IntroMinPet Lecture Red

72
Introduction to Mineralogy and Petrology for PE, 620.010 and 620.002 1 INTRODUCTION TO COSMOCHEMISTRY Planet Earth Why ist the Earth so special? How did Earth form? Why is water on Earth? Why and since when does life exist on Earth? Origin of the elements „Big Bang“ theory ~15x10 9 years ago Formation of the primordial elements (H, D, He) by primordial nucleosynthesis Formation of the heavy elements by stellar nucleosynthesis within star nebula Hydrogen fusion (e.g. sun) and Helium fusion H + D > 3 He + γ + 5,493 MeV 3 He + 3 He > 4 He + 2H + 12,859 MeV Stellar Fusion; Formation of the heavier elements 4 He + 4 He > 8 Be 8 Be + 4 He > 12 C+ γ 12 C+ 4 He > 16 O Neutron capture Formation of the heavy elements; Supernovaexplosion threw out high mass elements into space 62 Ni + 1ν > 63 Ni + γ 63 Ni > 63 Cu + β + ν + 0,0659 MeV etc.

Transcript of IntroMinPet Lecture Red

Page 1: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     1  

INTRODUCTION  TO  COSMOCHEMISTRY  Planet  Earth  

Why  ist  the  Earth  so  special?  How  did  Earth  form?  Why  is  water  on  Earth?  Why  and  since  when  does  life  exist  on  Earth?                                

 

 

Origin  of  the  elements  

• „Big  Bang“  theory  -­‐    ~15x109  years  ago    Formation  of  the  primordial  elements  (H,  D,  He)  by  primordial  nucleosynthesis  Formation  of  the  heavy  elements  by  stellar  nucleosynthesis  within  star  nebula  

• Hydrogen  fusion  (e.g.  sun)  and  Helium  fusion    H  +  D    -­‐>  3He  +  γ +  5,493  MeV  3He  +  3He  -­‐>  4He  +  2H  +  12,859  MeV  

• Stellar  Fusion;  Formation  of  the  heavier  elements      4He  +  4He  -­‐>   8Be  8Be  +  4He  -­‐>   12C  +  γ  12C  +  4He  -­‐>   16O  

• Neutron  capture    Formation  of  the  heavy  elements;    Supernova-­‐explosion  threw  out  high  mass  elements  into  space    62Ni  +  1ν  -­‐>   63Ni    +  γ  63Ni  -­‐>  63Cu  +  β-­‐  +  ν  +  0,0659  MeV  etc.  

 

Page 2: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     2  

Element  abundance  in  our  solar  system  

 Nebula-­‐hypothesis  

• Planetary  nebelae:  Primordial  gases  (H,  D,  He);  dust  • Gravitation  -­‐>  contraction  -­‐>  rotation  -­‐>  Proto-­‐Sun    • Condensation  -­‐>  increase  of  temperature  (106  K)  -­‐>  core  fusion;  hydrogen  fusion  • Liberation  of  huge  energy  masses;  E=m·c2  • Accretion  of  planets:  via  gravitation  formation  of  „planetesimals“  (condensed,  solid  

bodies  of  1-­‐10  km  in  diameter),  that  rotate  around  the  sun.  Impact  processes  form  even  larger  planets  (planet  accretion)  ca.  4.56·109  years  ago  =  Age  of  the  Earth  

• Earth´s  age  determination  based  on  meteorites:  Ca-­‐Al-­‐silicate-­‐inclusions  in  chondrites  (a  specific  class  of  meteorite)  reveal  an  age  of  4567.2±0.6  Ma    

• Prograde  condensation;  condensation  of  chemical  compounds  depending  on  the  distance  (and  temperature)  from  the  sun;    

• Close  to  the  sun:  refractory  elements  (Mg,  Fe,  Al,  Si,  Ca)  plus  O  -­‐>  form  solid  compounds  with  oxygen  -­‐>  terrestrial    planets  (inner  planets)  

• Further  away  from  the  sun:  light,  volatile  elements  (S,  C,  N,  H)  -­‐>  methane,  ammonium,  H2O-­‐ice  -­‐>  outer  planets  

   

Page 3: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     3  

 

 

 

 

 

 

 

 

 

 

 

 

 

from  Grotzinger  et  al.  (2008).  

 

 Mass  of  the  Earth:  5,974·1027  g  Average  density  of  the  Earth:  5,142  g  cm-­‐3  Age  of  the  Earth:  4,56·109  Jahre  

3  heat  sources  in  early  planets    

• Kinetic  energy  by  meteoric  impacts    • Compression  of  matter  by  gravitation  • Radioactive  decay  of  von  haevy  elements  (U,  Th,  K)  

Differentiation  of  the  Earth  

Chemical  differentiation  • Earth  was  predominantly  liquid  (T>  FpFe)  • Heavy  elements  Fe-­‐Ni  sink  into  the  Earth´s  core    • O-­‐Si-­‐Mg  form  an  intermediate  layer  -­‐  >  Earth´s  mantle  • O-­‐Si-­‐Al-­‐Fe-­‐Ca-­‐K-­‐Na  “swim“  at  the  surface  -­‐>  Earth´s  crust  

 Chemically  differentiated  layers  existed  already  ca.  4.3  Ga  (?)  ago  Degassing  from  inner  parts  of  the  Earth  formed  an  early  atmosphere  (H2O,  HCl,  NH3,  N2,  CH4,  He  etc.);  formation  of  the  oceans  via  gas  condensation  due  to  cooling        

6371 km

5140 km

2885 km

350 km

Innerer Kern:fest

Äußerer Kern:flüssig

Mesosphäre:heiß aber stärkerwegen des hohen Drucks

Asthenosphäre:heiß, schwach, plastisch(fest+ 1% Schmelze?)

Lithosphäre:kalt, starr, spröd

Kontinental120 km dick

Ozeanisch65 km dick

Rheologischer LagenbauPhysikalische Eigenschaften

Zuna

hme

von

T, P

, Dic

hte

15 °C 1.0·105 Pa

500 °C 9.7·109 Pa~1300 °C ~3.87·109 Pa

3800 °C 1.39·1011 Pa

~5000 °C 3.24·1011 Pa

~6600 °C 3.73·1011 Pa

2.8 g·cm-3

3.3 g·cm-3

~3.4 g·cm-3

5.5 g·cm-3

9.9 g·cm-3

12.3 g·cm-3

13 g·cm-3

Kompositioneller Lagenbau

Kontinental35-80 km thick

Oceanisch7 km thick

2885 km

6371 km

Elemente Minerale

Kruste:O > Si >> Al> Fe > Ca > Na> K > Mg(total = 98.6 wt%)

SilikateOxideHydroxideKarbonate

Mantel:O > Si > Mg >>> Fe > Al >> Ca(total = 97.3 wt%)

Silikate(Olivin,Pyroxene)OxideSulfide

Kern:Fe >> Ni(total = 98.2 wt%)+ Co, S, P, C

Metallische Legierung

Page 4: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     4  

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evidence  for  the  layered  Earth    

• Propagation  of  seismic  P-­‐  and  S-­‐waves  • Total  density  of  the  Earth  • Inclusions  in  volcanic  rocks    • Composition  of  volcanic  rocks  • Portions  of  the  Earth´s  mantle  on  surface    • Composition  of  meteorites  

 

Page 5: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     5  

Early  development  of  the  Earth  

• Heat  increase  –  melting  –  oceans  of  magma?  • Oldest  minerals:  ca.  4.35  Ga  

o Zircon  from  Jack  Hills,  W.A.  o SiO2-­‐rich  continental  crust  existed    

• Also  most  likely  water  and  oceans    • Oldest  rocks  on  Earth´s  surface;  ca.  3.8  Ga  

o Isua  Greenstone  Belt;  SW  Greenland  o Erosion;  deposition  of  sediments  

                             The  oldest  minerals  on  Earth  –  Zircons  from  Jack  Hills,  W.A.,  ca.  4350  Ma  (A.  Cavosie,  www).  Cross-­‐sections  of  these  zircons  in  a  cathodoluminescence  image  (left),  numbers  illustrate  207Pb/206Pb  ages,  Pb-­‐age  distribution  (right)                                      The  oldest  sediments  on  Earth,  ~3.8  Ga  years  old;  Isua  Greenstone  Belt,  SW  Greenland.  Banded  iron  ore  (left),  metaconglomerate  (right)      

Page 6: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     6  

Development  of  life  on  Earth  

• Most  important  is  the  “right”  distance  to  the  sun;  water  as  liquid    • Life  is  possible  between–15°C  and  150°C;  also  within  the  upper  crust  -­‐>  deep  

biosphere  • First  organisms  were  thermophile  microorganisms  • Did  life  start  by  accident?  • 3.5-­‐3.4  Ga:  First  life  forms  (Archaea  and  Bacteria)  • 2.7  Ga:  Increasing  production  of  oxygen  via  photosynthesis  by  Cyanobakteria  • <2.7  Ga:  Stromatoliths    • 2.4  Ga:  Big  “Oxidation  Event”  (GOE);  free  oxygen  in  the  atmosphere  0.54  Ga        

 Our  solar  system  with  the  inner  and  outer  planets  (from  Grotzinger  et  al.  2008).                                        

Page 7: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     7  

WHAT  BUILDS  THE  EARTH  UP?  The  Earth´s  crust  and  mantle  are  formed  by  rocks.  A  rock  is  composed  of  one  or  more  minerals.  A  mineral  is  defined  as  a  homogeneous  material  of  clearly  defined  chemical  composition,  which  occurs  on  Earth.  A  crystal  is  defined  by  a  crystal  lattice,  which  is  formed  by  atoms  and/or  molecules  that  build  up  a  3-­‐dimensional  symmetrical  structure  (=  crystal  lattice).  Furthermore,  the  chemical  compounds  of  the  crystal  lattice  are  hold  together  by  chemical  bonds.  The  type  of  chemical  compounds  in  the  crystal  lattice,  the  distance  between  these  compounds,  their  symmetrical  order  and  the  type  of  bond  determine  all  the  physical  and  chemical  properties  of  a  crystal.  A  crystal,  which  occurs  naturally  on  Earth  is  also  characterised  by  its  thermodynamic  stability.  This  means  the  crystal  exists  at  certain  temperature  and  pressure  conditions  within  a  certain  chemical  environment.  If  a  mineral  is  formed  deep  in  the  Earth  and  it  will  come  to  the  Earth´s  surface  (e.g.  via  geotectonic  processes)  at  lower  T-­‐P  conditions,  it  will  be  instable.  However,  it  will  not  “fall  apart”  immediately,  because  the  reaction  kinetics  are  very  slow.  This  status  is  called  metastable.    

   

                                                 

Page 8: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     1  

INTRODUCTION  TO  MINERALOGY  AND  PETROLOGY        SUBJECT:  CHEMICAL  BOND      Structure  of  the  atom:  An  atom  is  composed  of  a  central  nucleus  (protons  +  neutrons)  and   an   electronic   shell   (electrons,   maximum   of   7   main   orbitals,   diameter   ranges  between  0.5  and  2.5  Å).      

         The  number  of  protons   in   the  nucleus  determines   the  atomic  number  (periodic   table),  the  number  and  the  location  (energy  level)  of  the  electrons  in  the  shell  determines  the  electron  configuration  (=  “finger  print”  of  the  atom).        TYPES  OF  CHEMICAL  BONDS  WITHIN  A  CRYSTAL  LATTICE    

1) Formation  of  electron  pairs  =  Covalent  bond    

   

           

   

Page 9: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     2  

 2) Assimilation  of  an  electron  =  Ionic  bond  

   

3) All  electrons  involved  in  the  bond  are  free,  not  attached  to  any  nucleus  (they  form  an  “electronic  gas“)  =  Metallic  bond  

   

         

4) Weak  bonds  =  van  der  Waal´s  bonds,  occur  predominantly  in  noble  gases  and  in  specific  positions  within  certain  crystal  lattices  (e.g.  phyllosilicates).    

       Bonding  force  =  Coulomb´s  force      K  =  1/ε    x    e1  x  e2/(r1  +  r2)2    

 

 

e  =  electron  charge  r  =  ionic  radius  ε  =  dielectrical  constant                

Page 10: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     3  

PRINCIPLE  CRYSTAL-­‐CHEMICAL  LAWS      

1) ISOMORPHISM   (ISOMORPHOUS   MIXTURE)   –   the   exchange   of   different  chemical  compounds   in  the  crystal   lattice  without  changing  the  structure  of   the  crystal  lattice.  End-­‐member  minerals  form  solid  solutions.  

 NaCl  –  KCl,  MgSiO4  –  FeSiO4    

 2) ISOTYPE   STRUCTURES   –   two   distinct   crystals   are   characterised   by   identical  

crystal  lattices    NaCl  –  PbS  

 3) POPLYMORPHISM   –   one   solid   chemical   substance   can   exist   in  more   than   one  

distinct  crystal  structures      

C  -­‐>  graphite,  diamond    FeS2  -­‐>  pyrite,  marcasite            

   

Page 11: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     1  

INTRODUCTION  TO  MINERALOGY  AND  PETROLOGY    SUBJECT:  SYSTEMATIC  MINERALOGY    90   elements   are   involved   in   the   Earth´s   composition.   However,   8   elements   only   are  making   up   around   98.66   wt%   of   the   Earth.   That   is   the   reason   why   there   are   not  “unlimited”  minerals  existing.  We  know  around  3600  minerals  on  Earth.  Oxygen  is  the  most  abundant  element  within  the  Earth´s  crust,  therefore  most  minerals  have  oxygen  in  their  mineral  formula.          MINERAL  CLASSIFICATION    Mineral   classification   is   based   on   the   chemical   composition   also   taking   the   crystal  structure  into  account  (e.g.  quartz,  SiO2,  belongs  to  the  silicates,  it  is  not  an  oxide).      

I. MINERALS  WITH  OXYGEN      1. Oxide  (O2  as  an  anion)  2. Hydroxide  (OH-­‐  as  an  anion)  3. Silicate  (basic  compound  is  the  SiO44-­‐  tetrahedron)  4. Carbonate  (basic  compound  is  the  CO32-­‐  group)  5. Sulfate  (basic  compound  is  the  SO42-­‐  tetrahedron)  

     

II. MINERALS  WITHOUT  OXYGEN    1. Sulfide  (S2-­‐  anion)  2. Halogenides  3. Elements  

   The  classification  of  the  oxides  is  based  on  the  metal  (X)  :  oxygen  ratio:    

1. Metal  :  oxygen  =  1:1  (XO-­‐Type)  –  e.g.  Periklase  (MgO),  Wüstite  (FeO)  2. Metal  :  oxygen  =  2:1  (X2O-­‐Type)  –  e.g.  Cuprite  (Cu2O)  3. Metal  :  oxygen  =  2:3  (X2O3-­‐Type)  –  Corundum-­‐Type  

Corundum  (Al2O3)  Hematite  (Fe2O3)  Ilmenite  (FeTiO3)  Perowskite  (CaTiO3)  

4. Metal  :  oxygen  =  3:4  (XY2O4-­‐Type)  –  Spinel-­‐group  Aluminum-­‐spinels  (Spinel  MgAl2O4,  Hercynite  FeAl2O4)  Ferrit-­‐spinel  (Magnetite  FeFe2O4)  Chromium-­‐spinel  (Chromite  FeCr2O4)  

5. Metal  :  oxygen  =  1:2  (XO2-­‐Type)  TiO2-­‐minerales  –  Rutile,  Anatase,  Brookite  

Page 12: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     2  

Pyrolusite  (MnO2)  Cassiterite  (SnO2)  Uraninite  (UO2)    

   Common  properties  of  the  OXIDES:    

Ø High  lattice  symmetry  Ø High  hardness  Ø High  melting  point  Ø High  chemical  resistence  

 The   reason   for   these   characteristic   properties   is   predominantly   based   on   the   type   of  chemical  bond.  Oxides  are  characterised  by  a  mixture  of  atomic  and  ionic  bonds.  Oxides   are   further   characterised   by   typical,   symmetrical   order   of   the   oxygens   in   the  lattice  –  either  hexagonal,  or  cubical  most  dense  package.        

 Hexagonal  package.  Order  of  layers  =  A,  B,  A,  B,  A...                          

Page 13: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     3  

     Cubical  package.  Order  of  layers  =  A,  B,  C,  A,  B,  C,  A  ...        OXIDES  of  X2O3-­‐TYPE    Corundum  group  –  Corundum  (Al2O3),  Hematite  (Fe2O3)  Structure:  trigonal,  oxygens  form  a  hexagonal  package,  metals  occupy  octahedral  spaces.  Complete  solid  solution  between  corundunm  and  hematite.      Al2O3   represents   the  most   important   raw  material   for   the  Al-­‐industry.   It   derives   from  bauxite.  Corundum  is  mainly  used  as  grinding  and  polishing  material,  based  on  its  hardness  of  9  according   to   the  Mohs-­‐scale.   Impurities   of   Cr,   Ti,   Fe   etc.   lead   to   the   gem   stones   ruby  stone  and  sapphire.      Hematite   represents   an   important   iron   ore.   It   occurs   predominantly   in   banded   iron  formations  (BIF).  Hematite  does  not  occur  in  magmatic  deposits.      Ilmenite  (FeTiO3)  Structure:   trigonal,   in   comparison   to   corundum,   ilmenite   belongs   to   a   crystal   class   of  lower  symmetry  (two  different  metals  in  the  lattice).      Ilmenite  is  an  accessory  mineral  constituent  of  many  rocks  (predominantly  in  magmatic  rocks).  It  represents  the  most  important  carrier  of  Ti.  It  further  occurs  economically  in  placer  deposits  (hardness,  chemical  resistence).        It  is  mainly  used  as  alloy  metal  and  Ti-­‐ore.  

Page 14: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     4  

OXIDES  of  X(6)Y2(4)O4-­‐TYPE  (SPINELS)  Structure:   all   spinels   belong   to   the   isometrical   crystal   system.   Oxygens   form   acubical  package,  the  metals  occupy  octahedral  and  tetrahedral  spaces  in  between.      Economically  important  are:  Magnetite  Fe3+(6)Fe2+(6)Fe3+(4)O4  Chromite  Cr2(6)  (4)O4    Magnetite   represents,   apart   of   hematite,   the   most   important   iron   ore.   It   occurs   in  magmatic  deposits,  however,  economically  most  important  are  BIFs.      Chromite   ist   the   classical   Cr-­‐ore   mineral   and   occurs   almost   exclusively   in   magmatic  deposits,  such  as   layered   intrusions  (e.g.  Bushveld  Complex,  South  Africa)  =  stratiform  chromitites,  and  in  mantle  rocks  =  podiform  chromitites.          HYDROXIDES    Goethite  (Fe(6)O(OH)  Limonite  (FeO(OH)  .  n  H2O    Fe-­‐hydroxides  are  typical  weathering  minerals  (“rust“)  and  occur  predominantly  within  oxidation  horizons  of  primary  sulfide  and  oxide  mineral  deposits.  Within  the  oxidation  zone   they   are   the  main   constituents   of   the   so-­‐called   “gossan”.   Fe-­‐enriched   gossan   are  also  used  as  Fe-­‐ore.                                                    

Page 15: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     5  

SILICATES    Silicates   make   up   around   92   %   of   the   Earth´s   crust.   Their   classification   is   based   on  „polymerisation“  (=  various  combinations)  of  the  SiO4-­‐tetrahedrons.      

 Nesosilicates  (isolated  SiO4-­‐tetrahedrons)          

 Sorosilicates  (group-­‐silicates  Si2O7)  –  simple  combination  of  2  SiO4-­‐tetrahedrons      

   Cyclosilicates   (ringsilicates,   3,   4   and  6   SiO4-­‐tetrahedrons   are   combined   to   form  a   ring  structure;  Si3O9,  Si4O12,  Si6O18)        

Page 16: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     6  

   

 Inosilicates  (single  chain  silicates  Si2O6)      

 Inosilicate  (double  chain  silicates  Si4O11)            

 Phyllosilicates  (sheet  silicates  Si4O10)                  

Page 17: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     7  

   

 Tectosilicates  (SiO2)      NESOSILICATES    Olivine  group  Mg2SiO4  (Forsterite)  –  Fe2SiO4  (Fayalite)  End  members  form  complete  solid  solution  series.          

     Binary  system  Forsterite  –  Fayalite,  showing  solid  solution  field  of  endmemebers        Olivine   is   a   major   constituent   of   ultramafic   rocks   and   a   predominant   mineral   of   the  Earth´s  mantle.      It  is  used  in  the  refractory  industry  due  to  ist  high  melting  point  (depending  on  the  Mg  :  Fe  ratio).        

Page 18: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     8  

Garnet  group  Structure:  all  garnets  belong  to  the  isometrical  crystal  system.      General  formula:  A32+B23+(SiO4)3    A  =  Mg,  Fe2+,  Mn2+,  Ca  B  =  Al,  Fe,  Cr    Pyralspite  group    Pyrope   Mg3Al2(SiO4)3  Almandine   Fe3Al2(SiO4)3  Spessartine   Mn3Al2(SiO4)3    Ugrandite  group    Uwarowite   Ca3Cr2(SiO4)3  Grossular   Ca3Al2(SiO4)3  Andradite   Ca3Fe2(SiO4)3      

   Crystal  morphology  and  forms  of  garnet    

Page 19: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     1  

INTRODUCTION  TO  MINERALOGY  AND  PETROLOGY    SUBJECT:  INO-­‐,  PHYLLO-­‐  UND  TECTOSILICATES    1.  INOSILICATES  –  PYROXENE  GROUP      Pyroxenes  are  simple  chain  silicates  (Si2O6);  general  formula:                

(Ca,Na,Li)0-­‐1(Mg,Fe,Al)1-­‐2(Si2O6)      Octahedral-­‐              Tetrahedral-­‐  Position            Position      Depending  on  the  occupancy  of   the  octahedral  position,  orthopyroxenes   (no  occupancy  of   the   octahedral   position)   and   clinopyroxenes   (octahedral   position   occupied)   can   be  distinguished.   Orthopyroxenes   have   orthorhombic   structure,   clinopyroxenes   are  monoclinic.      Orthopyroxenes  (OPX)  Enstatite     Mg2(Si2O6)  Bronzite     (Mg,Fe)2(Si2O6)  Ferrosilite     Fe2(Si2O6)    Klinopyroxenes  (CPX)  Diopside     CaMg(Si2O6)  Hedenbergite     CaFe(Si2O6)  Augite       Ca(Mg,Fe)(Si2O6)  Jadeite       NaAl(Si2O6)  Ägirine  (Acmite)   NaFe(Si2O6)  Spodumene     LiAl(Si2O6)    OPX  members  form  a  solid  solution  series,  the  same  applies  to  CPX  members,  but  there  is  very  limited  solid  solution  between  OPX  and  CPX.      Occurrence:  Pyroxenes   are   rock-­‐forming   minerals.   They   represent,   together   with   olivine,   major  components  of   the  Earth´s  mantle.  OPX  are  also  characteristic  minerals   for  high-­‐grade  metamorphic   rocks   and   occur   within   mafic   volcanic   rocks.   CPX   are   characteristic   for  mafic    plutonic  and  volcanic  rocks  and  are  diagnostic  for  metamorphic  calc-­‐silicate  rocks.  Na-­‐rich  pyroxenes  are  typical  for  alkali-­‐rich  igneous  rocks.              

Page 20: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     2  

2.  INOSILICATES  –  AMPHIBOLE  GROUP      Amphiboles  are  double  chain  silicates  (Si4O11).      

   General  formula:    A  0-­‐1(10,12)X2(8)Y5(6)(OH,F)(Si4O11)    

Ø A  =  Na,  K  Ø X  =  Ca,  Na,  Mg,  Fe2+,  Mn  Ø Y  =  Mg,  Fe2+,Mn,  Al,  Fe3+,  Ti4+    Ø Z  =  Si,  Al  

 Amphiboles   represent   a   large   mineral   group.   Similar   to   pyroxenes,   orthoamphiboles  (orthorhombic   structure)   and   clinoamphiboles   (monoclinic   structure)   can   be  distinguished.      Three  main  series  can  be  distinguished:    

1. Orthoamphiboles,  Mg-­‐Fe-­‐Amphiboles  Cummingtonite  Grunerite  Anthophyllite  Gedrite  

 2. Ca-­‐Amphiboles  (Clinoamphiboles)  

Tremolite  Actinolite  Hornblende  

 3. Alkali-­‐amphibole  Na>Ca  (Clinoamphiboles)  

Glaukophane  Riebeckite  

 Amphiboles   are   rock-­‐forming   minerals   and   are   representative   for   the   mineral  composition   of   many   metamorphic   rocks   (e.g.   amphibolites).   Rarely   amphiboles   can  grow  in  form  of  very  thin  needles.  In  case  the  needles  have  a  thickness  of  <  2  µm  and  a  length  of  >  5  µm,  they  are  defined  as  amphibole  asbestos.        

Page 21: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     3  

3.  PHYLLOSILICATES  (SHEET  SILICATES)    Phyllosilicates   are   basically   composed   of   a   tetrahedral   sheet   (Si2O5)   =   T-­‐sheet   and   an  octahedral  sheet  (Mg,Fe,Al)2-­‐3(OH)4  =  O-­‐sheet.  Based  on  the  combination  of  the  T-­‐O-­‐sheets  and  the  occupancy  within  the  O-­‐sheets  (i.e.  either  all  octahedral  spaces  are  occupied  by  Mg  or  Fe,  or  2/3  of  the  spaces  are  occupied  by  Al),  the  following  phyllosilicates  can  be  distinguished:        

          (Si2O5)-­‐sheet        

1. 2-­‐sheet  phyllosilicates  (T-­‐O)  Serpentine         Mg3(OH)4(Si2O5)  Kaolinite         Al2(OH)4(Si2O5)  Haloysite       Al2(OH)4(Si2O5)  .  2H2O  

 2. 3-­‐sheet  phyllosilicates  (T-­‐O-­‐T)  

Talc         Mg3(OH)2(Si4O10)  Pyrophyllite       Al2(OH)2(Si4O10)  Phlogopite  (Biotite)     K(Mg,Fe)3(OH,F)2(Si4O10)  Muscovite       KAl2(OH)2(Si3AlO10)  Saponite       Mg3(OH)2(Si4O10)  .  nH2O  Montmorillonite     Al2(OH)2(Si4O10)  .  nH2O  

 3. 4-­‐sheet  phyllosilicates  (T-­‐O-­‐T-­‐Mg(OH))  

Chlorite       (Mg,Fe,Al)3(OH)2(Si,Al4O10)  .  Mg3(OH)6      

Diagnostic  properties:    perfect  cleavage  in  (001),  low  hardness  (1-­‐3  according  to  Mohs),  pearly  lustre  on  cleavage  planes,  color  varies  from  black  (biotite),  via  green  (chlorite)  to  colorless,  tranparent  (muscovite).  The  swelling  property  is  a  further  characteristic  feature  of  water-­‐bearing  phyllosilicates  (=many  clay  minerals,  e.g.  smectites  -­‐>  montmorillonite,  haloysite,  saponite).  The  water  is  released  in  cases  where  the  phyllosilicate  is  dried.  However,  as  soon  as  the  phyllosilicate  gets   into   contact  with  water   again,   the  water  molecules   are   getting   adsorbed   and   the  thickness  of  the  phyllosilicate  sheets  are  significantly  increasing.  Instead  of  water,  other  molecules  can  be  adsorbed  too.    

Page 22: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     4  

Serpentine  (chrysotile)  may  grow  under  certain  conditions  in  form  of  tiny  reels.  If  these  reels  achieve  a   thickness   in   the  range  of  around  <  3  µm  and  a   length  of  >  5  µm,   these  chrysotiles   are   defined   as   serpentine   asbestos.   Serpentine   asbestos   occurs  predominantly   in  altered  ultramafic  rocks,  where  the  serpentine  mineral   forms  during  serpentinisation  (alteration  of  olivine  and  pyroxenes  under  Co2-­‐rich  hydrous  conditions  into  serpentine).  This  type  of  asbestos  had  numerous  applications  (i.e.  isolation  material,  heat   resistant  material,   facings   for  clutches  and  brakes   in  cars,   for  roof   tails  etc.)  until  around  1998.  Today  (i.e.  since  1998)  these  applications  are  strictly  prohibited.    The   health   risk   potential   of   serpentine   asbestos   is   by   far   less   than   that   of   amphibole  asbestos,   because   serpentine   asbestos   forms   reel   structure,   whereas   amphibole  asbestos  is  represented  by  fine  needles.  Furthermore,  serpentine  asbestos  will  become  dissolved   after   a   few   months   if   it   will   get   into   the   human   pulmonary   tissue   (i.e.  serpentine  asbestos  is  chemically  almost  exclusively  composed  of  Mg  and  Si,  apart  of  O,  and   the   human   body   is   undersaturated   in   these   two   elements.   Amphibole   asbestos  contains,  apart  of  Mg,  always  some  Fe).                                                                          

Page 23: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     5  

4.  TECTOSILICATES        

 (SiO2)      Tectosilicates   are   characterised   by   a   three-­‐dimensional   bonding   of   the   SiO4-­‐tetrahedrons,   thus   the   basic   formula   is   SiO2.   Part   of   the   Si   in   the   lattice   can   be  substituted  by  Al  -­‐>  feldspars    Overview  onto  the  classification  of  the  tectosilicatse:    

1. SiO2-­‐Group  Quartz  Tridymite  Christobalite  Coesite  Stishovite  Opal  

 2. Feldspar-­‐Group  

Alkali-­‐Feldspars       K(Si3AlO8)  Plagioclase-­‐Group     Na(Si3AlO8)           Ca(Si2Al2O8)  

 3. Foides  

Leucite       K(Si2AlO6)  Nepheline       (Na,K)(SiAlO4)  

 4. Zeolite-­‐Group    

Natrolite       Na2(Si3Al2O10)  .  2H2O  Phillipsite       KCa(Si5Al2O16)  .  6H2O  Chabasite       >Ca(Si4Al2O10)  .  6H2O  

  and  many  more    The  nembers  of  the  SiO2-­‐Group  are  modifications  of  quartz  (see  polymorphism  !),  which  are  stable  under  various  P-­‐T-­‐conditions.  Opal  represents  a  cryptocrystalline/amorphous  variety  of  quartz  (i.e.  opal  is  not  crystallised,  it  is  gel-­‐like).  Other  varieties  of  quartz  form  by  chemical  impurities  (i.e.  such  as  Fe,  Al,  Li,  H  etc.)  leading  to  different  colors  of  quartz:  Amethyst   (purple),   Rose-­‐quartz   (pink),   Smoky   quartz   (grey   to   black),   Citrine   (yellow),  Milky  quartz.    

Page 24: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     6  

The  most  important  industrial  application  of  quartz  is  based  on  its  very  special  crystal  lattice.   The   SiO4-­‐tetrahedrons   are   ordered   like   a   screw.   Thus   we   can   distinguish  between  a  left-­‐handed  and  a  right-­‐handed  quartz  (i.e.  depending  on  the  sense  of  rotation  of   the   screw).  This   specific   crystal   lattice   causes   the  piezo-­‐electrical   effect.   If  we   cut   a  sheet  out  of   the  quartz,   perpendicular   to   its   crystallographical   c-­‐axes,   the   ends  of   this  platelet  are  charged.  If  this  quartz  platelet  (=  “quartz  chip”)  is  exposed  to  an  ac  voltage,  the   quartz   will   start   to   “swing”   (=   oscillatory   movement),   the   quartz   chip   gets   into  rhythmical   extension   and   compression.   This   application   of   quartz   represents   the  prerequisite  for  any  modern  communication  (e.g.  TV,  radio  computer  technology  etc.).      The   feldspar-­‐group   is   composed   of   two  miscibility   series,   the   alkali-­‐feldspar  and   the  plagioclase  series.  Feldspars  are  rock-­‐forming  minerals  and  represent  significant  mineral  constituents  of  many  magmatic  and  metamorphic  rocks.  They  are  also  the  most  common  minerals  within  the  Earth´s  crust.  

       The   minerals   of   the   zeolite-­‐group   are   characterised   by   crystal   lattice   with   common  open  spaces  and  cavities,  in  which  large  cations  (e.g.  Na,  K,  Ca  etc.)  and  water  molecules  are  located.  These  cations  and  water  may  be  absorbed  and  adsorbed.  This  is  the  reason  for  the  important  industrial  application  of  zeolites  as  ion-­‐exchanger  (e.g.    water  softener,  treatment  of  radioactive  water  -­‐  adsorption  of  137Cs,  90Sr,  water  and  gas  cleaning,  etc.).            

Page 25: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     1  

INTRODUCTION TO MINERALOGY AND PETROLOGY

SUBJECT:  CARBONATE  MINERALS        • Structures are characterized by flat, triangular CO3

2- oxyanion groups in which the C–O bonds are covalent and strong. Neighbouring CO3

2- groups do not share oxygens with each other, therefore there is no polymerisation (in contrast to the silicates)

• Although the C-O bond is strong, it is not as strong as the covalent bond in CO2. Hence, all carbonates react with acids:

2H+ + CO32- → CO2 + H2O

This "fizzing" reaction with diluted HCl is used as a diagnostic test for carbonate minerals

• Charge balance is achieved by accommodating the divalent cations Ca2+, Mg2+ and Fe2+

• The compositions of the common carbonates can be expressed in terms of three end-members (CaCO3, MgCO3, FeCO3), although solid-solution between all end-members is not complete (i.e. the compositional triangle contains large miscibility gaps):

 

 

Page 26: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     2  

                                                             

   Calcite Hexagonal-rhombohedral CaCO3 (L. calx = "burnt lime") • Structure is analogous to halite (NaCl), in which the small Na+ sites are filled by

Ca2+ ions and the large Cl- sites are replaced by CO32- groups

Page 27: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     3  

• The triangular CO32- oxyanions lie in planes at right angles to the c-axis, which

consequently has 3-fold rotational symmetry. Thus instead of being isometric,like halite, the symmetry of calcite is reduced to the rhombohedral crystal class

• The Ca2+ ions are in 6-fold coordination with oxygens in the CO32- groups. Each

oxygen is coordinated to two Ca ions as well as to one C ion at the centre of the CO3

2- groups

• Composition is mostly pure CaCO3, but also limited low-temperature solid solution with < 3 mol% MgCO3, <9 mol% FeCO3

Properties: Calcite occurs in over 300 different combinations of crystal forms! Most important are long or short prisms, rhombs, and scalenohedrons. Also stalactitic. Colour: white, colourless (also almost any other colour); Transparent to translucent; H = 3 on cleavage planes (Mohs' index mineral!) H = 2.5 on basal crystal faces; D = 2.7 g·cm-3; Vitreous lustre; Cleavage: { } perfect at 75°; Effervesces in cold, dilute HCl.

Use: Manufacture of cement (by heating calcite to 900°C: CaCO3 → CO2 + CaO; the

CaO reacts with water to form CaO-hydrates, which harden with time); soil fertiliser; flux for ore smelting; roading gravel.

   Magnesite–Siderite Hex.-rhombohedral (Mg,Fe)CO3 solid-solution series (magnes = "Mg-bearing"; sidero = "iron") • Same structure as calcite (i.e. isostructural) • Solid-solution between magnesite (MgCO3) and siderite (FeCO3) is complete.

Small amounts of Ca may be present.

Properties: Rhombohedral crystals, magnesite aggregates often massive; Magnesite colour: white, grey; Siderite colour: light to dark brown; Transparent to translucent; H = 3.5–5; D = 3.0–4.0 g·cm-3; Vitreous lustre; Cleavage: { } perfect; Effervesces in hot, dilute HCl.

Use: Magnesite used to manufacture refractory bricks etc. (e.g. Trieben Mine,

Steiermark; Austria produces ca. 700 000 tonnes of ore per year); source of MgO for chemical industry (but metallic Mg is produced from seawater, not from magnesite). Siderite is an ore of Fe (e.g. Erzberg Mine, Steiermark, produces ca. 1.4 million tonnes of ore per year).

 Dolomite Hexagonal-rhombohedral CaMg(CO3)2

• Structure is similar to calcite, but Ca- and Mg-layers alternate along the c-axis • Solid-solution exists with the Fe-bearing end-member ankerite CaFe(CO3)2

Properties: Rhombohedral crystals, sometimes saddle-shaped; Colour: pink, white, grey, colourless, ankerite is usually oxidized to yellowish-brown colours; Transparent to translucent; H = 3.5–4; D = 2.9 g·cm-3; Vitreous lustre; Cleavage: { } perfect; Crystals effervesce in hot, dilute HCl, powder effervesces slowly in cold, dilute HCl.

Use: Manufacture of certain cements, refractory bricks for steel-making process, MgO

for chemical industry

1011

1011

1011

Page 28: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     4  

 Aragonite Orthorhombic CaCO3 (Aragon = locality in Spain) • Aragonite is a polymorph of calcite (see lecture notes on polymorphism) • The radius ratio of Ca:O in calcite is 0.714, which is very close to the limiting

value (0.732) between 6- and 8-fold coordination. When the calcite structure is compressed, the oxygen ions become smaller and the Ca:O radius ratio increases, allowing aragonite to adopt a compact orthorhombic structure with 9-coordination. Thus both the density and hardness of aragonite are greater than calcite (aragonite D = 2.94 g·cm-3, H = 4; calcite: D = 2.71 g·cm-3, H = 3)

• Although aragonite is metastable at surface T-P conditions, it precipitates at low pressure from warm springs (kinetically favoured in complex solutions) and in the shells of mollusks (extra energy supplied by living organism)

Properties: Acicular and tabular habits are common, also hexagonal prisms; Colour: colourless, white, pale yellow; Transparent to translucent; H = 3.5-4; D = 2.94 g·cm-3; Vitreous lustre; Cleavage: {010} distinct, {110} poor; Effervesces in cold, dilute HCl.

     

                                   

Page 29: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     5  

SUBJECT:  SULPHATE  MINERALS      • Structures are characterized by small, highly polarizing S6+ ions covalently

bonded to oxygen in tetrahedral SO42- oxyanion groups. As in the carbonates,

neighbouring SO42- groups do not share oxygens with each other, therefore no

polymerisation results. • Charge balance is achieved by accommodating divalent cations, such as Ca2+ and

Ba2+ • The orthorhombic Ba-sulphate, barite (BaSO4) has such a high density (4.5 g·cm-3)

that it is used as "heavy-mud" to support drilling rods in the oil- and gas-industry  Gypsum Monoclinic CaSO4·2H2O Structure consists of layers parallel to {010} in which SO4

2- groups are bonded to Ca2+ ions. These layers are separated by sheets of H2O molecules, which are only weakly bound to each other via hydrogen bonds. Cleavage along these H2O sheets is therefore excellent.

Properties: Prismatic and tabular crystals, often swallow-tail twins; Colour: colourless, white, grey, yellow; Transparent to translucent; H = 2 (Mohs’ index mineral!); D = 2.3 g·cm-3; Lustre: vitreous to silky; Cleavage: {010} perfect, yielding thin sheets; conchoidal cleavage surface parallel to {100}, fibrous cleavage parallel to {011} (these 3 different cleavages are diagnostic of gypsum); Dehydrates completely upon heating to 95°C.

Use: Manufacture of "plaster of Paris" (made by heating gypsum to 75°C to drive off

75% of H2O molecules. When later mixed with water, the partially dehydrated gypsum re-absorbs H2O molecules and hardens). Also used for wallboard, paints, soil fertiliser. Austria produces ca. 900 000 tonnes of gypsum per year.

Page 30: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     6  

Baryte Orthorhombic BaSO4 (barys = “schwer”) • Structure consists of large bivalent cations zweiwertige Kationen (Ba) bonded to sulfate-iones. Each Ba is surrounded by 12 oxygens, the latter belonging to 7 distinct SO4

2- oxyanion groups Properties: perfect cleavage along {001}; H = 3 - 3.5; D = 4.5 g·cm3/ (pretty heavy for a non-metallic minera !); Color is colorless, white to light blue, yellow, red, transparent; tabular crystal form common, also rosette aggregates (“Wüstenrose”)

Use: as "heavy mud" in oil drillings (i.e. supports the stability of the drillings and prevents puff blowing); Color industry; Paper industry; radiation protection; contrast material in medicine.

 

 

 

 

                         

Page 31: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     7  

SUBJECT:  SULFIDE  MINERALS        

• The sulfides are the main group of ore minerals, being the major sources of many transition-elements and of sulfur

• Metal–sulfur bonding (e.g. M2S, MS, MS2) varies between ionic, covalent and metallic

• Partial metallic character makes many sulphides soft and electrically semi-conductive

• Most sulfides are opaque, and have distinctive crystal colours and streaks

Pyrite Isometric FeS2 (pyros = "fire", because it emits sparks when struck by steel) Structure is analogous to halite (NaCl), where Fe occupies the Na sites and S2 pairs occupy the large Cl sites Properties: Equidimensional cubic, "pyritohedral", and octahedral crystals. Cubic

crystals usually have striated faces. Colour: pale brass-yellow; Streak: greenish or brownish-black; H = 6-6.5; D = 5 g·cm-3; Conchoidal fracture; Brittle; Lustre: splendent metallic; Opaque; Paramagnetic.

Use: Main Fe-ore in countries where Fe-oxides are scarce; Major source of S for

production of H2SO4 and FeSO4 (dyeing, inks, wood preservative, disinfectant). Also important source of Au, which often occurs as microinclusions in pyrite

Page 32: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     8  

Galena Isometric PbS Structure is analogous to halite (NaCl) with Pb in place of Na and S in place of Cl. Properties: Crystals in cubic or cubic + octahedral forms. Colour: lead-grey; Streak:

lead-grey; H = 2.5; D = 7.5 g·cm-3; Cleavage {001} perfect; Lustre: bright metallic; Opaque

Use: Main ore of Pb and important source of Ag, which occurs in solid-solution.

Used in batteries, low-melting alloys, metal pipes and other products; shields against radioactivity; as oxide used to make glass, glazes, paints.

Sphalerite Isometric ZnS (sphaleros = "treachery", because it can look like galena but contains no Pb; also Zinkblende, where blende = blind or deceiving) Structure is analogous to diamond, where half the C sites are replaced by Zn and half by Fe Properties: Commonly as tetrahedral, cubic and octahedral crystal forms. Colour:

colourless, green, yellow, brown to black; Streak: white to yellow and brown; Transparent to translucent; H = 3.5-4; D = 4 g·cm-3; Cleavage {010} perfect; Lustre: non-metallic and resinous to submetallic.

Use: Main ore of Zn. Used in alloys (e.g. brass = Zn + Cu), galvanized iron, electric

batteries, paint manufacture, wood preservatives, dyeing, medicine.

Page 33: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     9  

Chalcopyrite Tetragonal CuFeS2 (chalkos = "copper" + pyrite) Structure is analogous to sphalerite (ZnS), where half the Zn sites are replaced by Cu and half by Fe. Properties: Usually massive habit but sometimes as tetragonal scalenohedrons.

Colour: brass-yellow, often tarnished to bronze or iridescent; Streak: greenish-black; H = 3.5-4; D = 4.2 g·cm-3; Conchoidal fracture; Brittle; Lustre: metallic; Opaque

Use: Main ore of Cu. Used in alloys, electrical cables, etc.

Crystal  lattice  of  chalcopyrite    

Page 34: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     10  

SUBJECT:  HALIDE  MINERALS      

• Halogens form large, singly-charged anions in minerals, of high electronegativity. When combined with large, electropositive cations, the structures consist essentially of perfect spheres with ionic bonding

• The ionic packing which results forms crystals with high symmetry, brittle tenacity, high melting points but high aqueous solubility

Halite Isometric NaCl (halos = "salt") Each cation and each anion is surrounded by 6 closest neighbours in octahedral coordination Properties: Cubic crystals; Colour: colourless to white, yellow, red, blue, purple;

Transparent to translucent; Salty taste; H = 2.5; D = 2.2 g·cm-3; Cleavage {001} perfect; Brittle; Melting point at 1 bar = 801°C .

Use: Food additive and preservative; Chemical industry: HCl and sodium

compounds, leather treatment, fertilizer, road salting, weed killer.

Fluorite Isometric CaF2 (fluere = "to flow", because more easily melted than similar minerals) Face-centred cubic lattice in which each Ca2+ is in cubic coordination with 8 surrounding F- ions; each F- is tetrahedrally coordinated to four Ca2+ ions

!

Page 35: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     11  

Properties: Usually cubic crystals; Colour: light green, yellow, bluish-green, purple, colourless, white, pink, blue, brown; Transparent to translucent; fluoresces under UV light; H = 4 (Mohs’ index mineral!); D = 3.2 g·cm-3; Cleavage {111} perfect; Brittle; Lustre: vitreous

Use: Chemical industry: production of HF; fluorine compounds, flux for steels,

glass, fibreglass, pottery, enamels, optical lenses and prisms  

   

 

   

 

   

   

 

   

 

   

   

   

                     

   

!

!

Page 36: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     12  

SUBJECT:  SOME  IMPORTANT  ELEMENTS     Graphite Hexagonal C (derives from Greec: to draw) Structure: C atoms are bonded together (i.e. very strong covanlent bond) in form of hexagonal rings. Between these hexagonal ring-sheets weak Van der Waal´s bonds. Distance from sheet to sheet is 3.44 Å). Properties: perfect cleavage along {0001}; H = 1 - 2; D = 2.23 g·cm-3; metallic lustre,

sometimes dull; Color: black to black-grey; Streek: black greasy, loosing color very easily!

Use: Steel manufacture; founding technology; facing of cucibles; grease; pencils;

batteries; electrodes; reactors. Diamond Isometric C (derives from Greec: adamas = undestroyable) Struktur: Polymorph of graphite. Crystal structure is formed by tetrahedrons of C, which are bonded by strong covalent bonds; C-C distance is 1.54 Å.

Page 37: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     13  

Properties: perfect cleavage along {111}; H = 10 (Mohs); D = 3.52 g·cm-3; Lustre: diamond lustre, unpolished crystals look fatty; Color: colorless to sometimes pale yellow to pink („fancy diamonds“); octahedrons common crystal forms Use: gem stone, grinding, polishing and cutting material, drilling heads.

   

Page 38: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     14  

   Pressure-­‐temperature  diagram  showing  stability  fields  of  graphite  and  diamond        

Page 39: IntroMinPet Lecture Red

ROCK (Gestein)

Einführung in die Mineralogie und Petrologie, LV 620.073

Rock = natural formed aggregate of one or more types of minerals

(strictly: any naturally formed aggregate or mass of mineral matter, whether or not coherent, constituting an essential and appreciable part of the earth's crust)

How to classify rock? Physical conditions include: Temperature

Pressure Deformation (Differential Pressure)

Definitions: • mineral = natural formed chemical compound having a definite range in chemistry

and a characteristic crystal form. • crystal = regular polyhedral form, bounded by plane surfaces, which is the outward

expression of a regular repeating internal arrangement of atoms. • grain = particles which comprise a rock.

A B C Chemical analysis mineral composition Physical conditions of rock formation geometric properties

grainsize shape relation between grains

Page 40: IntroMinPet Lecture Red

PLATE TECTONICS AND ROCK FORMATION (1)

Einführung in die Mineralogie und Petrologie, LV 620.073

SOURCES OF HEAT WITHIN THE EARTH • Earth has not completely cooled since its molten state approximately 4 · 109 years ago • In addition to residual heat (= left over from that originally caused by meteorite

impacts and gravitational compression), radioactive decay of certain elements continually adds heat to the Earth

• Most important sources of radioactive heat are K, U, Th:

40K !

40Ar + " + 1.51 MeV (mostly as heat)

40

K !40

Ca + "#+ heat

232

Th ! K !208

Pb + 6" + 4#$+ heat

238

U ! K !207

Pb + 7" + 4#$+ heat

238

U ! K !206

Pb + 8" + 6#$+ heat

• Example: Typical heat production of granite: 3.4 · 10-2 J/kg·year • High flow of heat from interior to surface of Earth drives huge convection cells in

Asthenosphere (and at deeper levels), dimension ≈ 103 km; rates of movement ≈ cm / year

CONSEQUENCES OF ASTHENOSPHERIC CONVECTION FOR LITHOSPHERE • Ascent of thermally buoyant Asthenosphere in upflow path of convection calls

increases heat-flow into Lithosphere → thinning of Lithosphere and generation of new crust by magmatism → constructive lithospheric plate boundaries (e.g. at mid-oceanic ridges)

• Descent of cooled Asthemosphere in downflow path of cell decreases heat-flow

locally → mechanical subduction of lithospheric plates → destructive lithospheric plate boundaries (e.g. at oceanic trenches)

• Thus, sinc about 4 · 109 years ago, the Lithosphere has been divided into slowing-

moving plates (movement rates ≈ cm / year) • Mechanical interaction of these plates (collision, sliding along edges, overriding, etc.)

is known as plate tectonics • Plate tectonics has lead to the migration of continental and oceanic crust across the

Earth's surface, and to the formation of Earth's topography (mountain chains, high plateaux, deep ocea basins, etc.) (see Lectures from Geology 1)

• Heat flow and gravity are thus the driving forces of plate tectonics. In this context

and on long time-scales, Earth is therefore best viewed as a dynamic system (cf. static model in lecture 1)

Page 41: IntroMinPet Lecture Red

PLATE TECTONICS AND ROCK FORMATION (1)

Einführung in die Mineralogie und Petrologie, LV 620.073

Page 42: IntroMinPet Lecture Red

PLATE TECTONICS AND ROCK FORMATION (2)

Einführung in die Mineralogie und Petrologie, LV 620.073

CYCLING OF ROCKS WITHIN THE LITHOSPHERE • Plate tectoncs drives rocks through cycles of P-T-deformation conditions. Rocks

formed by magmatism ("magmatic" or "igneous" rocks, e.g. granites) can be uplifted above sea-level, eroded and redeposited as sediments in rives, lakes and ocean basins (hardening of these sediments produces "sedimentary rocks"). Deep burial of these sediments (or magmatic rocks) in, for example, subduction zones, leads to mineralogical recrystallisation (the recrystallised rocks are termed "metamorphic"). Metamorphic rocks sometimes melt to form new magmatic rocks, or they may be uplifted and eroded, and so on through the cycle ...

• Because of plate tectonic cycling, rocks can have long complicated P-T-deformation

histories.

Page 43: IntroMinPet Lecture Red

PLATE TECTONICS AND ROCK FORMATION (2)

Einführung in die Mineralogie und Petrologie, LV 620.073

Approximately ranges of pressure and temperature over which the traditional recognized sedimentary, metamorphic, and igneous (or magmatic) rock-forming processes operate. The indefinite boundaries between the three reals are real. Both P and T increase with depth in the Earth, but at different rates in different geological environments. A geothermal gradient which expresses the relation between T and depth in the Earth, such as might occur in an active mountain belt, is shown by the curve line. Heavy bars on the right of the diagram indicate the ranges of depths to the base of the oceanic and continental crusts.

Page 44: IntroMinPet Lecture Red

PLATE TECTONICS AND ROCK FORMATION (3)

Einführung in die Mineralogie und Petrologie, LV 620.073

MINERAL REACTION KINETICS • During plate-tectonic cycling, the minerals that make up rocks usually react to the

changes in P, T and deformation conditions. E.g. with increase in P and T within a subduction zone:

calcite → aragonite

• Whether minerals react completely (i.e. equilibrate) to changes in P-T-deformation

conditions depends on 3 main factors: 1. temperature (T) 2. time (t) 3. presence of fluids T-t dependence : The rate, k, of a specific reaction is expressed by the Arrhenius

equation:

k = A !e"E

a/ RT

where A is an empirical factor (meaning is not well understood) Ea is the activation energy for the specific reaction (i.e. the height of the potential-energy barrier to reaction), R is the gas constant, and T is the temperature. Thus at low T, k is small (reaction is slow) and at high T, k is high (reaction is fast)

Fluid dependence: Diffusion of chemical components through aqueous fluids or

silicate melts is faster than through crystal lattices or along crystal boundaries, hence fluids in rock pores catalyse mineral reactions.

Depending on the rate of plate-tectonic cycling and on the thermal and fluid history, some rocks may show no mineralogical "memory" (relict features) of their past, while other rocks may contain evidence of many stages in their history. Examples:

1) Most granites (cf. lab practical 1) do not preserve mineralogical evidence of their origin (e.g. whether they derived from melted metamorphic rock or re-melted magmatic rocks). Most minerals in granites are not thermodynamically stable in contact with ground-water. "Fresh" granites are preserved preferentially in regions of cooler climates; tropical weathering often destroys the magmatic minerals, i.e. the granite re-equilibrates at surface P, T and chemical conditions.

2) Diamonds are brought to the Earth's surface from depths of > 200 km by extremely rapid ascent of magmas. Cooling is so rapid that the thermodynamically favoured reaction to graphite:

Cdiamond → Cgraphite

is not possible (low T, short time). Similarly, kinetics are too slow at the Earth's surface to permit the thermodynamically favoured reaction of diamond with O2 in the atmosphere:

Cdiamond + O2 → CO2 (gas)

Page 45: IntroMinPet Lecture Red

PETROGENETIC INTERPRETATION

Einführung in die Mineralogie und Petrologie, LV 620.073

ROCK MEMORY In Lecture 1 we learned that thermodynamic equilibrium (the energetically most stable state) is usually attained deep in the Earth's interior. Due to kinetic effects, most rocks sampled in outcrops preserve minerals that are thermodynamically metastable at the Earth's surface. This common metastability or partial reequilibration of minerals constitutes a "memory" of past states of the host rock. This is fortunate, because it allows us to reconstruct the history of rocks, using detective methods known as petrogenetic interpretation. Petrogenetic interpretation are based on several sources of information:

Source of information Scale Field relations large scale (map) Whole-rock chemical composition hand-specimen Mineralogical composition hand-specimen Crystal structure sub-microscopic

Rock fabrics (= "Gefuge") hand-specimen to microscopic

Experiments small scale short term

Theory all scales EXPERIMENTAL PETROLOGY The stability of minerals with respect to P-T conditions can be investigated experimentally (P, T, bulk composition and time are all controlled)

→ data base of thermodynamic properties of minerals → reconstruction of rock history from relict mineralogical features → reconstruction of plate tectonic history of rock sample → prediction of location of natural resources (e.g. petroleum, gas,

metals), volcanic eruptions and earthquakes.

Page 46: IntroMinPet Lecture Red

ROCK FABRIC

Einführung in die Mineralogie und Petrologie, LV 620.073

Rock fabric (Gefüge auf Deutsch) ≡ the set of geometric properties of a rock sample

(non-compositional) SIX BASIC ROCK FABRICS

1) Sequential crystallization 2) Glassy 3) Drusy (aggregate of crystals, commonly incrusting the walls of a cavity) 4) Granoblastic (equidimensional elements) 5) Clastic (detritical, consisting of fragments of rocks) 6) Strained (deformed)

• Many rocks are combinations of these fabric types • The fabric types do not always correspond to the classic genetic division into

magmatic, sedimentary and metamorphic rocks PETROGRAPHIC FEATURES

Page 47: IntroMinPet Lecture Red

PETROGENETIC INTERPRETATION

Einführung in die Mineralogie und Petrologie, LV 620.073

Page 48: IntroMinPet Lecture Red

SEQUENTIAL CRYSTALLIZATION

Einführung in die Mineralogie und Petrologie, LV 620.073

• Mechanism of formation:

Solidification of a fluid solution, caused by changes in P, T or composition (via reaction or mixing). Crystals grow in sequence, according to their relative solubility in the mother solution.

• Types of fluid solution:

1. Silicate melts or sulphide melts 2. Cool groundwater, riverwater, seawater 3. Hydrothermal solutions 4. Gases (volcanic, metamorphic, diagentic)

• Rates of solidification:

Slow solidification of melts (e.g. magma chambers) → precipitation of silicate or sulphide crystals cf. quenching → glassy fabric Slow crystallization from melts or precipitation from aqueous solutions → "perfect" crystals Rapid crystallization or precipitation → "imperfect" crystals, containing solid or fluid inclusions.

• Diagnostic features:

Perfect crystal form (euhedral) developed only by earliest crystals in sequence; later crystals or glass adopt irregular shapes (anhedral) determined by shape of remaining space.

Page 49: IntroMinPet Lecture Red

SEQUENTIAL CRYSTALLIZATION

Einführung in die Mineralogie und Petrologie, LV 620.073

Page 50: IntroMinPet Lecture Red

GLASSY FABRIC

Einführung in die Mineralogie und Petrologie, LV 620.073

• Mechanism of formation

Interruption of sequential crystallization of fluid solutions • Rates of solidification

Slow, sequential crystallization of silicate melt in magma chamber is interrupted by volcanic eruption Extremely rapid cooling (quenching) of melt during eruption forms glass in space between older crystals

Note: sulphide and carbonate melts do not form glass!

Page 51: IntroMinPet Lecture Red

DRUSY FABRIC

Einführung in die Mineralogie und Petrologie, LV 620.073

• Mechanism of formation

Interruption of sequential crystallization of fluid solutions • Rates of solidification

Sequential crystallization from aqueous solution stopped by exhaustion of solutes in flowing solution or blockage of fluid flow

Escape of fluid during erosion leaves open spaces (druses, vugs) between idiomorphic crystals

Page 52: IntroMinPet Lecture Red

GRANOBLASTIC FABRIC

Einführung in die Mineralogie und Petrologie, LV 620.073

• Mechanism of formation

Solid-state mineral growth (recrystallization of pre-existing minerals) caused by changes in P, T or composition (via reactions)

• Rates of recrystallization

Rapid for silicate, oxide, carbonate, sulphide minerals at very high temperatures (near melting temperature of rock), hence common in metamorphic rocks Extremely slow at low temperature (no solid-state recrystallization possible)

• Diagnostic feature

Crystal faces at triple-junctions ideally meet at 120 °

Page 53: IntroMinPet Lecture Red

CLASTIC FABRIC

Einführung in die Mineralogie und Petrologie, LV 620.073

• Composed of broken fragments (clasts) of pre-existing rocks (lithoclasts) or shells (bioclasts), usually within a matrix of finer grains or of crystalline cement.

• Mechanism of formation:

Disaggregation, dispersal, deposition and lithification of pre-existing rocks. 1) Disaggregation:

Surface weathering → detritus Volcanic explosion → ejecta Fault movement or slope collapse → brecciation

2 ) Dispersal:

Relatively high-density clast transported by relatively low-density fluid (water, lava, gas, air). Abrasion during transport produces rounded clasts.

3) Deposition:

Characterised by gravitational settling structures (e.g. bedding, cross-bedding, sorting of clats sizes) • Marine and terrestrial sediments • Pyroclastic (volcanic) deposits

4) Lithification:

Cementation of clastic sediments (diagenesis). Welding of pyroclastics

• Diagnostic feature

Clasts do not show typical crystal forms

Page 54: IntroMinPet Lecture Red

STRAINED FABRIC

Einführung in die Mineralogie und Petrologie, LV 620.073

• Mechanism of formation:

Mechanical destruction or deformation of pre-existing mineral or rock grains, by tectonic forces (brittle faulting, ductile shearing) or shock forces (meteorite impact)

• Deformation realms

Brittle processes common at low P-T conditions and at high strain-rates Ductile processes common at high P-T conditions and at low strain-rates

• Diagnostic feature

Bending, distortion, rupture, flattening of mineral or rock grains; reduction of original grain size

Page 55: IntroMinPet Lecture Red

STRAINED FABRIC

Einführung in die Mineralogie und Petrologie, LV 620.073

Page 56: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     1  

INTRODUCTION  TO  MINERALOGY  AND  PETROLOGY  

SUBJECT:  SEDIMENTS  (SEDIMENTARY  ROCKS)  

Importance  

• Sediments   represent   the   world´s   largest   reservoirs   for   fossil   energy   resources  

(petroleum,  coal).    

• Important  mineral  deposits  of  metallic  raw  materials  are  hosted  in  sedimentary  rock  

sequences  (e.g.,  Fe,  Mn,  Cu,  Pb,  Zn  etc.).    

• Economically   important   industrial   minerals   (carbonates,   salt,   gypsum   etc.)   and  

building  materials  derive  from  sedimentary  rocks.    

• Sedimentary  rocks  form  ¾  of  the  Earth´s  surface,  thus  they  are  the  most  important  

rocks  regarding  the  fields  of  technical  geology.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  1.  Sedimentary  rocks  cover  most  of  the  Earth´s  surface,  whereas  the  Earth´s  crust  is  mostly  composed  of  magmatic  and  metamorphic  rocks  (from  Press  &  Siever,  1995).  

Page 57: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     2  

Sedimentary  processes  –  a  summary  

 

Source  rock         magmatic  

    metamorphic  

    sedimentary  

 

Wheathering           mechanical:  components  (clasts)  

          chemical:  dissolved  material    

           

Transport          water        

ice  

wind  

gravity  

 

        detrital  components  (clasts)  suffer  from:  

  decrease  of  grain-­‐size  

            increasing  roundness  

            detrital  grain  gradation  

 

  Deposition   →  Sediment  (soft,  unconsolidated)    

mechanical  

chemical  

biochemical  

 

  Diagenesis   →  Sedimentary  rock  (solid,    

              consolidated)    

   

Page 58: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     3  

 

 Fig.  2.  Formation  of  sedimentary  rocks  

Sedimentary  environments  

 Fig.  3.  Sedimentary  environments  on  land  and  in  the  sea  

Page 59: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     4  

Classification  of  sedimentary  rocks  

The  classification  of  sedimentary  rocks  is  based  on  the  type  of  process  they  are  formed.  

Four  main  groups  can  be  distinguished.  

 

The  boundaries  between  the  4  groups  are  gradational.  One  sedimentary  rock  can  be  

classified  in  more  than  one  group.    

CLASTIC SEDIMENTS

They  form  by  mechanical  deposition  of  rock  clasts:    

(1)  Siliciclastic  sediments  

• Conglomerate,  Breccia  

• Sandstone  

• Siltstone,  Mudrock  (Shale,  Argillite)  

(2)  Volcanoclastic  (pyroclastic)  sediments  

• Tuffs:  Deposition  of  volcanic  material  (ash,  lapilli  etc.)    

NONCLASTIC SEDIMENTS

(3)  Biogene,  biochemical  and  organic  sediments  

Limestone  (and  Dolomites)  

• SiO2-­‐rich  Sediments  (Cherts)  

• Phosphorites  

• Coal  und  Oil  shales  

(4)  Chemical  sediments    

• Evaporites    

• Fe-­‐rich  Sediments  (Iron  stones;  Banded  Iron  Formations)  

Page 60: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     5  

Classification  schemes  

Siliciclastic  sediments  -­‐  grain  size    

 

 

Biochemical  and  chemical  sediments    

   

Page 61: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     6  

Diagenesis  

After  deposition  the  detrital  components  are  compacted  and  transferred  into  solid  

sedimentary  rocks.  The  combination  of  mechanical,  chemical  and  biological  processes  

leading  to  solid  rock  is  defined  as  diagenesis.    

 

•  Compaction  due  to  overburden    

•  Cementation  due  to  precipitation  of  minerals  from  pore  fluids    

•  Recrystallisation  of  minerals  due  to  increase  of  temperature  and  change  of  pore  fluid  

chemistry  

 

Diagenetic  processes  result  in  changes  in  composition  and  fabric.  Most  processes  result  

in  lithification  of  unconsolidated  material.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  4.  Processes  of  diagenesis      

Page 62: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     7  

Fabrics  of  sedimentary  rocks  

Clastic  fabric  dominates  in  typical  clastic  and  volcanoclastic  sediments;  strongly  variing  

ratio  of  detrital  components  and  matrix.    

 

The  majority  of  sedimentary  rocks  display  bedding  textures  (i.e.  in  most  cases  visible  in  

the  outcrop  as  well  as  in  hand  specimens).  

Important  sedimentary  textures  

a)  Bedding     Horizontal  bedding     Cross  bedding     Ripple  bedding     Graded  bedding     Growth  bedding  b)  Synsedimentary  deformation     Debris  flow     Sedimentary  folding     Load  casts  c)  Chemical  textures     Dissolution  textures  (e.g.,  stylolites,  "bird  eye  structures")     Diagenetic  cementation  d)  Organic  textures       Fossils    

Growths  lamination  (e.g.,  Stromatolites)     Trace  fossils      

 

Fig.  5.  Origin  of  horizontal  bedding  in  sediments      

Page 63: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     8  

Siliciclastic  sediments  

Derivation  of  the  detrital  components:  Magmatic,  metamorphic,  or  sedimentary  rocks,  

that  underlie  erosion.    

 

Transport:  Wind,  glacier,  river,  waves,  tides,  mud  flows  etc.  

The  detrital  material  is  transported  in  suspension  (fine)  or  at/close  to  the  bottom  

(coarse).  Detrital  material  on  the  bottom  is  transported  by  jumping,  rolling  and  sliding.    

 

 

 

Fig.  6.  Transport  of  clastic  material  in  flowing  medium    

Suspension:  Important  criterium  is  that  the  ascending  motion  of  the  detrital  particle  is  

higher  than  the  sinking  rate  (w):        

w  =   Δρd2g  /  18µ (Stoke`s  Law)

   

Δρ  = density  balance  between  particle  and  fluid  (ρclast  -­‐  ρfluid)  

  d      =   particle-­‐diameter  

  g      =   gravitation  constant  

  µ      =     dynamic  viscosity  of  the  fluids    

 

Turbulent  flow  dominates  over  laminar  flow  under  the  following  conditions:    

high  current  velocity,  low  viscosity.  

Page 64: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     9  

Current  velocity:  The  transport  media  change  velocity  occording  to  the  slope  angle  of  the  

river  bed,  or  the  intensity  of  the  current  (e.g.,  tidal  current,  river  current,  wind  force).    

   

Gradation:  Reduction  of  the  current  velocity  or  change  of  the  current  in  general  (i.e.  

turbulent  vs.  laminar)  leads  to  selective  deposition  of  the  detrital  components  according  

to  the  grain-­‐size.  The  consequence  is  gradation  as  a  function  of  grain-­‐size  and  density  of  

the  detrital  material:    

 

(1)   horizontal  distance  from  the  source  area  of  erosion:    

  gravel  (close  to  source  area)  →  sand  →  mud  (far  away  from  source  area)  

(2)   vertical  distance  from  the  footwall  into  the  hanging  wall  (graded  bedding):  

  gravel,  coarse  sand  (in  the  foot  wall)    →  silt  →  mud  (in  the  hanging  wall)  

 

                                         Fig.  7.  A  typical  fluviatile  sedimentyry  cycle      

Page 65: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     10  

Carbonate  sediments  

Sedimentary  rocks  composed  predominantly  of  carbonate  minerals  are  defined  as  

carbonate  sediments.  Those  composed  dominantly  of  calcite  are  defined  as  limestones,  

sediments  composed  dominantly  of  dolomite  are  defined  as  dolostones.    

 Solubility  of  CaCO3  in  the  seawater:  • Sea  water  is  thermodynamically  saturated  with  calcite  (the  triagonal  CaCO3  

polymorph)  and  undersaturated  regarding  aragonite  (the  orthorhombic  CaCO3  polymorph).  

• Calcite  is  characterised  by  retrograde  solubility  (i.e.  solubility  decreases  with  increasing  temperature,  solubility  increases  with  depth  and  decreasing  temperature).  

 

Precipitation  of  CaCO3  in  the  seawater:  • Calcite  precipitates  as  mud  (i.e.  micrite)  or  in  form  of  ooides  in  warm  shallow  

marine  environments  of  tropical  areas.    • Most  marine  organisms  build  their  skeletons  in  aragonite.  Bioenergy  is  

required  to  stabilise  aragonite  compared  to  calcite  under  surface  conditions.      

Dissolution  of  CaCO3  in  the  seawater:  • CaCO3  starts  to  dissolve  several  100  m  below  the  sea  level.    However,  

plankton  builds  CaCO3  skeletons  continuously.  There  is  a  balance  of  CaCO3  solubility  and  creation  of  CaCO3  between  ~4.5  and  5  km  depth  (≡ carbonate  compensation  depth”,  CCD)    →  therefore,  there  is  a  complete  lack  of  carbonate  sediments  below  5  km  depth!    

 

 

Fig.  8.  The  carbonate  compensation  depth    CCD-­‐Grenze  

   

Page 66: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     11  

Classification  of  limestones    

 

   Fig.  9.  Classification  of  limestones  after  Dunham  (1962);  from  Klein  and  Philpotts  (2013)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  10.  Growth  of  stromatolites,  one  of  the  oldest  life  forms  on  Earth    -­‐  an  example  of  a  boundstone    

Page 67: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     12  

Formation  of  reefs  

Fig.  11.    Model  for  the  formation  of  reefs  according  to  Darwin  

 

 

 

 

 

 

 

Page 68: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     13  

Carbonate  platforms  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.  12.  Map  and  cross  section  through  the  Bahamabank  (Press  &  Siever,  1978)    

Page 69: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     14  

Diagenesis  of  carbonates  and  formation  of  dolostone  

Replacement  by  calcite:  Aragonite  in  bioclasts  (shales,  etc.)  is  thermodynamically  

metastable    and  will  be  replaced  by  coarse-­‐grained  thermodynamically  more  stable  

calcite.    

Replacement  by  dolomite:  Calcite  (primary  or  diagenetic)  is  stable  in  pore  fluids  with  

high  Ca/Mg;  increase  of  Mg  in  the  pore  fluids  leads  to  replacement  of  calcite  by  dolomite  

(CaMg(CO3)2).  

 

Mechanisms  leading  to  a  decease  of  the  Ca/Mg  ratio:  

• Input  of  Mg-­‐rich  ground  water    

• Precipitation  of  calcite  and  gypsum  (CaSO4.2H2O)  by  evaporation  of  seawater  in  a  Sabkha  

or  restricted  lagoon  environment    

• Mixture  of  seawater  with  ground  water    

• Input   of   formation   fluids,   released   from   compacted   sediments,   into   sedimentary  

basins  

 

     Fig.  12.  Models  of  dolomitization                    

   

Page 70: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     15  

SiO2-­‐rich  sediments  (Cherts)  

Chert  =  extremely  fine-­‐grained  SiO2-­‐rich  sediment  (amorphous/cryptocrystalline  silica)  

Genesis    

(1)  Banded  SiO2-­‐rich  sediments  

• Primary  deposition  (marine,  non-­‐marine)  of  skeletons  of  plankton  (Radiolaria,  

Diatomea,  Sponges)  → main  source  for  SiO2-­‐rich  mud  along  the  sea  floor  and  in  

lakes  below  the  CCD-­‐boundary.  Banded  texture  results  from  annual  variation  in  

the  nutrient  supply  of  plankton.    

 

• Primary  chemical  precipitation  of  SiO2  from  hydrothermal  fluids  at  the  sea  floor  

(e.g.,  at  mid-­‐oceanic  ridges)    

 

(2)  Nodular  SiO2-­‐rich  sediments:  secondary  diagenetic  formation  of  SiO2-­‐minerals  

within  pore  fluids;  form  chert  nodules  within  limestones  (flintstone)  

 

   Fig.  12.  Microfossils  (Radiolaria,  Foraminifers)  with  SiO2-­‐  and  carbonate  skeletons  from  recent  marine  

muds;  SEM  image.    

 

   

Page 71: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     16  

Evaporites  

• Important  source  for  halite,  gypsum  and  other  halides.    

• Marine   evaporites   form   by   evaporation   of   seawater   within   restricted   marine  

basins   (lagoons)   in   arid   climates;   pogressive   evaporation   leads   to   enrichment   of  

Na+,  Cl-­‐,  Mg++,  SO4-­‐-­‐  etc.  in  the  seawater.  

• The characteristic evaporite sequence (i.e. starting with carbonates, then gypsum, then halite, and finally K- and Mg-salts) is controlled by progressive saturation of these elements in the evaporating seawater.

• Repeated   input   of   fresh  water   and   continuous   evaporitation   is   significant   for   the  

generation   of   thick   (i.e.   up   to   several   hundreds   of   metres   thick)   evaporite  

sequences.    

 

 Fig. 13. Evaporiation of seawater in a logoon environment; from Press & Siever (1995)    

Page 72: IntroMinPet Lecture Red

 

Introduction  to  Mineralogy  and  Petrology  for  PE,  620.010  and  620.002     17  

Other  important  sediments  

Fe-­‐rich  sediments  

These  contain  more  than  15  wt.%  Fe  in  form  of  ironoxides  (hematite)  und  Fe-­‐hydroxides  

(goethite);  Fe-­‐silicates  and  Fe-­‐carbonates  (siderite)  are  less  important.  

The  majority  of  banded  iron  ores  (banded  iron  formations,  BIF)  have  their  origin  at  

an  early  stage  of  Earth  development,  at  times  when  the  atmosphere  was  poor  in  

oxygen;  Fe  was  more  soluble,  was  transported  in  seawater  and  was  precipitated  there.  

Volcanism  as  an  important  derivation  for  Fe  played  an  important  role.    

BIFs  are  the  economically  most  important  deposits  for  iron  ore!  

Organic  sediments    

Organic  matter  ist  the  most  important  source  for  fossil  energy  ressources,  such  as  coal,  

oil  and  gas.  Coal  is  a  biochemical  sediment,  that  forms  by  diagenesis  of  plant  material  

(peat).  Oil  and  gas  represent  fluids,  that  form  via  diagenesis  of  fossilized  organic  

matter  (kerogen);  deep  burial  transfers  organic  matter,  deposited  together  with  

inorganic  material,  into  a  fluid.  The  fluid  may  migrate  into  porous  sediments  (e.g.,  

predominantly  clastic  and/or  carbonate  sediments)  and  may  be  accumulated  and  

stored  there  to  finally  form  an  petroleum  deposit.  Oil  and  gas  are  composed  of  organic  

hydrocarbon  complexes.    

 

 Fig. 14. Formation and migration of hydrocarbons in sedimentary rocks. Oil and gas migrate within strata of high permeability (e.g. sandstone) and are trapped in an anticlinal structure. Blue is a cover sequence of low permeability (e.g., shale).