Investigation of the Self-cleaning Properties of Cotton...

12
200 KKU Res. J. 2013; 18(2) Investigation of the Self-cleaning Properties of Cotton Fabrics Finished with Nano-TiO 2 and Nano-TiO 2 Mixed with Fumed Silica. Penwisa Pisitsak 1 *, Arnon Samootsoot 1 and Nassarin Chokpanich 1 1 Department of Textile Science and Technology, Faculty of Science and Technology, Thammasat University *Correspondent author: [email protected] Abstract The aim of this work is to investigate the self-cleaning properties of woven cotton fabrics after coating with either nanoparticles of TiO 2 (Degussa, P-25) or mixtures of P-25 and fumed silica (Aerosil200). The TiO 2 and fumed silica were dispersed in toluene by exposure to ultrasound and then stirring prior to use. After drying, the particles were dispersed in water at 0, 0.5, 1.0 and 2.0 wt/wt% then applied to the cotton fabrics using a pad- dry-cure technique. The finished fabrics were stained with direct dye, coffee, tomato sauce, and soft drink, and then irradiated with artificial sunlight (xenon arc lamp) for 24 h. The K/S values at different time intervals were recorded to measure the self-cleaning ability of the finished fabrics. The results showed that every sample possessed self-cleaning abilities. The self-cleaning effect was stronger for samples coated with higher TiO 2 concentrations. The decomposition of a direct dye stain was most significant compared to other stains. Mostly, the finished samples appeared clean after one wash whereas the untreated fabrics required repeated washing. However, with the addition of fumed silica, a reduction in self-cleaning ability was observed. Keywords: cotton, photocatalytic surface, self-cleaning textile, textile finishing, titanium dioxide KKU Res. J. 2013; 18(2): 200-211 http : //resjournal.kku.ac.th

Transcript of Investigation of the Self-cleaning Properties of Cotton...

200 KKU Res. J. 2013; 18(2)

Investigation of the Self-cleaning Properties of Cotton Fabrics Finished with Nano-TiO

2 and Nano-TiO

2 Mixed with Fumed Silica.

Penwisa Pisitsak1*, Arnon Samootsoot1 and Nassarin Chokpanich1

1Department of Textile Science and Technology,Faculty of Science and Technology, Thammasat University*Correspondent author: [email protected]

Abstract

Theaimofthisworkistoinvestigatetheself-cleaningpropertiesofwovencottonfabricsaftercoating

witheithernanoparticlesofTiO2(Degussa,P-25)ormixturesofP-25andfumedsilica(Aerosil200).TheTiO

2

andfumedsilicaweredispersedintoluenebyexposuretoultrasoundandthenstirringpriortouse.Afterdrying,

theparticlesweredispersedinwaterat0,0.5,1.0and2.0wt/wt%thenappliedtothecottonfabricsusingapad-

dry-curetechnique.Thefinishedfabricswerestainedwithdirectdye,coffee,tomatosauce,andsoftdrink,and

thenirradiatedwithartificialsunlight(xenonarclamp)for24h.TheK/Svaluesatdifferenttimeintervalswere

recordedtomeasuretheself-cleaningabilityofthefinishedfabrics.Theresultsshowedthateverysamplepossessed

self-cleaningabilities.Theself-cleaningeffectwasstrongerforsamplescoatedwithhigherTiO2concentrations.

Thedecomposition of a direct dye stainwasmost significant compared to other stains.Mostly, thefinished

samplesappearedcleanafteronewashwhereastheuntreatedfabricsrequiredrepeatedwashing.However,with

theadditionoffumedsilica,areductioninself-cleaningabilitywasobserved.

Keywords:cotton,photocatalyticsurface,self-cleaningtextile,textilefinishing,titaniumdioxide

KKU Res. J. 2013; 18(2): 200-211http : //resjournal.kku.ac.th

201KKU Res. J. 2013; 18(2)

1. Introduction

It has beenwidely accepted that titanium

dioxide (TiO2) in the anatase form displays a good

photocatalyticproperties(1).Thissubstancehasaband

gapofapproximately3.2eVandthuscanbeexcitedby

UVradiationwhosewavelengthisshorterthan388nm.

UponUVexposure,anelectronfromthevalenceband

becomespromotedtotheconductionbandresultingin

theformationofanegative-electron(e-)intheconduction

bandandapositive-hole(h+)inthevalenceband.The

positive-holeofTiO2canseparateawatermoleculeinto

ahydroxylradical(OH•)whilethenegative-electron

reactswithanoxygenmoleculetogenerateasuperoxide

radical anion (O2

-). These radicals possess strong

oxidationpotentialtodecomposesurroundingorganic

pollutants intoCO2andH

2O, leadingto theso-called

self-cleaningeffect.BycoatingTiO2(filmsorparticles)

on the surface of interest, the unwanted organic

compounds, e.g.microorganisms, odor, and stains

areexpectedtoberemoveduponilluminationbyUV

lighteitherfromthesunorinternallighting(2).Main

applicationsincludeairpurification,waterpurification,

andsterilization (3). Ithasbeenshown that although

TiO2intheanataseformexhibitssuperiorphotocatalytic

activitytotherutileform,mixingofthesetwocrystal

structures can result in an enhanced photocatalytic

performancecomparedtoeithersingleform(4,5).The

importantfeatureofusingnano-sizedparticulateTiO2

is the larger surface-to-volume ratio that favors the

productionofactiveoxygenmoleculesandincreasesthe

availableareaforthephotocatalyticactionwithorganic

compounds(6).DegussaP-25isawidelyusedcommercial

nanoparticlesofTiO2havingtheaveragecrystallitesize

of30-40nmandananatase-to-rutilemixedphaseratio

of4:1.Bozzietal. reported thatwhencotton textiles

were coatedwith these nanoparticles, redwine and

coffeestainsdecomposedunderdaylightirradiation(3).

Inrecentyears,TiO2photocatalyticfinishingoftextiles

for self-cleaning applications has become an active

research area. Textile materials that have been

investigated include cotton (3,7-9), wool (10,11),

polyester(10-12),polyamide(11)etc.

Recently, an important work on the

improvementofphotocatalyticactivityofTiO2bynon

in situ dopingwith fumed silicawas carried out by

Jafry,Liga,LiandBarron(13).Theauthorsobserved

an improvement in the deactivation of viruses

(bacteriophageMS2) by simply stirringTiO2 (P-25)

with fumed silica in toluene solventwhen compared

withTiO2alone.Theyascribedthisenhancedantiviral

actiontotheincreaseinthephotocatalystbandgap.This

leadstoareductioninelectron-holerecombinationand

thustheformationofmorehydroxylradicalsproduced

fromTiO2-SiO

2 particles. They also suggested the

possibilityofincreasedabsorptionofMS2ontothedoped

catalystsurface.Sincethekillingofvirusreliedonfree

radicalsgeneratedviaphotocatalyticactionofTiO2-SiO

2,

itwouldbeinterestingtouseasimilarapproachtofind

outwhetherTiO2decompositionofstainswouldbemore

effectivebydopingwithsilicaaswell.Thisinvestigation

oftheeffectofsilica-dopedTiO2ontheself-cleaning

ability of textileswas therefore includedwithin the

presentresearch.Theoutcomeifsuccessfulwillhave

industrial significance as itwould be convenient and

cost-savingtobeabletoderiveabettertextilefinishing

formulabysimplemixingoftwotypesofparticles.

Inthepresentstudy,cottontextileswerecoated

withnano-TiO2andfourdifferentmixturesofnano-TiO

2

andfumedsilica.Thephotocatalyticperformancesunder

asolarsimulatorwereevaluatedbyobservingthefading

ofstains.Thestainsandthelightsourcewerechosen

inordertosimulatethenormalusingofgarmentsand

hometextiles.Followingillumination,thesampleswere

washedinawashingmachinetoevaluatetheeffectof

applyingaphotocatalystcoating.

202 KKU Res. J. 2013; 18(2)

2. Materials and Methods

Acottonplainweavegrey fabric (massper

unitareaof123g/m2)waspurchasedfromalocalstore

(Phahuratmarket,Thailand).Thefabrichas133yarns/

inchinthewarpand68yarns/inchintheweftdirection.

ThewarpandweftyarncountsareNe42andNe45,

respectively.Nano titanium dioxideDegussa P-25

waspurchasedfromEvonik(Thailand).Fumedsilica,

Aerosil200, was kindly supplied by Boontrakarn

ChemicalsCo.,Ltd.,Thailand.

2.1 Dispersion of nano-TiO2 and nano-TiO

2/

fumed silica particles

TiO2nanoparticlesweredispersedintoluene

using an ultrasonic bath (Transsonic digital, Elma)

for 1min at room temperature followed by stirring

usingamagneticstirrer for1h,vacuumfiltered,and

thendried.Next, thenanoparticleswerewashedwith

copiousacetonebeforebeingvacuumfilteredandthen

driedagain.ForthemixtureofTiO2andfumedsilica,

thesameprocedurewasconducted,butbothsubstances

were dry-mixed prior to dispersing at predetermined

weightpercentagesoffumedsilicabasedontheamount

ofTiO2:0,10,30and60%.

2.2 Finishing of cotton fabrics

TheTiO2nanoparticleswerestirredindistilled

water at a total solidweight of 2 g/100ml ofwater

whereas for thenano-TiO2/fumedsilicamixtures, the

totalsolidweightwasfixedat1g/100mlofwater.Cotton

fabricwasscouredandbleachedbeforeuse.Thefabric

was cut into rectangular pieces of samples with

dimensions of 5cmx 5cm.The fabric sampleswere

dippedintheparticlesolutionfor3minandthenpadded

byalaboratorypaddingmanglewithvariouspercentage

wet pickups (Labtec,NewaveLab.Equipments,Co.,

Ltd.).Finally thefabricswere takenoutandcuredat

130°C for 5minutes using a laboratorymini dryer

(Labtec,NewaveLab.Equipments,Co.,Ltd.).

2.3 Evaluation of the self-cleaning properties

under artificial sunlight

Irradiationofallsampleswascarriedoutin

thecavityof aSuntest solar simulator (AtlasSuntest

CPS,Germany)witha1500wattair-cooledxenonarc

lampasalightsource.Fourtypesofstainwerestudied

forTiO2-finishedsamples:directdye(Everdirectsupra

turquoise blueFBLorC.I.DirectBlue 199), coffee

(NescaféLatte),tomatosauce(Heinz),andsoftdrink(see

detailsinTable1).Onestainwasdroppedononepiece

ofsampleatavolumeof100µlusingamicropipette

(Transferpette®).Thetophalfofeachstainedareawas

coveredwithapieceofaluminiumfoilwhilethebottom

halfwas left exposed to the simulated sunlight.This

halfcoveringwasdonetoobservehowthesimulated

sunlightchangesthecolorintensityofthestainedfabrics

bycomparingbetweentheexposedandunexposedparts.

The color intensity (K/S) was measured using a

spectrophotometer (GretagMacbeth color i5) at

different time intervals. For the TiO2/fumed silica

finishedsamples,onlythedirectdyestainwasstudied

andthereductioninK/Svalueswasrecordedafter24-h

exposure.

Table 1. Typesofstainusedandtheircorrespondingcoloringorganiccomponents.

Stain type Coloring organic component

Directdye Acomplexofcopperwithphthalocyanine

Coffee Caramelizedsucroseproducts

Tomatosauce Lycopene

Softdrink AlluraRedAC

203KKU Res. J. 2013; 18(2)

2.4 Effects of washing cycles on the residual

stains

AfterilluminationinaSuntestchamberfor24

h,selectedsampleswerewashedinawashingmachine

(Gyrowash,JamesH.HealCo.,Ltd.)from1to3cycles

according to ISO105-C05:1989.TheK/Svaluesand

photographicimageswererecorded.

3. Results and Discussion

3.1 Determination of the percentage of TiO2

add-on

Table 2 showed theweights of the fabrics

beforeandafterpadding,andalsotheconcentrationsof

TiO2inthepadsolutions.Theseparameterscanbeused

tocalculatetheactualsolidlevel,i.e.TiO2level,addedto

thecottonsamples.Usingthefollowingequationyields

thepercentageofTiO2add-on:

where

ThehigherpercentageofTiO2add-onindicatedgreateramountsofTiO

2coatingonthefabricswith

increasingTiO2concentrations.

Table 2. Sampleweightsandtheresultingpercentageadd-onsforpristineandTiO2-coatedsamples.

TiO2 concentration

(% wt/wt)

Sample weight (g)% wet pickup

% TiO2

add-onBefore pad After pad

0.0 3.53 5.85 65.72 0.00

0.5 3.50 5.85 67.14 0.34

1.0 3.51 6.15 75.21 0.75

2.0 3.51 6.02 71.51 1.43

3.2 Evaluation of self-cleaning performance

of TiO2-finished samples via spectrophotometry

AsshowninTable1,eachofthestainsused

inthisstudycontainedamajorcoloringcomponentas

follows:adirectdye(C.I.DirectBlue199);Lycopene

(intomatosauce);caramelizedsucrose(incoffee);and

anaciddye,namelyAlluraRedAC(insoftdrink).

Thechemicalstructuresofthesecompounds

are provided in Fig. 1 except for the caramelized

sucrose productswhose brown-colored components

havenot been individually identified.Thedirect dye

usedherewasacomplexofcopperwithphthalocyanine.

Lycopeneisanunsaturatedhydrocarbon.Caramelized

sucroseproductswereobtainedbyheatingofsugar,in

otherwords,roastingthecoffeebeans.Theoutcomeis

theformationofthousandsofcompoundswhichhave

notbeeninvestigatedthoroughly.Thecompoundsthat

giverise to thebrowncolorcouldbeminoraromatic

204 KKU Res. J. 2013; 18(2)

compounds(dye-likemolecules)assuggestedbyGolon

etal.(14).Theaciddyeinsoftdrinkwasasodiumsalt

ofanazobenzenederivativecontainingsulfonategroups.

Intheliterature,coffeeandredwinestainsareprobably

the organic pollutantsmost commonly employed for

the evaluation of self-cleaning textiles by the use of

photocatalysts (6,8,9,11,15-17).Thiswork, therefore,

extendedthestudytoothertypesoforganiccompounds.

Figure 1. Chemicalstructuresofthemajorcoloringcomponentsfoundina)directdye,b)tomatosauce,andc)

softdrink.

Figs.2arethephotographicimagesoffabric

samplesafterstaining.Thecolorintensitiesofthefour

typesofstainweredifferentatthestartingpoint(0hof

illumination)ascanbeseeneitherbyvisualinspection

orfromtheK/Svalues:C.I.DirectBlue199>coffee>

tomatosauce>softdrink(seeFigs3a-d).

205KKU Res. J. 2013; 18(2)

Figure 2. PhotographicimagesofTiO2-finishedcottonfabricsafterilluminationbyasolarsimulatorfor24h.

Theupperhalfofeachamplewascoveredwithanaluminiumfoilandthusunexposed.Thebottom

halfwassubjectedtodirectexposure.Fourtypesofstainwereinvestigated:directdye,coffee,tomato

sauce,andsoftdrink.

Figure 3.PlotsofK/Svaluesversustimeforilluminatedsamples:a)pristinecotton,cottoncoatedwithb)0.5

wt/wt%TiO2,c)1.0wt/wt%TiO

2,andd)2.0wt/wt%TiO

2.TheStainsusedwere(n)C.I.DirectBlue

199,(●)coffee,(x)tomatosauceand(◆)softdrink.

206 KKU Res. J. 2013; 18(2)

Astrongbluecolorwasobtainedforthesample

stainedwithC.I.DirectBlue199whilethesoftdrink

stainwasbarelyvisiblebyvisual inspection.Fabrics,

bothwith andwithout nano-TiO2 coating, showed

decreasingK/S valueswith increasing illumination

time.ThisreflectstheeffectoftheUVspectruminthe

artificial sunlight in fading organic stains.However,

the reduction is stainingwasmore pronouncedwith

increasingTiO2concentrationespeciallyforthedirect

dyestainedsamples.Theself-cleaningabilityofthese

nano-TiO2finishedsamplesarosefromthephotocatalytic

properties of TiO2 under artificial sunlight, which

convertorganiccompounds intoCO2andH

2O.After

24hillumination,thecolorsofallthestainsweremuch

lighterthantheirinitialcolors.Incompletecolorchange

ofcoffeeandredwineafter24-hourilluminationwith

simulated solar lightwas also reported byMeilert

andcoworkers(8).Itshouldbenotedthatlycopeneis

responsibleforthecolorinboththeredwineandthe

tomato sauce.AlthoughTiO2 is a photocatalyst that

utilizesUVradiationtodecomposeorganicmolecules,

ithasbeenproposedthatthedecompositionoflycopene

undervisiblelightbyTiO2mayoccurduetoaprocess

called “dye sensitization”, i.e. the lycopenemolecule

absorbslightinarangebeyondthebandgapofTiO2to

promoteanelectronandinjectitintotheTiO2conduction

band, initiating the oxidative process (18).Bozzi et

al. suggested the samemechanism accounts for the

decompositionofthecoloredorganiccomponentsfound

inredwineandcoffee(3).Takingintoaccountthegood

self-cleaningactivityofsamplesstainedwithsynthetic

organicdyes:C.I.DirectBlue199andAlluraRedAC,

thesecompoundsprobablyunderwentthesamevisible

light-induced decompositionmechanism in addition

totheclassicalUV-induceddecompositionprocessby

TiO2.Thechemicalstructuresofallthesecompounds

containaromaticringswhicharelikelytobefoundin

caramelizedsugaraswell.

Itmaybe thought that this color change is

primarilyaresultofexposureofthestainstolight.As

controls,pristinecottonswerealsostainedandilluminated

in thesamewayas theTiO2-coatedsamples.For the

untreated fabrics, thechange incolor intensityof the

stainsafter24hofilluminationwasbarelyvisible.This

indicatesthatthepresenceofTiO2wasthemajorfactor

accountingforthedecompositionofthesestains.Without

the use of these nanoparticles, the decomposition

of stainswas virtually non-existent under artificial

sunlight(seeFigs4(a)-(d)).

Figure 4.Photographicimagesofpristinecottonfabricsafterilluminationbyasolarsimulatorfor24h.Only

thelowerhalfareaofthesampleswasexposedtoartificialsunlight.Sampleswerestainedwithdirect

dye,coffee,tomatosauce,andsoftdrink.

207KKU Res. J. 2013; 18(2)

3.3 Study the effects of fumed silica on the

photocatalytic efficiency

AscanbeseenfromFig5,beforeillumination

with artificial sunlight, all samples having different

TiO2:SiO

2ratiosdisplayedsimilarK/Svalues(variations

limitedwithinerrorbars).After24-hillumination,all

thesamplesshowed loweredK/Svaluesasexpected.

However,withtheadditionoffumedSiO2,thereduction

inK/Safterexposurewasmuchsmaller;thepercentage

reductionofK/SforpureTiO2coatingwas40%while

thoseofsilica-containingTiO2coatingwereconsistently

lower, at approximately 18%. Therefore, it can be

deduced thatpartlyreplacingTiO2withfumedsilica,

from 10 to 60wt/wt%, reduced the photocatalytic

performance.Thiscanbeviewedaseitherapositive

or negative feature.According to the literature, the

photocatalyticeffectof theTiO2destroys theorganic

matrix inwhich theTiO2 itself is embedded, e.g. an

organic binder (19).Dopingwith silica is suggested

asoneapproach that can suppress thisphotocatalytic

destruction.Fromtheliterature,Jafryetal.reportsan

improvement in the antiviral properties ofTiO2 after

mixingwith fumed silica andexposure toultrasound

in toluenesolution.Theauthorsascribetheenhanced

photocatayticeffectstotwopossiblefactors:first,an

increaseintheTiO2bandgapor,secondly,anincreasein

thesurfaceareabymixingtogethertheseparticles.Since

inactivationofmicrobesanddecompositionofstainsare

basedonthesamephotocatalyticmechanism,onewould

expectanimprovementinstainremovalviathisapproach.

However,suchimprovementwasnotdetectedandthe

reduced efficiencywas ascribed to the replacement

of TiO2 photocatalyst by the photocatalytically

inactive fumed silica. It should be noted that the

effectsofsilicaonTiO2photocatalyticperformanceare

controversial in the literature, e.g. both enhancement

(13,20)anddeterioration(19,21)havebeenreported.

Figure 5.PlotsofK/Svaluesofcottonfabricscoated

with TiO2/fumed silica at various ratios

before(x)andafter(◆)24-hartificialsunlight

exposure.

3.4 Effects of washing cycles on the color

change of stained fabrics coated with nano-TiO2

The photographic images shown in Fig. 6

confirm the benefits of the TiO2 photocatalyst for

self-cleaning textile applications.Although the stains

werenotcompletelyremovedafterexposuretosimulated

sunlight for24h, thecolor intensitiesof the residual

stains were much weakened.We then tested the

samples containingTiO2 in termsofhoweasily they

couldbecleaned.Afterexposure,thecolorofthelower

halfofeachsampleappearedlessintensecomparedto

theupper,unexposedhalf.Afteronewashinastandard

washingmachine,thesamplesstainedwithC.I.Direct

Blue199andAlluraRedAClookedcleantotheeyes

whilethosestainedwithcoffeeandtomatosaucestill

appearedtainted.Table3displaystheK/Svalueofthe

samplesfinishedwith2wt/wt%TiO2beforeandafter

washingone,twoorthreetimes.Theresultsagreewell

withvisualperception.Coffeeandtomato-saucespots

werepersistentthattheyneededthreewashingcycles

beforeappearingnearlycleantotheeyes.Theexposed

208 KKU Res. J. 2013; 18(2)

parts of the fabricwere cleanedmore easily because

thestainshadbeenpartiallydecomposedbytheTiO2

photocatalyst.As expected, stain removal from the

unexposedsamplearearequiredmorewashingcycles.

Figure 6.Photographicimagesofpristinecottonfabricsafterilluminationbyasolarsimulatorfor24h.The

numbersontopindicatethenumberofwashingsthesamplesunderwent.Typesofstainsareindicated

ontheleft.

209KKU Res. J. 2013; 18(2)

Table 3. K/Svaluesofcottonsamplesfinishedwith2wt/wt%TiO2.Datawerecollectedbothfromareasexposed

andunexposedto24-hartificialsunlight.

Stain Number of washes Area measured

Exposed Unexposed

Directdye 0 3.63 10.68

1 1.91 2.96

2 1.51 2.42

3 1.52 2.44

Coffee 0 3.43 6.53

1 2.43 3.66

2 2.03 2.87

3 2.15 2.83

Tomato 0 3.58 3.86

1 3.01 3.26

2 2.42 2.68

3 2.47 2.56

Softdrink 0 1.68 2.38

1 1.56 1.79

2 1.32 1.95

3 1.35 1.99

Itcouldbearguedthattheremovalofstains

isduetotheremovalofTiO2particlesduringwashing.

Thisexplanationdoesnotholdinthepresentstudysince

thestainsontheunexposedarearemainedafter three

washes, as canbe seen clearly for the coffee-stained

sample.ThisimpliestheretentionofTiO2onthefabric

surface.Uddinetal.haveshownthatnanoparticlesof

TiO2cananchorontocellulosicfiberstotheextentthat

theycanwithstandupto20washingcycles(22).

4. Conclusion

This work reports the evaluation of

photocatalytic activities of cotton coatedwithTiO2

nanoparticleswith the aimof obtaining self-cleaning

textiles.Apad-dry-curetechniquewasusedasacoating

process.Resultsshowedthatthestains,i.e.directdye,

coffee, tomato sauce, and soft drinkwere partially

decomposed after 24-h illuminationwith artificial

sunlight.Completeremovalofdirectdyeandsoftdrink

210 KKU Res. J. 2013; 18(2)

inasinglewashcycleconfirmedtheenhancementof

self-cleaningefficiencybyTiO2coatingviatwoseparate

mechanisms: a dye-sensitizationmechanism through

exposuretovisiblelight,andaclassicalUV-stimulated

photocatalyticaction.TiO2remainedonthefabricsafter

threewashes.Studyofthephotocatalyticperformanceof

nano-TiO2/fumedsilicawasalsoconducted,anditwas

foundthatthephotocatalytically-inactivefumedsilica

showedanadverseeffectontheself-cleaningproperties.

5. Acknowledgement

Theauthorsgratefullyacknowledgethefinan-

cialsupportprovidedbyThammasatUniversityunder

theTUNewResearchScholar,ContractNo.13/2555.

WewouldliketothankDr.Punrattanasin(Departmentof

TextileScienceandTechnology,ThammasatUniversity)

andMr.Thongcharoen(ThailandTextileInstitute)for

theirsupport.WearealsogratefultotheDepartmentof

Chemistry,ThammasatUniversity,forprovidingaccess

totheirlaboratoryequipment.

6. References

(1) FujishimaA, Rao TN, TrykDA. Titanium

dioxidephotocatalysis.JPhotochemPhotobiol.

2000;1(1):1-21.

(2) Kath i rve lu S , D’Souza L, Dhura i B.

Nanotechnologyapplicationsintextiles.Indian

JSciTechnol.2008;1(5):1-10.

(3) BozziA,YuranovaT,GuasaquilloI,LaubbD,

KiwiJ.Self-cleaningofmodifiedcottontextiles

by TiO2 at low temperatures under daylight

Irradiation. J Photochem Photobiol, A.

2005;174(2):156-164.

(4) LiuG,YanX,ChenZ,WangX,WangL,Lu

GQ,ChengHM. Synthesis of rutile–anatase

core–shellstructuredTiO2forphotocatalysis.J

MaterChem.2009;19(36):6590-96.

(5) MillsA,LeeSK,LepreA.Photodecomposition

ofozonesensitisedbyafilmoftitaniumdioxide

onglass.JPhotochemPhotobiol,A.2003;155

(1-3):199-205.

(6) GuptaKK,JassalM,AgrawalAK.Functional

finishingof cottonusing titaniumdioxide and

zinc oxide nanoparticles.RJTA. 2007;11(3):

1-10.

(7) Qi K, Wang X, Xin JH. Photocatalytic

self-cleaning textiles basedonnanocrystalline

titaniumdioxide.TextResJ.2010;81(1):101-10.

(8) MeilertKT, LaubD,Kiwi J. Photocatalytic

self-cleaningofmodifiedcottontextilesbyTiO2

clustersattachedbychemicalspacers.JMoCatal

A:Chem.2005;237(1-2):101-108.

(9) QiK,DaoudWA,XinJH,MakCL,TangW.

CheungWP.Self-cleaningcotton.JMaterChem.

2006;16(47):4567-74.

(10) MontazerM, Seifollahzadeh S. Enhanced

self-cleaning, antibacterial andUVprotection

propertiesofnanoTiO2treatedtextilethrough

enzymaticpretreatment.PhotochemPhotobiol.

2011;87(4):877-83.

(11) BozziA,YuranovaT,Kiwi J. Self-cleaning

ofwool-polyamide and polyester textiles by

TiO2–rutile modification under daylight

irradiationatambienttemperature.JPhotochem

Photobiol,A.2005;172(1):27-34.

(12) DastjerdiR,MontazerM,ShahsavanS.Anovel

techniqueforproducingdurablemultifunctional

textilesusingnanocompositecoating.Colloids

Surf,B.2010;81(1):32-42.

(13) JafryHR,LigaMV,LiQ,BarronAR.Simple

routetoenhancedphotocatalyticactivityofP25

titaniumdioxidenanoparticlesbysilicaaddition.

211KKU Res. J. 2013; 18(2)

EnvironSciTechnol.2011;45(4):1563-68.

(14) GolonA,KuhnertN.Unravelingthechemical

composition of caramel. JAgricFoodChem.

2012;60(12):3266-74.

(15) Wang RH,Wang XW, Xin JH. Advanced

visible-light-drivenself-cleaningcottonbyAu/

TiO2/SiO

2 photocatalysts. ACSApplMater

Interfaces.2010;2(1):82-85.

(16) SundaresanK,SivakumarA,VigneswaranC,

RamachandranT. Influence of nano titanium

dioxidefinish, prepared by sol-gel technique,

ontheultravioletprotection,antimicrobial,and

self-cleaningcharacteristicsofcottonfabrics.J

IndTextil.2011;0(00):1-19.

(17) GuptaKK, JassalM,AgrawalAK. Sol-gel

derivedtitaniumdioxidefinishingofcottonfabric

forselfcleaning.IndianJFibreText.2008;33:

443-50.

(18) Yuranova T et al. Discoloration of organic

compoundsonoutdoorbuildingcementpanels

modifiedbyphotoactivecoatings.JPhotochem

Photobiol,A.2007;188(2-3):334-41.

(19) MirabediniA,Mirabedini SM,BabalouAA,

Pazokifard S. Synthesis, characterization and

enhancedphotocatalyticnanocompositeinan

aqueous solution and acrylic-based coatings.

ProgOrgCoat.2011;72(3):453-60.

(20) YuranovaT,MosteoR,BandaraJ,LaubD,Kiwi

J.Self-cleaningcottontextilessurfacesmodified

byphotoactiveSiO2/TiO

2coating.JMoCatalA,

Chem.2006;244(1-2):160-7.

(21) VeronovskiN,RudolfA,SmoleMS,KrežeT,

GeršakJ.Self-cleaningandhandlepropertiesof

TiO2-modifiedtextiles.FiberPolym.2009;10(4):

551-6.

(22) UddinMJ et al. Photoactive TiO2 films on

cellulosefibres:synthesisandcharacterization.

2007;189(3):286-94.