Inverse Laplace Transforms.ppt

24
The Inverse Laplace Transform The University of Tennessee Electrical and Computer Engineering Department Knoxville, Tennessee wlg

description

inverse laplace

Transcript of Inverse Laplace Transforms.ppt

Page 1: Inverse Laplace Transforms.ppt

The Inverse Laplace Transform

The University of TennesseeElectrical and Computer Engineering Department

Knoxville, Tennessee

wlg

Page 2: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Background:

To find the inverse Laplace transform we use transform pairsalong with partial fraction expansion:

F(s) can be written as;

)(

)()(

sQ

sPsF

Where P(s) & Q(s) are polynomials in the Laplace variable, s.We assume the order of Q(s) P(s), in order to be in properform. If F(s) is not in proper form we use long division and divide Q(s) into P(s) until we get a remaining ratio of polynomialsthat are in proper form.

Page 3: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Background:There are three cases to consider in doing the partial fraction expansion of F(s).

Case 1: F(s) has all non repeated simple roots.

n

n

ps

k

ps

k

ps

ksF

...)(

2

2

1

1

Case 2: F(s) has complex poles:

...)))()((

)()(

*11

1

1

js

k

js

k

jsjssQ

sPsF

Case 3: F(s) has repeated poles.

)(

)(...

)(...

)())((

)()(

1

1

1

12

1

12

1

11

11

1

sQ

sP

ps

k

ps

k

ps

k

pssQ

sPsF

rr

r

(expanded)

(expanded)

Page 4: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Case 1: Illustration:

Given:

)10()4()1()10)(4)(1(

)2(4)( 321

s

A

s

A

s

A

sss

ssF

274)10)(4)(1(

)2(4)1(| 11

ssss

ssA 94

)10)(4)(1(

)2(4)4(| 42

ssss

ssA

2716)10)(4)(1(

)2(4)10(| 103

ssss

ssA

)()2716()94()274()( 104 tueeetf ttt

Find A1, A2, A3 from Heavyside

Page 5: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Case 3: Repeated roots.

When we have repeated roots we find the coefficients of the terms as follows:

|111

)()(1 psr

sFpsds

dk r

|121

)()(!2 12

2

psrsFps

ds

dk r

|11

)()()!( 1 psj

sFpsdsjr

dk r

jr

jr

Page 6: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Case 3: Repeated roots. Example

2

1

1

2211

2 )3()3()3(

)1()(

K

K

A

s

K

s

K

s

A

ss

ssF

)(____________________)( 33 tuteetf tt ? ? ?

Page 7: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Case 2: Complex Roots:

...)))()((

)()(

*11

1

1

js

K

js

K

jsjssQ

sPsF

F(s) is of the form;

K1 is given by,

jeKKK

jsjssQ

sPjsK js

||||

))(()(

)()(

111

1

11

|

Page 8: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Case 2: Complex Roots:

js

eK

js

eK

js

K

js

K jj

11

*11

|||

tj

etej

etj

etej

eKjs

eK

js

eKL

jj

1||

||||111

2

)()(|

1|2

1||

tje

tjeateK

tjete

je

tjete

jeK

Page 9: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

)cos(||2|||

1111

teK

js

eK

js

eKL t

jj

Case 2: Complex Roots:

Therefore:

You should put this in your memory:

Page 10: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Complex Roots: An Example.

For the given F(s) find f(t)

o

jj

j

jss

sK

ss

sA

js

K

js

K

s

AsF

jsjss

s

sss

ssF

js

s

10832.0)2)(2(

12

)2(

)1(

5

1

)54(

)1(

22)(

)2)(2(

)1(

)54(

)1()(

|

|

2|1

0|

11

2

2

*

Page 11: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Complex Roots: An Example. (continued)

We then have;

jsjsssF

oo

2

10832.0

2

10832.02.0)(

Recalling the form of the inverse for complex roots;

)(108cos(64.02.0)( 2 tutetf ot

Page 12: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Convolution Integral:

Consider that we have the following situation.

h(t)x(t) y(t)

x(t) is the input to the system.h(t) is the impulse response of the system.y(t) is the output of the system.

System

We will look at how the above is related in the time domainand in the Laplace transform.

Page 13: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Convolution Integral:

In the time domain we can write the following:

ttdxthdhtxthtxty

00)()()()()()()(

In this case x(t) and h(t) are said to be convolved and theintegral on the right is called the convolution integral.

It can be shown that,

sHsXsYthtxL )()()()(

This is very important

* note

Page 14: Inverse Laplace Transforms.ppt

Inverse Laplace TransformsConvolution Integral:

Through an example let us see how the convolution integral and the Laplace transform are related.

We now think of the following situation:

x(t) y(t)

X(s) Y(s)

te 4

h(t)

H(s)

)4(

1

s

Page 15: Inverse Laplace Transforms.ppt

Inverse Laplace TransformsConvolution Integral:

From the previous diagram we note the following:

)()(;)()(;)()( thLsHtyLsYtxLsX

h(t) is called the system impulse response for the followingreason.

)()()( sHsXsY

If the input x(t) is a unit impulse, (t), the L(x(t)) = X(s) = 1.Since x(t) is an impulse, we say that y(t) is the impulseresponse. From Eq A, if X(s) = 1, then Y(s) = H(s). Since,

Eq A

.)(,

)()()()( 11

responseimpulsesystemthSo

thsHLresponseimpulsetysYL

Page 16: Inverse Laplace Transforms.ppt

Inverse Laplace TransformsConvolution Integral:

A really important thing here is that anytime you are givena system diagram as follows,

H(s)X(s) Y(s)

the inverse Laplace transform of H(s) is the system’simpulse response.

This is important !!

Page 17: Inverse Laplace Transforms.ppt

Inverse Laplace TransformsConvolution Integral:

Example using the convolution integral.

e-4t

x(t) y(t) = ?

t

tt

tt deededuety0

44

0

)(4)(4 )()(

)(4

1

4

1

4

1)( 444

0

44 | 0 tueeedeety ttt

t t

Page 18: Inverse Laplace Transforms.ppt

Inverse Laplace TransformsConvolution Integral:

Same example but using Laplace.

x(t) = u(t) s

sX1

)(

h(t) = e-4tu(t) 4

1)(

ssH

)(14

1)(

4

4141

4)4(

1)(

4 tuety

sss

B

s

A

sssY

t

Page 19: Inverse Laplace Transforms.ppt

Inverse Laplace TransformsConvolution Integral:

Practice problems:

?)(,)2(

3)(

2)()( thiswhat

ssYand

ssXIfa

).(),()()()()( 6 thfindtutetyandtutxIfb t

).(,)4(

2)()()()(

2tyfind

ssHandttutxIfc

Answers given on note page

)(2)(5.1)( 2 tuetth t

Page 20: Inverse Laplace Transforms.ppt

Inverse Laplace Transforms

Circuit theory problem:

You are given the circuit shown below.

+_

t = 0 6 k

3 k 1 0 0 F

+

_v(t)1 2 V

Use Laplace transforms to find v(t) for t > 0.

Page 21: Inverse Laplace Transforms.ppt

Circuit theory problem:

Inverse Laplace Transforms

We see from the circuit,

+_

t = 0 6 k

3 k 1 0 0 F

+

_v(t)1 2 V

voltsxv 49

312)0(

Page 22: Inverse Laplace Transforms.ppt

Circuit theory problem:

Inverse Laplace Transforms

+

_v c(t) i(t)

3 k

1 0 0 F

6 k

05)(

0)(

0)()(

tvdt

tdv

RC

tv

dt

tdv

tvdt

tdvRC

c

c

cc

c

c

Take the Laplace transformof this equations includingthe initial conditions on vc(t)

Page 23: Inverse Laplace Transforms.ppt

Circuit theory problem:

Inverse Laplace Transforms

)(4)(

5

4)(

0)(54)(

0)(5)(

5 tuetv

ssV

sVssV

tvdt

tdv

tc

c

cc

cc

Page 24: Inverse Laplace Transforms.ppt

Stop