Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare...

38
Introduction to the Introduction to the Laboratori Nazionali di Frascati Laboratori Nazionali di Frascati of the of the Istituto Nazionale di Fisica Nucleare Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti, G. Mazzitelli, M. Moulson, C. Petrascu, B. Sciascia, with the support of the Scientific Information Service (SIS)

Transcript of Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare...

Page 1: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Introduction to theIntroduction to theLaboratori Nazionali di FrascatiLaboratori Nazionali di Frascati

of theof theIstituto Nazionale di Fisica NucleareIstituto Nazionale di Fisica Nucleare

Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti, G. Mazzitelli, M. Moulson, C. Petrascu, B. Sciascia, with the support of the Scientific Information Service (SIS)

Page 2: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Istituto Nazionale di Fisica NucleareIstituto Nazionale di Fisica Nucleare

The INFN:• promotes, coordinates and performs scientific

research in subnuclear, nuclear and astroparticle physics,

• as well as the research and technological development necessary for activities in these sectors,

• in close collaboration with universities, • and within a framework of international

cooperation

Page 3: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The origins of the INFNThe origins of the INFN

Enrico Fermi and the “Boys of Via Panisperna” conducted a series of fundamental nuclear physics experiments at the Isitiuto di Fisica at the University of Rome in the 1930s.

Fermi realized that continuing progress in the field would require costly instruments and technical infrastructure (e.g., accelerators). Fermi (in Rome) and Bruno Rossi (in Florence) sought to establish an “Istituto Nazionale di Fisica” in the 1930s.

Because of the war, this was impossible until Edoardo Amaldi worked to found the INFN in 1951.

D’AgostinoD’AgostinoSegrèSegrè

AmaldiAmaldi

RasettiRasettiFermiFermi

Page 4: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

19514 University Sections

Milan, Turin, Padua, and Rome

1957Laboratori Nazionali di

Frascati

Frascati

The origins of the INFN

Page 5: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Laboratori del Sud(Catania)

20 Sections 11 Affiliated Groups

4 National Laboratories

INFN oggi

VIRGO-EGO European Gravitational Observatory

Legnaro Gran Sasso

Milano Bicocca

Page 6: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Fundamental research

• Study the microscopic structure of matter

• Search for gravitational waves

• Develop theoretical models

• Develop and construct particle detectors

• Study and develop accelerating techniques

• Perform material studies and biomedical research with synchrotron light

What do we do at LNF?What do we do at LNF?

• Develop and support computing systems and networks

Page 7: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The history of the Universe

Page 8: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The scientific methodThe scientific methodThe modern scientific method was first formally introduced by Galileo

Hypothesis

Prediction

Galileo Galilei 1564-1642

Observation

Page 9: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

John Dalton: Atomic Therory (1805):1.The chemical elements are made of atoms.2.The atoms of an element are identical in mass.3.Atoms of different elements have different masses.4.Atoms combine only in whole-number ratios (1:1, 1:2, 2:3, etc.)5.Atoms can not be created or destroyed.

The modern understanding of matter stems from centuries of inquiry

Ancient Greeks: 4 elements

What is matter made of?What is matter made of?

Page 10: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

In 1869, Mendeleev introduces the periodic table and predicts the existence of elements not yet

discovered

The periodic tableThe periodic table

Page 11: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The Rutherford atom

Seeing the invisibleSeeing the invisibleIn 1898, Thomson discovered the electron and hypothesized that the electrons are uniformly distributed within the atom, like rasins in rasin bread

-

--

-

--

In 1909-1911, Rutherford and colleagues tested this hypothesis by bombarding a gold foil with alpha particles.

Some scattered at large angles, indicating the presence of a heavy nucleus.

The Thomson atom

Page 12: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

ObservationObservationObserving objects around us is like performing a “Rutherford” experiment

In the microscopic world, the target and beam have similar dimensions

Source

Light

Object

ObserverAccelerator

Particle Beam

Target

Detector

Page 13: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

ObservationObservation

The wavelength of visible light is 400 to 800 nm (i.e., ~10-7 m)

The wavelength of visible light is 400 to 800 nm (i.e., ~10-7 m)

10-10

m

To see atoms (and smaller) we need a smaller probe!To see atoms (and smaller) we need a smaller probe!

Page 14: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Particle sourcesParticle sourcesRutherford used alpha particles from the decay of radioactive elements. To obtain particle beams of different types and energies, today we construct particle accelerators.

Particle beams start out from a source. The simplest example is electrons emitted by a hot filament, as in a lightbulb.

Particles acquire energy when they are accelerated by an electric field

+ −+

Page 15: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The Frascati Electron SynchrotronThe Frascati Electron Synchrotron1959-19751959-1975

Page 16: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Experiments using fixed targetsExperiments using fixed targets

• Matter is mainly empty• All particles which do not interact are lost• Energy is lost to moving the center of mass• “Target” is a nucleus, with a complex structure

synchrotron

LINAC

target

e-,e+,p …p, n, etc

detectors

Page 17: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

A new approach: Use colliding beamsA new approach: Use colliding beams

• The non-interacting particles can be reused in successive rounds

• Collisions are performed in the center-of-mass frame

• The circulating particles can be either elementary or complex (nuclei or atoms)

detector

Accumulation ringBruno Touschek, Frascati, 1960

Page 18: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

ee++ ee--

--

++

A related idea: A related idea: Collide particle and antiparticle Collide particle and antiparticle

++

--

ee--

ee++

E = 2me c2E = 2m c2E = 2m c2

E = m c2

The larger the energy, the greater the number of particles that can be studied

Page 19: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Matter-antimatter collidersMatter-antimatter colliders

ADA at Frascati in 1959

ADONE at Frascati in 1969 DANE LEP at CERN (Geneva) 1988

LHC at CERN: operating since 2009

Page 20: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Higgs Higgs bosonboson

For

c e C

arrie

rsF

orc e

Car

riers

Z boson

W boson

photon

ggluon

Matter familiesMatter families

tau

-neutrino

bbottom

ttop

IIIIII

muon

-neutrino

sstrange

ccharm

IIII

eelectron

ee-neutrino

ddown

upu

I I

Lept

onLe

pton

ss Q

uark

sQ

uark

s

?

GravitGravityy

The The

“Phantom “Phantom of the of the

Opera”Opera”

Fermions Bosons

The Standard Model

Page 21: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The fundamental forcesThe fundamental forcesForce Intensity

Weak 1029 Weak decays: n p + e +

Electromagnetic 1040 Holds atoms together

Strong 1043 Holds nuclei together

Gravitational 1 Keeps you on your chair

Effect

Z boson

W boson

photon

ggluon

Page 22: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

DAΦNEDAΦNE

FINUDA

Page 23: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Out of the electron-positron collisions, a ϕ meson can be produced. It decays immediately into two other particles, the K-mesons (kaons). The two kaons can be either neutral or

oppositely charged.

K

K

e

e ee

ee

e

e

e

e

The kaons are used by the experiments (KLOE, FINUDA, etc.)At DAΦNE, up to 10000 kaons per second are produced

e

e

e

e

e

ee

e

Physics at DAΦNEPhysics at DAΦNE

Page 24: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

KK--KK--

pppp

Kaonic hydrogenKaonic hydrogen

n=25n=25

n=2n=2

n=1n=1

2p 2p 1s (K 1s (K))

X ray of interestX ray of interest

In the DEAR experiment, the strong force is investigated by studying kaonic atoms, in which a K substitutes an atomic electron.

Kaonic atomsKaonic atoms (DEAR - Siddharta)

Page 25: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

FINUDAFINUDA(Fisica Nucleare a DAΦNE)

us

K n

du d

du s ud

Reconstruction of a hypernuclear event in the FINUDA detector

p

np nn n

n

nnn

npp

pp

p

pnn

p

np

In the FINUDA experiment, the strong force is studied by placing a “foreign body” inside the nucleus

HypernucleusHypernucleus

Page 26: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

KLOEKLOE(K LOng Experiment)

KLOE studies the differences between matter and antimatter, by looking at kaon (and antikaon) decays

Page 27: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

DADAΦΦNE-LuceNE-Luce

photon

Synchrotron light is the radiation emitted when a charged particle’s path is bent by a magnetic field.

This radiation is very useful for studies in:•Biophysics and medicine•Solid state physics and electronics•Materials science

Synchrotron light is the radiation emitted when a charged particle’s path is bent by a magnetic field.

This radiation is very useful for studies in:•Biophysics and medicine•Solid state physics and electronics•Materials science

Page 28: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

SPARCSPARC

(Sorgente Pulsata Auto-amplificata di Radiazione Coerente) is a project with 4 principal beamlines, aimed at the development of an X-ray source of very high brilliance (energy emitted per unit solid angle)

(Sorgente Pulsata Auto-amplificata di Radiazione Coerente) is a project with 4 principal beamlines, aimed at the development of an X-ray source of very high brilliance (energy emitted per unit solid angle)

Originally a by-product, synchrotron light has become a powerful scientific tool. It is now produced on purpose for various uses

Originally a by-product, synchrotron light has become a powerful scientific tool. It is now produced on purpose for various uses

• 150 MeV Advanced Photo-InjectorProduction of an electron beam and compression by magnetic and radiofrequency systems

• SASE-FEL Visible-VUV ExperimentFor the study of beam-transport systems

• X-ray source

• X-ray monochromator

• 150 MeV Advanced Photo-InjectorProduction of an electron beam and compression by magnetic and radiofrequency systems

• SASE-FEL Visible-VUV ExperimentFor the study of beam-transport systems

• X-ray source

• X-ray monochromator

Page 29: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Incoherent radiation

Coherent radiation

Coherent, monochromatic waves

Fixed wavelength and fixed relative phase

Equivalent to many, many waves superimposed

Page 30: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The LI2FE laboratory

FLAME (Frascati Laser for Acceleration and Multidisciplinary Experiments) is an extremely high power laser source (300 TW), with bursts lasting 20 fs and a frequency of 10 Hz.

By combining the SPARC electron beam with the FLAME laser, we produce a unique monochromatic X-ray source.This can be used to produce highquality medical images using less radiation.

LI2FE is an interdisciplinary laboratory inaugurated in Frascati in December 2010.

Page 31: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The force of gravityThe force of gravity

A distortion in the fabric of spaceA distortion in the fabric of space

Page 32: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Gravitational waves: an analogyGravitational waves: an analogy

Electromagnetic waves are produced by an electric charge when accelerated

Gravitational waves are produced by masses that undergo acceleration

antenna Hi! How are

you?

Page 33: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

Gravitational wavesGravitational waves

Gravitational waves are 1040 times less intense than electromagnetic waves

Page 34: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

• Supernova in our galaxy h=1018

• Supernova in Virgo h=1021

• Thermal noise @ T=300 K, L=1016 m• Thermal noise @ T=3 K, L=1017 m• Thermal noise @ T=300 mK L=1018 m

Search for gravitational waves:Search for gravitational waves: NAUTILUS NAUTILUS

Page 35: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

GW detectors around the world

Page 36: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

DANE

DANE Upgrade

Reduced horizontal and vertical beam dimensions

Increased horizontal beam-crossingangle:12mrad 25 mrad

The DAΦNE upgrade

Page 37: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

The future of LNF

DAΦNE is at the end of its scientific program, but using the skills and experience acquired, we are designing a new “particle factory” of higher energy and luminosity.

The SuperB project has been chosen by the Ministry of Education, Universities and Research as a flagship project for Italian research.

Page 38: Introduction to the Laboratori Nazionali di Frascati of the Istituto Nazionale di Fisica Nucleare Care of G. Battimelli, L. Benussi, E. Boscolo, P. Gianotti,

ATLAS

Auditorium

ADA e ADONE

OPERA

DAFNE

Centro diCalcolo

FISABTF

DAFNE-L

FINUDASIDDHARTHA

Laboratori Nazionali di Frascati, info: http://www.lnf.infn.it/sis/eduLaboratori Nazionali di Frascati, info: http://www.lnf.infn.it/sis/edu

KLOE

SPARC

NAUTILUS