Invariance principle for random walks with anomalous...

78
Invariance principle for random walks with anomalous recurrence properties Aleksandar Mijatovi´ c Department of Mathematics King’s College London evy 2016 Anger, 26th of July 2016 Joint work with Nicholas Georgiou and Andrew Wade

Transcript of Invariance principle for random walks with anomalous...

Page 1: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Invariance principle for random walks withanomalous recurrence properties

Aleksandar MijatovicDepartment of Mathematics

King’s College London

Levy 2016Anger, 26th of July 2016

Joint work withNicholas Georgiou and Andrew Wade

Page 2: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Outline

1 From classical to nonhomogeneous random walk

2 Elliptical random walk

3 Diffusion limits

Page 3: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Outline

1 From classical to nonhomogeneous random walk

2 Elliptical random walk

3 Diffusion limits

Page 4: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Classical zero-drift random walks

1. Symmetric simple random walk on Zd

• Xn ∈ Zd , X0 = 0.• Given X0, . . . ,Xn, new location Xn+1 is uniformly distributed

on the 2d adjacent lattice sites to Xn.

Theorem (Polya 1921)SRW is recurrent if d = 1 or d = 2, but transient if d ≥ 3.

14

Page 5: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Classical zero-drift random walks

2. Pearson–Rayleigh random walk in Rd

• Xn ∈ Rd , X0 = 0.• Given X0, . . . ,Xn, new location Xn+1 is uniformly distributed

on the unit circle/sphere centred at Xn.

uniform

Page 6: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Classical zero-drift random walks

2. Pearson–Rayleigh random walk in Rd

• Xn ∈ Rd , X0 = 0.• Given X0, . . . ,Xn, new location Xn+1 is uniformly distributed

on the unit circle/sphere centred at Xn.

uniform

Page 7: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Recurrence/transience of homogeneous random walksLet (Xn) be a spatially homogeneous random walk in Rd .So Xn+1 depends only on Xn, but ∆ := Xn+1 − Xn isindependent of Xn (and n).Let µ = E∆, the mean drift vector of the random walk.

Theorem (Chung–Fuchs)Under mild conditions, if µ = 0 ∈ Rd , then (Xn) is• recurrent if d = 1 or d = 2;• transient if d ≥ 3.

This result applies both to the symmetric simple RW and thePearson–Rayleigh RW.

Definition

• recurrence: P[return to (nbrhood of) origin] = 1.• transience: P[return to (nbrhood of) origin] < 1.

Page 8: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Recurrence/transience of homogeneous random walksLet (Xn) be a spatially homogeneous random walk in Rd .So Xn+1 depends only on Xn, but ∆ := Xn+1 − Xn isindependent of Xn (and n).Let µ = E∆, the mean drift vector of the random walk.

Theorem (Chung–Fuchs)Under mild conditions, if µ = 0 ∈ Rd , then (Xn) is• recurrent if d = 1 or d = 2;• transient if d ≥ 3.

This result applies both to the symmetric simple RW and thePearson–Rayleigh RW.

Definition

• recurrence: P[return to (nbrhood of) origin] = 1.• transience: P[return to (nbrhood of) origin] < 1.

Page 9: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Scaling limit for homogeneous random walksUnder mild non-degeneracy conditions (non-singularity ofE[∆∆>]), we have (up to a linear transformation):

Theorem (Donsker)Spatially homogeneous random walk in Rd with zero driftconverges to d-dimensional Brownian motion afterdiffusive scaling:(

Xbntc√n

)t∈[0,1]

=⇒ (bt )t∈[0,1] .

Brownian motion on Rd (d ≥ 2) possesses a skew-productrepresentation.

Let rt := ‖bt‖, θt :=bt

‖bt‖. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;• θt is a (stochastic) time-change of an independent

Brownian motion on the sphere.

Page 10: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Scaling limit for homogeneous random walksUnder mild non-degeneracy conditions (non-singularity ofE[∆∆>]), we have (up to a linear transformation):

Theorem (Donsker)Spatially homogeneous random walk in Rd with zero driftconverges to d-dimensional Brownian motion afterdiffusive scaling:(

Xbntc√n

)t∈[0,1]

=⇒ (bt )t∈[0,1] .

Brownian motion on Rd (d ≥ 2) possesses a skew-productrepresentation.

Let rt := ‖bt‖, θt :=bt

‖bt‖. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;• θt is a (stochastic) time-change of an independent

Brownian motion on the sphere.

Page 11: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Scaling limit for homogeneous random walksUnder mild non-degeneracy conditions (non-singularity ofE[∆∆>]), we have (up to a linear transformation):

Theorem (Donsker)Spatially homogeneous random walk in Rd with zero driftconverges to d-dimensional Brownian motion afterdiffusive scaling:(

Xbntc√n

)t∈[0,1]

=⇒ (bt )t∈[0,1] .

Brownian motion on Rd (d ≥ 2) possesses a skew-productrepresentation.

Let rt := ‖bt‖, θt :=bt

‖bt‖. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;

• θt is a (stochastic) time-change of an independentBrownian motion on the sphere.

Page 12: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Scaling limit for homogeneous random walksUnder mild non-degeneracy conditions (non-singularity ofE[∆∆>]), we have (up to a linear transformation):

Theorem (Donsker)Spatially homogeneous random walk in Rd with zero driftconverges to d-dimensional Brownian motion afterdiffusive scaling:(

Xbntc√n

)t∈[0,1]

=⇒ (bt )t∈[0,1] .

Brownian motion on Rd (d ≥ 2) possesses a skew-productrepresentation.

Let rt := ‖bt‖, θt :=bt

‖bt‖. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;• θt is a (stochastic) time-change of an independent

Brownian motion on the sphere.

Page 13: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Non-homogeneous random walksWhat if we allow ∆ = Xn+1 − Xn, the jump distribution, todepend on the current location?Then µ(x) := Ex ∆ := E[∆ | Xn = x ] becomes a function of thecurrent position x ∈ Rd .

QuestionIs zero drift, i.e., µ(x) = 0 for all x ∈ Rd , enough to determinerecurrence/transience?

AnswerFor d = 1: yes (essentially) — zero drift implies recurrence.For higher dimensions: no — either behaviour is possible.

TheoremThere exist non-homogeneous random walks withµ(x) = 0 for all x ∈ Rd that are• transient in d = 2;• recurrent in d ≥ 3.

Page 14: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Non-homogeneous random walksWhat if we allow ∆ = Xn+1 − Xn, the jump distribution, todepend on the current location?Then µ(x) := Ex ∆ := E[∆ | Xn = x ] becomes a function of thecurrent position x ∈ Rd .

QuestionIs zero drift, i.e., µ(x) = 0 for all x ∈ Rd , enough to determinerecurrence/transience?

AnswerFor d = 1: yes (essentially) — zero drift implies recurrence.For higher dimensions: no — either behaviour is possible.

TheoremThere exist non-homogeneous random walks withµ(x) = 0 for all x ∈ Rd that are• transient in d = 2;• recurrent in d ≥ 3.

Page 15: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Non-homogeneous random walksWhat if we allow ∆ = Xn+1 − Xn, the jump distribution, todepend on the current location?Then µ(x) := Ex ∆ := E[∆ | Xn = x ] becomes a function of thecurrent position x ∈ Rd .

QuestionIs zero drift, i.e., µ(x) = 0 for all x ∈ Rd , enough to determinerecurrence/transience?

AnswerFor d = 1: yes (essentially) — zero drift implies recurrence.

For higher dimensions: no — either behaviour is possible.

TheoremThere exist non-homogeneous random walks withµ(x) = 0 for all x ∈ Rd that are• transient in d = 2;• recurrent in d ≥ 3.

Page 16: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Non-homogeneous random walksWhat if we allow ∆ = Xn+1 − Xn, the jump distribution, todepend on the current location?Then µ(x) := Ex ∆ := E[∆ | Xn = x ] becomes a function of thecurrent position x ∈ Rd .

QuestionIs zero drift, i.e., µ(x) = 0 for all x ∈ Rd , enough to determinerecurrence/transience?

AnswerFor d = 1: yes (essentially) — zero drift implies recurrence.For higher dimensions: no — either behaviour is possible.

TheoremThere exist non-homogeneous random walks withµ(x) = 0 for all x ∈ Rd that are• transient in d = 2;• recurrent in d ≥ 3.

Page 17: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Outline

1 From classical to nonhomogeneous random walk

2 Elliptical random walk

3 Diffusion limits

Page 18: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Elliptical random walk (in R2)

We modify the Pearson–Rayleigh random walk to make jumpsdistributed on an ellipse.

The ellipse has fixed size, but orientation depends on currentposition of the walk.

Fix constants a and b:

O

Xn

supp(Xn+1)

Page 19: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Elliptical random walk (in R2)

We modify the Pearson–Rayleigh random walk to make jumpsdistributed on an ellipse.

The ellipse has fixed size, but orientation depends on currentposition of the walk.

Fix constants a and b:

O

Xna

ba > b

supp(Xn+1)

Page 20: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Elliptical random walk (in R2)

We modify the Pearson–Rayleigh random walk to make jumpsdistributed on an ellipse.

The ellipse has fixed size, but orientation depends on currentposition of the walk.

Fix constants a and b:

O

Xn

a

b

a < bsupp(Xn+1)

Page 21: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Elliptical random walk

a > b

radial bias

a < b

transverse bias

Page 22: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Elliptical random walk (d ≥ 2)

Suppose Xn = x ∈ Rd . Write x for unit vector in direction x .

uDu

∆ = Q(x)Dux

O• u uniform on Sd−1

• D = diag(a,b, . . . ,b)

• Q(x) orthogonal matrix, with Q(x)e1 = x .

Page 23: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Moments of ∆

Notation: write Ex [ · ] for E[ · | Xn = x ] and write ∆x for thecomponent of ∆ in direction x :

∆x = ∆ · x =∆ · x‖x‖

.

Symmetry of sphere: if u is uniform on Sd−1 then E[u] = 0 andE[uu>] = 1

d I.Therefore, by construction,

Ex [∆] = 0, Ex [∆∆>] =1d

Q(x)D2Q>(x).

Hence,

Ex [∆x ] = 0, Ex [∆2x ] =

a2

d, Ex [‖∆‖2] =

a2 + (d − 1)b2

d.

Page 24: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Moments of ∆

Notation: write Ex [ · ] for E[ · | Xn = x ] and write ∆x for thecomponent of ∆ in direction x :

∆x = ∆ · x =∆ · x‖x‖

.

Symmetry of sphere: if u is uniform on Sd−1 then E[u] = 0 andE[uu>] = 1

d I.

Therefore, by construction,

Ex [∆] = 0, Ex [∆∆>] =1d

Q(x)D2Q>(x).

Hence,

Ex [∆x ] = 0, Ex [∆2x ] =

a2

d, Ex [‖∆‖2] =

a2 + (d − 1)b2

d.

Page 25: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Moments of ∆

Notation: write Ex [ · ] for E[ · | Xn = x ] and write ∆x for thecomponent of ∆ in direction x :

∆x = ∆ · x =∆ · x‖x‖

.

Symmetry of sphere: if u is uniform on Sd−1 then E[u] = 0 andE[uu>] = 1

d I.Therefore, by construction,

Ex [∆] = 0, Ex [∆∆>] =1d

Q(x)D2Q>(x).

Hence,

Ex [∆x ] = 0, Ex [∆2x ] =

a2

d, Ex [‖∆‖2] =

a2 + (d − 1)b2

d.

Page 26: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Radial component of Xn

We analyse (Xn) by considering Rn := ‖Xn‖.

By symmetry, Rn is also Markov (Rn is a non-homogeneousrandom walk on R+).

Moreover, it has asymptotically zero drift:

E[Rn+1 − Rn | Rn = r ] ∼ c/r ,

where positive constant c depends on model parameters andambient dimension.

Xn

Page 27: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Radial component of Xn

We analyse (Xn) by considering Rn := ‖Xn‖.

By symmetry, Rn is also Markov (Rn is a non-homogeneousrandom walk on R+).

Moreover, it has asymptotically zero drift:

E[Rn+1 − Rn | Rn = r ] ∼ c/r ,

where positive constant c depends on model parameters andambient dimension.

XnO

Page 28: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Radial component of Xn

We analyse (Xn) by considering Rn := ‖Xn‖.

By symmetry, Rn is also Markov (Rn is a non-homogeneousrandom walk on R+).

Moreover, it has asymptotically zero drift:

E[Rn+1 − Rn | Rn = r ] ∼ c/r ,

where positive constant c depends on model parameters andambient dimension.

XnO

Page 29: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Lamperti’s classification

Define µk (r) := E[(Rn+1 − Rn)k | Rn = r ].

In the early 1960s, John Lamperti studied in detail how theasymptotics of a stochastic process on R+ are determined bythe first two moment functions of its increments, µ1 and µ2.

Theorem (Lamperti, 1960)Let (Rn) be a Markov chain on R+. Under mild conditions:• If 2rµ1(r)− µ2(r) > 0 for all large enough r , then Rn is

transient,• If 2rµ1(r)− µ2(r) < 0 for all large enough r , then Rn is

recurrent.

Page 30: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Recurrence/transience of elliptical random walkGiven Xn = x ,

Rn+1 − Rn = ‖x + ∆‖ − ‖x‖= [. . . expand using Taylor’s theorem . . . ]

= ∆x +‖∆‖2 −∆2

x2‖x‖

+ O(‖x‖−2).

So,

µ1(r) =(d − 1)b2

d12r

+ O(r−2), µ2(r) =a2

d+ O(r−1).

TheoremLet (Xn) be an elliptical random walk in Rd , with parameters aand b.• If (d − 1)b2 − a2 > 0 then (Xn) is transient.• If (d − 1)b2 − a2 < 0 then (Xn) is recurrent.

Page 31: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Recurrence/transience of elliptical random walkGiven Xn = x ,

Rn+1 − Rn = ‖x + ∆‖ − ‖x‖= [. . . expand using Taylor’s theorem . . . ]

= ∆x +‖∆‖2 −∆2

x2‖x‖

+ O(‖x‖−2).

So,

µ1(r) =(d − 1)b2

d12r

+ O(r−2), µ2(r) =a2

d+ O(r−1).

TheoremLet (Xn) be an elliptical random walk in Rd , with parameters aand b.• If (d − 1)b2 − a2 > 0 then (Xn) is transient.• If (d − 1)b2 − a2 ≤ 0 then (Xn) is recurrent.

Page 32: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Simulationsa = 1, b = 1

−200 −100 0 100 200

−20

0−

100

010

020

0

Page 33: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Simulationsa = 2, b = 1

−200 −100 0 100 200

−20

0−

100

010

020

0

Page 34: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Simulationsa = 1, b = 2

−200 −100 0 100 200

−20

0−

100

010

020

0

Page 35: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Simulationsa = 1, b = 0.05

−150 −100 −50 0 50 100 150

−15

0−

100

−50

050

100

150

Page 36: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Simulationsa = 0.05, b = 1

−200 −100 0 100 200

−20

0−

100

010

020

0

Page 37: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Outline

1 From classical to nonhomogeneous random walk

2 Elliptical random walk

3 Diffusion limits

Page 38: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Diffusion limitsBack to homogeneous case:

Theorem (Donsker)The Pearson–Rayleigh walk in Rd (the case a ≡ b = 1)converges to d-dimensional Brownian motion:(

Xbntc√n

)t∈[0,1]

=⇒ (bt )t∈[0,1] .

Now, more generally:

TheoremIf (Xn) is an elliptical random walk in Rd , then thereexists a continuous strong Markov process (a diffusion)(Xt ) on Rd , whose law depends on the parameters a andb, such that, (

Xbntc√n

)t∈[0,1]

=⇒ (Xt )t∈[0,1].

Page 39: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Diffusion limitsBack to homogeneous case:

Theorem (Donsker)The Pearson–Rayleigh walk in Rd (the case a ≡ b = 1)converges to d-dimensional Brownian motion:(

Xbntc√n

)t∈[0,1]

=⇒ (bt )t∈[0,1] .

Now, more generally:

TheoremIf (Xn) is an elliptical random walk in Rd , then thereexists a continuous strong Markov process (a diffusion)(Xt ) on Rd , whose law depends on the parameters a andb, such that, (

Xbntc√n

)t∈[0,1]

=⇒ (Xt )t∈[0,1].

Page 40: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Brownian motion and Bessel processesBrownian motion on Rd (d ≥ 2) possesses a skew-productrepresentation.

Let rt := ‖bt‖, θt :=bt

‖bt‖. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;• θt is a (stochastic) time-change of an independent

Brownian motion on the sphere.

• A Bessel process with ‘dimension’ δ, BES(δ), is aMarkov process βt on R+ satisfying the SDE

dβt =δ − 12βt

1{βt 6=0}dt + dWt ,

where Wt is BM on R.• 0 ∈ R+ is recurrent for BES(δ) if 1 ≤ δ < 2 and

transient if δ ≥ 2.

Page 41: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Brownian motion and Bessel processesBrownian motion on Rd (d ≥ 2) possesses a skew-productrepresentation.

Let rt := ‖bt‖, θt :=bt

‖bt‖. Then,

• rt is a Bessel process on R+ of ‘dimension’ (parameter) d ;• θt is a (stochastic) time-change of an independent

Brownian motion on the sphere.

• Define the additive functional ρ(t) :=∫ t

0 r−2s ds.

• Then θt = ϕρ(t), where ϕt is BM on Sd−1

independent of rt .• That is, ϕt solves the SDE

dϕt = −d − 12

ϕtdt + (I − ϕtϕ>t )dWt ,

where Wt is BM on Rd .

Page 42: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Diffusion limit of elliptical random walk

TheoremIf (Xn) is an elliptical random walk in Rd , then thereexists a continuous strong Markov process (a diffusion)(Xt ) on Rd , whose law depends on the parameters a andb, such that, (

Xbntc√n

)=⇒ (Xt ).

We can describe (Xt ) via a structure reminiscent of theskew-product decomposition for d-dimensional Brownianmotion.

Page 43: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Diffusion limit of elliptical random walk

We can describe (Xt ) via a structure reminiscent of theskew-product decomposition for d-dimensional Brownianmotion.

Let rt := ‖Xt‖, θt :=Xt

‖Xt‖. Now,

• rt is a BES(δ), where δ = 1 + (d − 1)b2/a2;

• Each excursion of rt is accompanied by a path of θt ∈ Sd−1.• θt is a time-change of a two-sided BM (ϕt )t∈R on Sd−1,

independent of rt .

Page 44: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Diffusion limit of elliptical random walk

We can describe (Xt ) via a structure reminiscent of theskew-product decomposition for d-dimensional Brownianmotion.

Let rt := ‖Xt‖, θt :=Xt

‖Xt‖. Now,

• rt is a BES(δ), where δ = 1 + (d − 1)b2/a2;• Each excursion of rt is accompanied by a path of θt ∈ Sd−1.

• θt is a time-change of a two-sided BM (ϕt )t∈R on Sd−1,independent of rt .

Page 45: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Diffusion limit of elliptical random walk

We can describe (Xt ) via a structure reminiscent of theskew-product decomposition for d-dimensional Brownianmotion.

Let rt := ‖Xt‖, θt :=Xt

‖Xt‖. Now,

• rt is a BES(δ), where δ = 1 + (d − 1)b2/a2;• Each excursion of rt is accompanied by a path of θt ∈ Sd−1.• θt is a time-change of a two-sided BM (ϕt )t∈R on Sd−1,

independent of rt .

Page 46: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle• Moments condition: supx Ex [‖∆‖4] <∞.• Zero drift: µ(x) := Ex ∆ = 0.

The covariance matrix function of the increments we callM(x) := Ex [∆∆>].

• Asymptotic isotropy: M(x)→ σ2(x) as ‖x‖ → ∞ for apositive-definite matrix valued C∞-function σ2 on Sd−1.

Define for each u ∈ Sd−1 an inner product 〈 · , · 〉u on Rd via

〈y , z〉u := y> · σ2(u) · z = 〈y , σ2(u) · z〉, (for y , z ∈ Rd ).

• Limiting covariance regularity: There exist constantsU,V , δ > 0 such that, for all u, v ∈ Sd−1,

〈u,u〉u = U, trσ2(u) = V , and 〈v , v〉u ≥ δ.

• Limiting radial structure: u ∈ Sd−1 is eigenvector of σ2(u).

Page 47: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle• Moments condition: supx Ex [‖∆‖4] <∞.• Zero drift: µ(x) := Ex ∆ = 0.

The covariance matrix function of the increments we callM(x) := Ex [∆∆>].

• Asymptotic isotropy: M(x)→ σ2(x) as ‖x‖ → ∞ for apositive-definite matrix valued C∞-function σ2 on Sd−1.

Define for each u ∈ Sd−1 an inner product 〈 · , · 〉u on Rd via

〈y , z〉u := y> · σ2(u) · z = 〈y , σ2(u) · z〉, (for y , z ∈ Rd ).

• Limiting covariance regularity: There exist constantsU,V , δ > 0 such that, for all u, v ∈ Sd−1,

〈u,u〉u = U, trσ2(u) = V , and 〈v , v〉u ≥ δ.

• Limiting radial structure: u ∈ Sd−1 is eigenvector of σ2(u).

Page 48: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle• Moments condition: supx Ex [‖∆‖4] <∞.• Zero drift: µ(x) := Ex ∆ = 0.

The covariance matrix function of the increments we callM(x) := Ex [∆∆>].

• Asymptotic isotropy: M(x)→ σ2(x) as ‖x‖ → ∞ for apositive-definite matrix valued C∞-function σ2 on Sd−1.

Define for each u ∈ Sd−1 an inner product 〈 · , · 〉u on Rd via

〈y , z〉u := y> · σ2(u) · z = 〈y , σ2(u) · z〉, (for y , z ∈ Rd ).

• Limiting covariance regularity: There exist constantsU,V , δ > 0 such that, for all u, v ∈ Sd−1,

〈u,u〉u = U, trσ2(u) = V , and 〈v , v〉u ≥ δ.

• Limiting radial structure: u ∈ Sd−1 is eigenvector of σ2(u).

Page 49: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle• Moments condition: supx Ex [‖∆‖4] <∞.• Zero drift: µ(x) := Ex ∆ = 0.

The covariance matrix function of the increments we callM(x) := Ex [∆∆>].

• Asymptotic isotropy: M(x)→ σ2(x) as ‖x‖ → ∞ for apositive-definite matrix valued C∞-function σ2 on Sd−1.

Define for each u ∈ Sd−1 an inner product 〈 · , · 〉u on Rd via

〈y , z〉u := y> · σ2(u) · z = 〈y , σ2(u) · z〉, (for y , z ∈ Rd ).

• Limiting covariance regularity: There exist constantsU,V , δ > 0 such that, for all u, v ∈ Sd−1,

〈u,u〉u = U, trσ2(u) = V , and 〈v , v〉u ≥ δ.

• Limiting radial structure: u ∈ Sd−1 is eigenvector of σ2(u).

Page 50: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle

TheoremIf (Xn) is a random walk in Rd of the above type, thenthere exists a continuous strong Markov process (adiffusion) (Xt ) on Rd such that,(

Xbntc√n

)t∈[0,1]

=⇒ (Xt )t∈[0,1].

The diffusion (Xt ) is the unique weak solution of the SDE

dXt = σ(Xt )dWt , X0 = 0,where W is BM on Rd and σ any square-root of σ2.

Typically x 7→ σ(x) has a discontinuity at 0 ∈ Rd and (Xt ) keepsvisiting 0, so standard methods from (Ethier & Kurtz, 1986)need to be extended (key fact: Bessel local time at 0 vanishes).

Page 51: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle

TheoremIf (Xn) is a random walk in Rd of the above type, thenthere exists a continuous strong Markov process (adiffusion) (Xt ) on Rd such that,(

Xbntc√n

)t∈[0,1]

=⇒ (Xt )t∈[0,1].

The diffusion (Xt ) is the unique weak solution of the SDE

dXt = σ(Xt )dWt , X0 = 0,where W is BM on Rd and σ any square-root of σ2.

Typically x 7→ σ(x) has a discontinuity at 0 ∈ Rd and (Xt ) keepsvisiting 0, so standard methods from (Ethier & Kurtz, 1986)need to be extended (key fact: Bessel local time at 0 vanishes).

Page 52: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle

TheoremThe martingale problem

dXt = σ(Xt )dWt , for any deterministic X0 ∈ Rd ,

is well-posed for any square-root σ of the asymptoticcovariance structure σ2.

Typically, x 7→ σ(x) has a discontinuity at 0 ∈ Rd and (Xt )keeps visiting 0, so standard methods cannot be applied.

• (Krylov, 1980): smoothing of coefficients yields weakexistence (because σ is bounded).

• Excursion theory for (Xt ) has to be developed foruniqueness in law (works for any square-root σ).

• Strong existence and pathwise uniqueness may fail evenfor smooth σ (depends on the choice of square-root).

Page 53: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle

TheoremThe martingale problem

dXt = σ(Xt )dWt , for any deterministic X0 ∈ Rd ,

is well-posed for any square-root σ of the asymptoticcovariance structure σ2.

Typically, x 7→ σ(x) has a discontinuity at 0 ∈ Rd and (Xt )keeps visiting 0, so standard methods cannot be applied.

• (Krylov, 1980): smoothing of coefficients yields weakexistence (because σ is bounded).

• Excursion theory for (Xt ) has to be developed foruniqueness in law (works for any square-root σ).

• Strong existence and pathwise uniqueness may fail evenfor smooth σ (depends on the choice of square-root).

Page 54: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle

TheoremThe martingale problem

dXt = σ(Xt )dWt , for any deterministic X0 ∈ Rd ,

is well-posed for any square-root σ of the asymptoticcovariance structure σ2.

Typically, x 7→ σ(x) has a discontinuity at 0 ∈ Rd and (Xt )keeps visiting 0, so standard methods cannot be applied.

• (Krylov, 1980): smoothing of coefficients yields weakexistence (because σ is bounded).

• Excursion theory for (Xt ) has to be developed foruniqueness in law (works for any square-root σ).

• Strong existence and pathwise uniqueness may fail evenfor smooth σ (depends on the choice of square-root).

Page 55: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting for invariance principle

TheoremThe martingale problem

dXt = σ(Xt )dWt , for any deterministic X0 ∈ Rd ,

is well-posed for any square-root σ of the asymptoticcovariance structure σ2.

Typically, x 7→ σ(x) has a discontinuity at 0 ∈ Rd and (Xt )keeps visiting 0, so standard methods cannot be applied.

• (Krylov, 1980): smoothing of coefficients yields weakexistence (because σ is bounded).

• Excursion theory for (Xt ) has to be developed foruniqueness in law (works for any square-root σ).

• Strong existence and pathwise uniqueness may fail evenfor smooth σ (depends on the choice of square-root).

Page 56: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting: the excursion skew-decompositionLet (ξt , t ≥ 0) be BM on Rd . Then SDE

dψt = (σ(ψt )− ψtψ>t )dξt −

V − 12

ψtdt , ψ0 ∈ Sd−1, (1)

has a path-wise unique solution such that ψt ∈ Sd−1 ∀t ≥ 0.

Theorem

(a) Radial component. The process r , defined byrt = ‖Xt‖, is BES(U/V ) started at 0.

(b) Skew-product structure. Let s > 0 andτs := inf{t ≥ s : rt = 0}. Then for any t ∈ [s, τs),

Xt = ϕρs(t), where ρs(t) =

∫ t

sr−2u du,

processes ϕ and r are independent and ϕ followsSDE (1) started according its stationary measure µ.

Page 57: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting: the excursion skew-decompositionLet (ξt , t ≥ 0) be BM on Rd . Then SDE

dψt = (σ(ψt )− ψtψ>t )dξt −

V − 12

ψtdt , ψ0 ∈ Sd−1, (1)

has a path-wise unique solution such that ψt ∈ Sd−1 ∀t ≥ 0.

Theorem

(a) Radial component. The process r , defined byrt = ‖Xt‖, is BES(U/V ) started at 0.

(b) Skew-product structure. Let s > 0 andτs := inf{t ≥ s : rt = 0}. Then for any t ∈ [s, τs),

Xt = ϕρs(t), where ρs(t) =

∫ t

sr−2u du,

processes ϕ and r are independent and ϕ followsSDE (1) started according its stationary measure µ.

Page 58: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

General setting: the excursion skew-decompositionLet (ξt , t ≥ 0) be BM on Rd . Then SDE

dψt = (σ(ψt )− ψtψ>t )dξt −

V − 12

ψtdt , ψ0 ∈ Sd−1, (1)

has a path-wise unique solution such that ψt ∈ Sd−1 ∀t ≥ 0.

Theorem

(a) Radial component. The process r , defined byrt = ‖Xt‖, is BES(U/V ) started at 0.

(b) Skew-product structure. Let s > 0 andτs := inf{t ≥ s : rt = 0}. Then for any t ∈ [s, τs),

Xt = ϕρs(t), where ρs(t) =

∫ t

sr−2u du,

processes ϕ and r are independent and ϕ followsSDE (1) started according its stationary measure µ.

Page 59: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Properties of XScaling: X and Y = (c−1/2Xct ), c > 0, have the same law:dYt = c−1/2dXct = c−1/2σ(Xct )dWct = σ(Yt )d(c−1/2Wct )

Rapid spinning: Let s > 0 and τ−s = sup{t < s : rt = 0}. Forany t ∈ (τ−s , τs) in excursion interval, it holds

lims↓τ−s

ρs(t) =∞, where ρs(t) =

∫ t

sr−2u du. (2)

Rapid spinning implies that Xt = ϕρs(t) is distributed accordingto the stationary measure µ of SDE (1).

Applied to extensions of strong Makrov processes: (Ito &McKean, 1974), (Erickson, 1990), (Vuolle-Apiala, 1992)

Proof of (2): (Pitman & Yor, 1982) BES(U/V ) excursion (recallδ = U/V ∈ (1,2)): pick maximum according to σ-finite measurem3−δdm and run back-to-back two independent BES(4− δ)from 0 it hits m. Apply (M & Urusov, 2012).

Page 60: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Properties of XScaling: X and Y = (c−1/2Xct ), c > 0, have the same law:dYt = c−1/2dXct = c−1/2σ(Xct )dWct = σ(Yt )d(c−1/2Wct )

Rapid spinning: Let s > 0 and τ−s = sup{t < s : rt = 0}. Forany t ∈ (τ−s , τs) in excursion interval, it holds

lims↓τ−s

ρs(t) =∞, where ρs(t) =

∫ t

sr−2u du. (2)

Rapid spinning implies that Xt = ϕρs(t) is distributed accordingto the stationary measure µ of SDE (1).

Applied to extensions of strong Makrov processes: (Ito &McKean, 1974), (Erickson, 1990), (Vuolle-Apiala, 1992)

Proof of (2): (Pitman & Yor, 1982) BES(U/V ) excursion (recallδ = U/V ∈ (1,2)): pick maximum according to σ-finite measurem3−δdm and run back-to-back two independent BES(4− δ)from 0 it hits m. Apply (M & Urusov, 2012).

Page 61: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Properties of XScaling: X and Y = (c−1/2Xct ), c > 0, have the same law:dYt = c−1/2dXct = c−1/2σ(Xct )dWct = σ(Yt )d(c−1/2Wct )

Rapid spinning: Let s > 0 and τ−s = sup{t < s : rt = 0}. Forany t ∈ (τ−s , τs) in excursion interval, it holds

lims↓τ−s

ρs(t) =∞, where ρs(t) =

∫ t

sr−2u du. (2)

Rapid spinning implies that Xt = ϕρs(t) is distributed accordingto the stationary measure µ of SDE (1).

Applied to extensions of strong Makrov processes: (Ito &McKean, 1974), (Erickson, 1990), (Vuolle-Apiala, 1992)

Proof of (2): (Pitman & Yor, 1982) BES(U/V ) excursion (recallδ = U/V ∈ (1,2)): pick maximum according to σ-finite measurem3−δdm and run back-to-back two independent BES(4− δ)from 0 it hits m. Apply (M & Urusov, 2012).

Page 62: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Properties of XScaling: X and Y = (c−1/2Xct ), c > 0, have the same law:dYt = c−1/2dXct = c−1/2σ(Xct )dWct = σ(Yt )d(c−1/2Wct )

Rapid spinning: Let s > 0 and τ−s = sup{t < s : rt = 0}. Forany t ∈ (τ−s , τs) in excursion interval, it holds

lims↓τ−s

ρs(t) =∞, where ρs(t) =

∫ t

sr−2u du. (2)

Rapid spinning implies that Xt = ϕρs(t) is distributed accordingto the stationary measure µ of SDE (1).

Applied to extensions of strong Makrov processes: (Ito &McKean, 1974), (Erickson, 1990), (Vuolle-Apiala, 1992)

Proof of (2): (Pitman & Yor, 1982) BES(U/V ) excursion (recallδ = U/V ∈ (1,2)): pick maximum according to σ-finite measurem3−δdm and run back-to-back two independent BES(4− δ)from 0 it hits m. Apply (M & Urusov, 2012).

Page 63: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt

Let (Sd−1,g) be a Riemannian manifold with metric g inducedby σ−2. Then ψ is diffusion on Sd−1 with generator

G = (1/2)∆g + b,

where ∆g is the Laplace–Beltrami operator on (Sd−1,g) andvector field b is explicit in σ2 and the metric g. Here,

∆g =1√

det g∂

∂xi

(√det g g ij ∂

∂xj

),

where g = (g ij)−1 and g ij(x) = σ2ij (x)− xixj , i , j = 1, . . . ,d − 1,

and the drift b is

b =12

((d − V )xi −

∂σ2ij

∂xj+

12

g ikgj`∂σ2

j`

∂xk

)∂

∂xi.

Page 64: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt

Let (Sd−1,g) be a Riemannian manifold with metric g inducedby σ−2. Then ψ is diffusion on Sd−1 with generator

G = (1/2)∆g + b,

where ∆g is the Laplace–Beltrami operator on (Sd−1,g) andvector field b is explicit in σ2 and the metric g. Here,

∆g =1√

det g∂

∂xi

(√det g g ij ∂

∂xj

),

where g = (g ij)−1 and g ij(x) = σ2ij (x)− xixj , i , j = 1, . . . ,d − 1,

and the drift b is

b =12

((d − V )xi −

∂σ2ij

∂xj+

12

g ikgj`∂σ2

j`

∂xk

)∂

∂xi.

Page 65: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt

Let (Sd−1,g) be a Riemannian manifold with metric g inducedby σ−2. Then ψ is diffusion on Sd−1 with generator

G = (1/2)∆g + b,

where ∆g is the Laplace–Beltrami operator on (Sd−1,g) andvector field b is explicit in σ2 and the metric g. Here,

∆g =1√

det g∂

∂xi

(√det g g ij ∂

∂xj

),

where g = (g ij)−1 and g ij(x) = σ2ij (x)− xixj , i , j = 1, . . . ,d − 1,

and the drift b is

b =12

((d − V )xi −

∂σ2ij

∂xj+

12

g ikgj`∂σ2

j`

∂xk

)∂

∂xi.

Page 66: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt

Let (Sd−1,g) be a Riemannian manifold with metric g inducedby σ−2. Then ψ is diffusion on Sd−1 with generator

G = (1/2)∆g + b,

where ∆g is the Laplace–Beltrami operator on (Sd−1,g) andvector field b is explicit in σ2 and the metric g. Here,

∆g =1√

det g∂

∂xi

(√det g g ij ∂

∂xj

),

where g = (g ij)−1 and g ij(x) = σ2ij (x)− xixj , i , j = 1, . . . ,d − 1,

and the drift b is

b =12

((d − V )xi −

∂σ2ij

∂xj+

12

g ikgj`∂σ2

j`

∂xk

)∂

∂xi.

Page 67: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt∃! invariant measure µ on Sd−1, such that µ(dx) = ν(x)dx .Density ν, wrt the volume element dx =

√det(g)dx1 . . . dxd−1

on (Sd−1,g) satisfies

∆gν = 2div(νb).

For any initial distribution µ0 on Sd−1,

P[ψt ∈ A|ψ0 ∼ µ0]→ µ(A) as t →∞.

The dual (or time-reversal) on Sd−1 of ψ is generated by

G′ =12

∆g − b + grad(log ν).

If b = gradF , then

• G = G′, and• we have explicit formula for the density ν = exp(2F ).

Hence excursion representation for BES(U/V ) (in R+) from(Pitman & Yor, 1982) extends to X (in Rd ).

Page 68: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt∃! invariant measure µ on Sd−1, such that µ(dx) = ν(x)dx .Density ν, wrt the volume element dx =

√det(g)dx1 . . . dxd−1

on (Sd−1,g) satisfies

∆gν = 2div(νb).

For any initial distribution µ0 on Sd−1,

P[ψt ∈ A|ψ0 ∼ µ0]→ µ(A) as t →∞.

The dual (or time-reversal) on Sd−1 of ψ is generated by

G′ =12

∆g − b + grad(log ν).

If b = gradF , then

• G = G′, and• we have explicit formula for the density ν = exp(2F ).

Hence excursion representation for BES(U/V ) (in R+) from(Pitman & Yor, 1982) extends to X (in Rd ).

Page 69: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt∃! invariant measure µ on Sd−1, such that µ(dx) = ν(x)dx .Density ν, wrt the volume element dx =

√det(g)dx1 . . . dxd−1

on (Sd−1,g) satisfies

∆gν = 2div(νb).

For any initial distribution µ0 on Sd−1,

P[ψt ∈ A|ψ0 ∼ µ0]→ µ(A) as t →∞.

The dual (or time-reversal) on Sd−1 of ψ is generated by

G′ =12

∆g − b + grad(log ν).

If b = gradF , then

• G = G′, and• we have explicit formula for the density ν = exp(2F ).

Hence excursion representation for BES(U/V ) (in R+) from(Pitman & Yor, 1982) extends to X (in Rd ).

Page 70: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt∃! invariant measure µ on Sd−1, such that µ(dx) = ν(x)dx .Density ν, wrt the volume element dx =

√det(g)dx1 . . . dxd−1

on (Sd−1,g) satisfies

∆gν = 2div(νb).

For any initial distribution µ0 on Sd−1,

P[ψt ∈ A|ψ0 ∼ µ0]→ µ(A) as t →∞.

The dual (or time-reversal) on Sd−1 of ψ is generated by

G′ =12

∆g − b + grad(log ν).

If b = gradF , then

• G = G′, and

• we have explicit formula for the density ν = exp(2F ).

Hence excursion representation for BES(U/V ) (in R+) from(Pitman & Yor, 1982) extends to X (in Rd ).

Page 71: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt∃! invariant measure µ on Sd−1, such that µ(dx) = ν(x)dx .Density ν, wrt the volume element dx =

√det(g)dx1 . . . dxd−1

on (Sd−1,g) satisfies

∆gν = 2div(νb).

For any initial distribution µ0 on Sd−1,

P[ψt ∈ A|ψ0 ∼ µ0]→ µ(A) as t →∞.

The dual (or time-reversal) on Sd−1 of ψ is generated by

G′ =12

∆g − b + grad(log ν).

If b = gradF , then

• G = G′, and• we have explicit formula for the density ν = exp(2F ).

Hence excursion representation for BES(U/V ) (in R+) from(Pitman & Yor, 1982) extends to X (in Rd ).

Page 72: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Stationary law µ of dψt = (σ(ψt)− ψtψ>t )dξt − V−1

2 ψtdt∃! invariant measure µ on Sd−1, such that µ(dx) = ν(x)dx .Density ν, wrt the volume element dx =

√det(g)dx1 . . . dxd−1

on (Sd−1,g) satisfies

∆gν = 2div(νb).

For any initial distribution µ0 on Sd−1,

P[ψt ∈ A|ψ0 ∼ µ0]→ µ(A) as t →∞.

The dual (or time-reversal) on Sd−1 of ψ is generated by

G′ =12

∆g − b + grad(log ν).

If b = gradF , then

• G = G′, and• we have explicit formula for the density ν = exp(2F ).

Hence excursion representation for BES(U/V ) (in R+) from(Pitman & Yor, 1982) extends to X (in Rd ).

Page 73: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Some remarksWalsh’s Brownian motions: degenerate case U = V isexcluded from our results. But for U very close to V themeasure on Sd from Walsh’s construction is our stationarymeasure angular measure µ of ψ. Heuristically thisapproximates Walsh’s Brownian motion (recall simulation).

Pathwise uniqueness and strong solutions of

dXt = σ(Xt )dWt , X0 = 0,

Since the solution is unique in law, the dichotomy is

(i) pathwise uniqueness holds (implying strong uniqueness);(ii) pathwise uniqueness fails and the SDE has multiple

solutions, none of which are strong.

Which of (i) or (ii) occurs does depend on the choice ofsquare-root σ (e.g. multidimensional Tanaka SDE).∃smooth σ under (ii) (including “complex Brownian motion”(Stroock & Yor, 1981). We have examples for d = 2,4,8.

Page 74: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Some remarksWalsh’s Brownian motions: degenerate case U = V isexcluded from our results. But for U very close to V themeasure on Sd from Walsh’s construction is our stationarymeasure angular measure µ of ψ. Heuristically thisapproximates Walsh’s Brownian motion (recall simulation).

Pathwise uniqueness and strong solutions of

dXt = σ(Xt )dWt , X0 = 0,

Since the solution is unique in law, the dichotomy is

(i) pathwise uniqueness holds (implying strong uniqueness);(ii) pathwise uniqueness fails and the SDE has multiple

solutions, none of which are strong.

Which of (i) or (ii) occurs does depend on the choice ofsquare-root σ (e.g. multidimensional Tanaka SDE).

∃smooth σ under (ii) (including “complex Brownian motion”(Stroock & Yor, 1981). We have examples for d = 2,4,8.

Page 75: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Some remarksWalsh’s Brownian motions: degenerate case U = V isexcluded from our results. But for U very close to V themeasure on Sd from Walsh’s construction is our stationarymeasure angular measure µ of ψ. Heuristically thisapproximates Walsh’s Brownian motion (recall simulation).

Pathwise uniqueness and strong solutions of

dXt = σ(Xt )dWt , X0 = 0,

Since the solution is unique in law, the dichotomy is

(i) pathwise uniqueness holds (implying strong uniqueness);(ii) pathwise uniqueness fails and the SDE has multiple

solutions, none of which are strong.

Which of (i) or (ii) occurs does depend on the choice ofsquare-root σ (e.g. multidimensional Tanaka SDE).∃smooth σ under (ii) (including “complex Brownian motion”(Stroock & Yor, 1981). We have examples for d = 2,4,8.

Page 76: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Marginal limit theoremAt time t = 1, the law of X1 is given by• ‖X1‖2 ∼ Γ(1

2 + (d − 1) b2

2a2 ,2a2) (Gamma);• X1 ∼ U(Sd−1) (uniform);• ‖X1‖ and X1 are independent.

(When a = b then ‖X1‖2 is a scalar multiple of a χ2 randomvariable with d degrees of freedom.)

So for example we get an angular ergodic result for the randomwalk: for measurable A ⊆ Sd−1 ,

limn→∞

1n

n−1∑k=0

1{Xk ∈ A} =|A||Sd−1|

, in L1.

Almost-sure version unlikely to hold as the limit isnon-degenerate∫ 1

01{Xt ∈ A}dt = lim

ε↓0

∫ 1

ε1{Xt ∈ A}dt .

Page 77: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

Marginal limit theoremAt time t = 1, the law of X1 is given by• ‖X1‖2 ∼ Γ(1

2 + (d − 1) b2

2a2 ,2a2) (Gamma);• X1 ∼ U(Sd−1) (uniform);• ‖X1‖ and X1 are independent.

(When a = b then ‖X1‖2 is a scalar multiple of a χ2 randomvariable with d degrees of freedom.)

So for example we get an angular ergodic result for the randomwalk: for measurable A ⊆ Sd−1 ,

limn→∞

1n

n−1∑k=0

1{Xk ∈ A} =|A||Sd−1|

, in L1.

Almost-sure version unlikely to hold as the limit isnon-degenerate∫ 1

01{Xt ∈ A}dt = lim

ε↓0

∫ 1

ε1{Xt ∈ A}dt .

Page 78: Invariance principle for random walks with anomalous ...levy2016.math.cnrs.fr/talks/Aleksandar_Mijatovic.pdf · Invariance principle for random walks with anomalous recurrence properties

References

• N.H. BINGHAM, Random walk on spheres. Z. Wahrschein. verw. Gebiete (1972).

• B. CARAZZA, The history of the random walk problem. Rivista del Nuovo Cimento (1977).

• K.B. ERICKSON, Continuous extensions of skew product diffusions. Probab. Theory Relat. Fields (1990).

• N. GEORGIOU, M.V. MENSHIKOV, A. MIJATOVIC & A.R. WADE, Anomalous recurrence properties ofmany-dimensional zero-drift random walks. Advances in Applied Probability, 2016.

• S.N. Ethier and T.G. Kurtz, Markov Processes. Characterization and Convergence. John Wiley & Sons, Inc.,New York, 1986.

• K. ITO & H.P. MCKEAN JR., Diffusion Processes and Their Sample Paths, 1974.

• N.V. Krylov, Controlled Diffusion Processes. Reprint of the 1980 edition, Springer-Verlag, Berlin, 2009.

• J. LAMPERTI, Criteria for the recurrence or transience of stochastic processes I. J. Math. Anal. Appl. (1960).

• J. LAMPERTI, A new class of probability limit theorems. J. Math. Mech. (1962).

• A. MIJATOVIC & M. URUSOV, Convergence of integral functionals of one-dimensional diffusions. ElectronicCommunications in Probability, 2012.

• J. PITMAN & M. YOR, A decomposition of Bessel bridges. Zeitschrift fur Wahrscheinlichkeitstheorie undVerwandte Gebiete, 1982.

• E.J. PAUWELS & L.C.G. ROGERS, Skew-product decompositions of Brownian motions. Geometry ofRandom Motion, 1988.

• D.W. STROOCK & M. YOR, Some remarkable martingales. Seminaire de Probabilites XV 1979/80.

• J. VUOLLE-APIALA, Excursion theory for rotation invariant Markov processes. Probab. Theory Relat. Fields(1992).