use a Flexible Fibers

o No matrix material

o Fibers should be ~few microns in diameter to enhance Ion-release

o Keep armor flexible to accommodate loads

Flexibel SiC-Fiber 2/3-D Weave Armor with Transpiration Cooling:

Sylramic™ SiC Fiber 2-D Weave

Concern:

• Thermal conduction path of the weave to underlying structure.

Wetted-Solid Evaporative Cooling

• Wick sufficient liquid to serve as a sacrificial layer to take care of all ions

• Use structure (W-fibers, dendrites, nanopillars, nano-grains) to hold liquid and to conduct heat

Page 19: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 19/25

OUTLINE

• Ion Implantation Issues (9 slides)

• Possible New Concepts for SiC/SiC (3 slides)

• Supportive Activities: (2 slides)

Page 20: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 20/25

FusionNET™ Database: Update

Predicted Values Ref. 1 (1.5mm) Ref. 1 (2.5mm)Temperature Total Elongation Temperature Total Elongation Temperature Total Elongation(C) (%) (C) (%) (C) (%)

800 2.54 21 0.5 21 0.7850 3.66 21 0.8 21 0.5900 4.85 21 0.8 1093 11950 6.1 649 7 1093 11

1000 7.39 649 7 1371 121050 8.71 1093 8 1371 111100 10.06 1093 8 1649 701150 11.41 1371 9 1649 831200 12.77 1371 10 1927 701250 14.13 1649 71 1927 691300 15.46 1649 60 2204 241350 16.76 1927 59 2204 321400 18.01 1927 50 2482 221450 19.22 2204 221500 20.36 2204 241550 21.43 2482 211600 22.42 2482 10

A new category has been added to FusionNET™:

─ ITER Materials Handbook

All ITER Tungsten Properties are available: · Density

· Electrical Resistivity· Emissivity· Enthalpy· Fatigue S-N Curve· Poisson's Ratio· Reduction in Area· Specific Heat· Tensile Strength· Thermal Conductivity· Thermal Expansion· Total Elongation· Uniform Elongation· Vapor Pressure· Yield Strength· Young's Modulus

ITER Li, Be, ClidCop, 316 (LN)IG being uploaded

E_t = -0.0434 + (1.8524x10 -̂4)T - (1.954x10 -̂8)T 2̂ = 0.0104T= 300 (°C) (300 < T < 3500°C)

Emissivity (W):

Page 21: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 21/25

HiCAT- A Novel In-situ Mass Loss Diagnostic Tool

A compact (~15 mm diam.), high power hollow pulsed cathode discharge has been developed to ionize vaporized/ablated chamber wall material.

Quantitative spectroscopy is used to determine :─ Species Composition, and ─ Density of ablated/vaporized material

High sensitivity, high time resolution detection (< 100 ns)

Operation in Argon background gas (0.01-10 torr) or as vacuum arc

Studied Chamber clearing in Z-Pinch

L. Schmitz, P. Calderoni, Y. Tashima, A. Ying (MAE-UCLA)

Schematic of HiCAT device

Measured Lithium density compared to

vapor pressure equilibrium density

(pAr= 0.3 torr)L. Schmitz et al., J Nucl. Mat.

337-339 (2005) 1096

~1.5 cm

Page 22: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 22/25

Summary and ConclusionsIon Implantation:

“Busy” implantation region (~10-20 m in SiC; < 5 m in W)

Synergy of implanted H and He (He-trapping, SiC, W)

Chemical interaction of excess carbon with H, D, T (SiC, W)

WC formation is favored because of low solubility and large negative Gibbs Free Energy of Formation

Roughening of SiC due to low energy H implantation

Concepts:

• Nanopillars/Dendrites: < 1um to enhance ion release from SiC

• IBC: Ion-Barrier Coating with glass formers to enhance ion release

• Flexible (fiber) w/o Transpiration cooling

Supportive Activities:

FusionNET™: ITER MPH Tungsten have been added to FusionNET™ Mass Loss Analyzer: In-situ mass-loss analyzer (scan rate >100 ns).

Page 23: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 23/25

Background Slides

Page 24: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 24/25

Ion Implantation Profile in SiC per Shot

1E+15

1E+16

1E+17

1E+18

0 5000 10000 15000 20000 25000

Mid-Bin Range (Angstr.)

Ato

m /

Mid

-Bin

Ra

ng

e (

Ato

m/A

ng

str.

) .

1H

2H

3H

4He

12C

13C

Au

Pd

1H

3H

12C

4He

2H

4He

3H

12C

1H

Debris + Burn IonsR = 10.1 m

365 MJ TargetCVD-SiC

12C

12C

Page 25: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 25/25

1.E+16

1.E+17

1.E+18

1.E+19

1.E+20

1.E+21

0 2000 4000 6000 8000 10000Mid Bin Energy (keV)

Ions

at

Mid

-Bin

Ene

rgy

(#)

2H

3H

4He

1H

3He

12C

13C

From J. Perkin’s HAPL 365 MJ Target

Page 26: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 26/25

HiCAT Pulsed High Power OperationEmission Spectrum of > 80% Ionized

Pulsed Argon Plasma

100

300

500

700

300 400 500 600 700 800

Wavelength [nm]

Inte

nsi

ty [

a.u

.]

Ar Ion Lines

• High density, nearly fully ionized plasma (n < 1017 cm-3, kTe < 2 eV) with local thermodynamic equilibrium (LTE) allows simplified spectroscopic determination of plasma parameters needed to interpret materials spectra.

• A Rapid sequence of pulses allows high time resolution (< 100 ns) analysis of mass loss, ablated/vaporized material density, and species composition.

• Works in Argon background or as vacuum arc.

Ar Neutral Lines

Z-BoxTest Chamber(Vacuum Capable Glove Box)

Lens

Fiber Optic

Capacitor Bank2 kJ

Dual 0.27 m Monochromators

Ocean Opticscompact

spectrometer

PMTPMT

Page 27: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 27/25

HiCAT Diagnostics (Continuous operation)

End-on View of HC Discharge in Argon

Schematic showing spectroscopy and Langmuir probe set-up

Plasma Parameters obtained from Probe data

Ar Ion lines

Ar neutral lines

Low current, low plasma density; minimally invasive diagnostics;highest trace detection sensitivity under equilibrium conditions. Required back-ground pressure 0.01-10 torr Argon

Emission Spectrum

Page 28: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 28/25

Density Profiles (SRIM)

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

0 2 4 6 8 10

Implantation Depth (um)

Ion

per

Tun

gste

n A

tom

(ap

a)He-Burn

C-Debris

He-Debris

Au-Debris

10.1Radius: m

154 MJ Target

He-Burn

He-Debris

C-Debris

Au-Debris

DEBRIS-IONS

12th HAPL Meeting

Page 29: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 29/25

• High T implantation: ~2x1017 T/m2 per shot for a R=10.1 m chamber.

• Effects of Carbon on T retention at High Temperatures?

Impact of Carbon Implantation: Tritium Retention

1.E+15

1.E+18

1.E+21

0 2 4 6 8 10 12

Mid Bin Implantation Depth (um)

Ion

s /

um

Carbon-12 (Debris)

He-4 Debris

Au (Debris)

He4-Burn

Tritium (Debris)

He4-Debris(~2e19 /shot)

Tritium (Debris): ~ 3e20 / shot

Radius: m6.5

Irradiated tungsten at 653K with carbon concentration as a

parameter (1 keV ~7× 1024 H/m2

[Ueda,2004].

Page 30: Ion Implantation in SiC: 365 MJ Target Spectra

HAPL-14: S. Sharafat 30/25

Self-Damage (Defect) Rate Profiles (SRIM)

0

100

200

300

400

500

0 1 2 3 4 5

Implantation Depth (um)

Ins

tan

tan

eo

us

Da

ma

ge

Ra

te

(dp

a/s

) Carbon-12 (Debris)

He-4 Debris

He-4 (Burn)

Au (Debris)

T-Debris

D-Debris

He-Debris

He-Burn

C-Debris

Au-Debris Radius: m10.1

D-Debris

T-Debris