(Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse)...

34
(Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar ITP Wien, Monday October 6 2014. 1 In collaboration with Anders Tranberg (University of Stavanger), William Naylor and Rashid Khan (NTNU), PRD 85 065026 (2012), JHEP 1208 (2012) 002, JHEP 1404 (2014) 187. Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Transcript of (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse)...

Page 1: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

(Inverse) magnetic catalysis and phasetransition in QCD

Jens O. Andersen 1

Theory Seminar ITP Wien, Monday October 6 2014.

1In collaboration with Anders Tranberg (University of Stavanger), William Naylor and Rashid Khan (NTNU),

PRD 85 065026 (2012), JHEP 1208 (2012) 002, JHEP 1404 (2014) 187.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 2: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Introduction

Phase diagram of QCD

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 3: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Introduction

Hadronic matter in strong magnetic fields:

Non-central heavy-ion collisions 2

2Kharzeev, McLerran, and Warringa, Nucl. Phys. A 803 (2008) 227, Skokov, Illarianov, and Toneev, Int. J. Mod.

Phys. A 24 (2009) 5925.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 4: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Introduction

Hadronic matter in strong magnetic fields:

Magnetars B = 1010 T 3

Electroweak phase transition B = 1019 T 4

3Duncan and Thompson

4Vachaspati, Enqvist and Olesen. Rummukainen et. al.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 5: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Lattice, effective theories, and models

Lattice, effective theories, and models

Lattice ( Buividovich et al, D’Elia et al , Endrodi et al, Bali et al.

Bag model (Fraga and Palhares)

Chiral perturbation theory (Agasian and Shushpanov, Agasian and Fedorov, JOA...)

(Polyakov-loop extended) Nambu-Jona-Lasinio model (Mizher,

Chernodub, and Fraga, Fukushima, Ruggieri and Gatto, Kashiwa...)

(Polyakov loop extended) Linear sigma model with quarks(Skokov, JOA+Tranberg+Naylor)

Holographic models (Preis, Rebhan, and Schmitt)

Schwinger-Dyson (Bonnet et al.)

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 6: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Some important questions:

Critical temperature as a function of B

Chiral condensate increases with B at T = 0

Splitting of chiral and deconfinement transition

Can be addressed by adding the Polyakov loop

Phase diagram in a magnetic background

Does the magnetic field change the order of the transition?Position of critical endpoint?

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 7: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Lagrangian and symmetries

L = ψ

[γµ∂µ + g(σ − iγ5τ · π)

]ψ +

12

[(∂µσ)2 + (∂µπ)2

]

+12

m2[σ2 + π2

]+

λ

24

[σ2 + π2

]2

− hσ .

O(4)-symmetry broken to O(3) by chiral condensate. ThreeGoldstone bosons (pions).

Magnetic field breaks SU(2) isopin symmetry. Only the neutralpion is a Goldstone mode.

σ2 + π2 → (σ2 + π20) + 2(π+π−) with two separate couplings.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 8: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Mean-field approximation

Background and quantum field

σ → φ+ σ .

Omit bosonic quantum and thermal fluctuations. Large-NclimitEffective potential

F0+1 =12

m2φ2 +λ

24φ4 − hφ− Tr log S−1 ,

Tr log S−1 = −∑

f

Tr log[iγµ(Pµ + qf Aµ) + mq] ,

mq = gφ .

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 9: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Mean-field approximation

One-loop contribution

F1 = −∑∫ B

{P}ln[P2

0 + p2z + M2

B

]

=|qf B|2π

s,k ,P0

∫dpz

2πln[P2

0 + p2z + m2

q + |qf B|(2k + 1− s)].

FT =01 =

|qf B|2π

s=±1

∞∑

k=0

∫dpz

√p2

z + m2q + |qf B|(2k + 1− s)

= −|qf B|2π

(eγE Λ2

)εΓ(−1 + ε)

×∑

s,k

[m2 + |qf B|(2k + 1− s)

]1−ε.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 10: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Mean-field approximation

Hurwitz zeta function:

ζ(s,q) =∞∑

k=0

(k + q)s

F T =01 =

(qf B)2

2π2

(eγE Λ2

2|qf B|

)εΓ(−1 + ε)

[ζ(−1 + ε, xf )− 1

2xf

]

=1

(4π)2

(Λ2

2|qf B|

)ε [(2(qf B)2

3+ m4

q

)(1ε

+ 1)

−8(qf B)2ζ(1,0)(−1, xf )− 2|qf B|m2q ln xf +O(ε)

],

xf =m2

q

2|qf B|.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 11: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Mean-field approximation

Renormalized one-loop effective potential

F0+1 =12

B2

[1 + Nc

f

4q2f

3(4π)2 lnΛ2

|2qf B|

]+

12

m2φ2 +λ

24φ4

− Nc

2π2

f

(qf B)2[ζ(1,0)(−1, xf ) +

12

xf ln xf −14

x2f

−12

x2f ln

Λ2

2|qf B|

]− NcT 2

8π2

f

|qf B|K B0 (βmq) .

K B0 (βm) = 8

s,k

∫ ∞

0

dpz p2z√

p2z + M2

B

1

eβ√

p2z +M2

B + 1.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 12: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Magnetic catalysis at T = 0

0 50 100 150 200 250

0

20

40

60

80

F0+1/f 4π

φ [MeV]

One-loop effective potential unstable - need bosoniccontribution to stabilize.By subtracting one-loop effective potential at B = 0, oneavoids the instability.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 13: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Phase transition

Figure: Effective potential in the chiral limit.

Order of phase phase transition depends on treatment ofvacuum fluctuationsFirst-order vs crossover at the physical point.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 14: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Functional renormalization group

Flow equation for the effective average action Γk [φ] thatinterpolates between the classical action S for k = Λ andfull quantum effective action Γ0[φ] for k = 0 5.

5Wetterich, Nucl. Phys. B 352 (1991) 529, Berges, Pawlowski, Schaefer and Wambach, Skokov...

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 15: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Functional renormalization group

S[φ] → S[φ] +12

∫ddq

(2π)d φ(−q)Rk (q)φ(q) ,

Z[J] =

∫Dφe−S[φ]−∆Sk [φ]+

∫Jφ

Γk [φ] = − lnZk +

∫jφ−∆Sk [φ]

Rk (q) satisfies various conditions to implement RG ideas:

Suppress momenta pqk and leave momenta q > kunchanged.

Rk=0(q) = 0 and Rk=Λ(q) =∞.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 16: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Flow equation for Γk [φ]

∂k Γk [φ] =12

Tr[∂kRk (q)

(2)k + Rk (q)

]−1]

+ term for fermions .

Flow equation is exact.

Feynman diagram for flow equation

∂kΓk = 12 −

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 17: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Functional renormalization group

Cannot solve flow equation exactly. Derivative expansion:

Γk [φ] =

∫ β

0dτ∫

d3x{

12

Z (1)k

[(∇σ)2 + (∇π)2

]

+12

Z (2)k

[(∂0σ)2 + (∂0π)2

]+ Uk (φ) + Z (3)

k ψγ0∂0ψ

+Z (4)k ψγi∂iψ + gk ψ [σ − iγ5τ · π]ψ + ...

},

Local-potential approximation (LPA): Z (i)k = 1 yields

equation for effective potential Uk [φ].Beyond LPA: calculate anomalous dimensions.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 18: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Functional renormalization group

∂kUk =k4

12π2

[1ω1,k

(1 + 2nB(ω1,k

)+

1ω2,k

(1 + 2nB(ω2,k

)]

+|qB|2π2

∞∑

m=0

kω1,k

√k2 − p2

⊥(q,m,0) θ(

k2 − p2⊥(q,m,0)

)

×[1 + 2nB(ω1,k )

]

− Nc

2π2

∞∑

s,f ,m=0

|qf B|kωq,k

√k2 − p2

⊥(qf ,m, s)

×θ(

k2 − p2⊥(qf ,m, s)

) [1− n+

F (ωqf ,k )− n−F (ωqf ,k )],

Skokov, Phys. Rev. D 85 (2012) 034026

Flow equation depends on regulator.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 19: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Functional renormalization group

Boundary condition

Γk=Λ[φ] = Sclassical ,

Sclassical =

∫d4x

[12

m2Λφ

2 +λΛ

24φ4].

m2Λ and λΛ tuned to reproduce vacuum physics T = B = 0

for k = 0

m2k ,π =

∂Uk

∂ρ

∣∣∣∣φ=φk

,

m2k ,σ = m2

k ,π + 2ρ∂2Uk

∂ρ2

∣∣∣∣φ=φk

.

∂Uk

∂φ

∣∣∣∣φ=φk

= h ,

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 20: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Figure: Effective potential in different approximations (left) anddifferent t = ln k

Λ .

0 0.1 0.2 0.3 0.4 0.5 0.6

|qB|1/2

90

95

100

105φ

min/MeV

0 25 50 75 100 125φ/MeV

-0.01

-0.008

-0.006

-0.004

-0.002

0

U0(φ

)/Λ

4

|qB| = 0

|qB| = 0.05 Λ2

|qB| = 0.1 Λ2

|qB| = 0.2 Λ2

|qB| = 0.3 Λ2

|qB| = 0.4 Λ2

B

Figure: Effective potential for different values of B.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 21: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

0 50 100 150

T/MeV

0

20

40

60

80

100

φmin/M

eV

TC

0 0.1 0.2 0.3 0.4 0.5 0.6

|qB|1/2

140

150

160

170

180

Tc/MeV

Figure: Order parameter φ(T ) (left) and Tc(B) (right).

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 22: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Adding the Polyakov loop

Polyakov loop Φ is an order parameter for confinement in(pure-glue) QCD

Φ =1

NcTr〈L〉

L = Pei∫ β

0 dτA0(x ,τ) .

〈Φ〉 ∼ 0 , confinenment at lowT ,

〈Φ〉 ∼ 1 , confinenment at highT .

Adding the Polyakov loop by introducing a constantbackground A0

6

∂µ → ∂µ − iδ0µAµ .

6Fukushima 2003.Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 23: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Distribution function

NF → 1 + 2ΦeβEq + Φe2βEq

1 + 3eβEq + 3Φe2βEq + e3βEq.

Limits

NF → 1e3βEq + 1

, Φ = 0 .

NF → 1eβEq + 1

, Φ = 1 .

Pure-glue potential

UT 4 = −1

2a(T )Φ2 + b(t) ln[1− 6Φ2 + 8Φ3 − 3Φ)4] .

a(T ) and b(t) used to reproduce pure-glue QCDthermodyanmics. Other potentials with similar propertiesexist.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 24: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Transition temperature T0

a(T ) = 3.51− 2.47(

T0

T

)2

+ 15.2(

T0

T

)3

.

Make T0 dependent of Nf to include backreaction fromfermions.

Figure: Quark condensate and Polyakov loop two-color QCD.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 25: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Coupled equation for φ and Φ.

QM and PQM model the same at T = 0.

Less magnetic catalysis at finite temperature.

Deconfinement transition hardly affected by B.

0 1 2 3 4 5

|qB| / mπ2

1

1.02

1.04

1.06

Tφ(B

) /

Tφ(0

)

With Polyakov loopWithout Polyakov loop

0 0.5 1 1.5 2 2.5

215

220

225

230

235

240

,T

Φ/2,

/2

[MeV

]

!|qB |/mπ

µ = 0 MeV

TΦ /2

T Φ/2

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 26: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Lattice calculations

0 1 2 3 4eH [GeV2]

0,00

0,05

0,10

0,15

0,20

0,25

0,30

-<qq

> R [G

eV3 ]

u quarkd quarku quark, quenched

Figure: Quark condensates at T = 0. Bali et al 2012 (left) and Bonnet2014 (right).

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 27: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Figure: Tc as a function of the magnetic field B. D’Elia et al 2010 (left)and Bali et al 2012 (right).

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 28: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Z(B) =

∫dUe−Sg det(D/(B) + m) ,

〈ψψ〉 =1Z(B)

∫dUe−Sg det(D/(B) + m)Tr(D/(B) + m)−1 ,

Valence contribution:

〈ψψ〉val =1Z(0)

∫dUe−Sg det(D/(0) + m)Tr(D/(B) + m)−1 .

Sea contribution:

〈ψψ〉sea =1Z(B)

∫dUe−Sg det(D/(B) + m)Tr(D/(0) + m)−1 .

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 29: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Relative increment

r =〈ψψ〉(B)

〈ψψ〉(0)− 1 .

Figure: Valence and sea contribution to the quark condensate. D’Eliaet al (2010).

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 30: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Banks-Casher relation

limV→∞

limm→0〈ψψ〉 ∼ lim

V→∞lim

m→0ρ(λ) .

Figure: Spectral density for different values of B. Endrodi et al 2013.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 31: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Reweighting

−∆Sf (B) = log det(D/(B) + m)− log det(D/(0) + m)

〈ψψ〉 =〈e−∆Sf (B)Tr(D/(B) + m)−1〉0

〈e−∆Sf (B)〉0,

Figure: Scatter plot quark condensate as a function of ∆S(B).Endrodi et al 2013.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 32: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Model calculations revisited

B-dependent coupling constant - QCD inspired

G(B) =G0

1 + α ln(

1 + β |qB|ΛQCD

) ,

G(B,T ) = G(B)

(1− γ |qB|

Λ2QCD

TΛQCD

.

)

Fit parameters to reproduce quark condensate at T = 0and at high T .

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 33: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Model calculations revisited

Figure: Farias (2014).

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD

Page 34: (Inverse) magnetic catalysis and phase transition in QCDfolk.ntnu.no/jensoa/wien.pdf · (Inverse) magnetic catalysis and phase transition in QCD Jens O. Andersen 1 Theory Seminar

Conclusions and Outlook

Order of phase transition depends on treatment of vacuumfluctuations - take them seriously.

Functional RG predicts a second order transition

Model calculations correctly predict magnetic catalysis atT = 0, but fail to reproduce inverse magnetic catalysisaround the transition temperature.

Some model calculations have been modified to reproducelattice results - essentially curve fitting.

Need to incorporate back-reaction from fermiondeterminant.

Jens O. Andersen (Inverse) magnetic catalysis and phase transition in QCD