Introduction to semiconductor...

29
Introduction to semiconductor nanostructures Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Transcript of Introduction to semiconductor...

Page 1: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Introduction to semiconductor nanostructures

Peter KratzerModern Concepts in Theoretical Physics: Part II

Lecture Notes

Page 2: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

• The Fermi level (chemical potential of the electrons) falls in a gap of the band structure.

• Doping allows us to control the position of EF in the gap.

• Either electrons (n-type) or holes (p-type) act as carriers of charge.

• Long-lived optical excitations.

What is a semiconductor ?

Under which conditions does the quantum nature of the carriers show up ?

intrinsic p-type n-type

Page 3: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

… a different answer

Page 4: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

k

ε(k)

• σ(T) = e n(T) µ (T)• n(T) depends both on doping

and temperature

• Boltzmann statistics often sufficient to describe temp. dependence

• sometimes k ~ 0.01 alat

Basics of Transport

• conductivity σ(T) = enµ(T)• Fermi statistics,

εF~10 eV, kT << εF , kF~ alat• mobility µ: similar physics in

metals and semiconductors Drude: µ(T)=eτ(T)/m

• replace electron mass by effective mass

Is this ALL that quantum mechanics has to tell us ?

12 )(

∂∂∂

=ji kk

m kε

metal semiconductor

10-2 .. 105~10−2µ (cm2/Vs)

<1091021 .. 10−10>1022n (cm–3)

<10−10103 .. 10−9>104σ (Ω−1 cm−1)

insulatorsemiconductormetal

Page 5: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

k

ε(k)

• σ(T) = e n(T) µ (T)• n(T) depends both on doping

and temperature

• Boltzmann statistics often sufficient to describe temp. dependence

• sometimes k ~ 0.01 alat―1

Basics of Transport

• conductivity σ(T) = enµ(T)• Fermi statistics,

εF~10 eV, kT << εF , kF~ alat―1

• mobility µ: similar physics in metals and semiconductors Drude: µ(T)=eτ(T)/m

• replace electron mass by effective mass

Is this ALL that quantum mechanics has to tell us ?

12 )(

∂∂∂

=ji kk

m kε

metal semiconductor

Page 6: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Excitons

• Bound system of electron and hole, cf. hydrogen atom

• Exciton radius re = a0 ε/m*1/m* = 1/me + 1/mhGaAs: re ~ 112 a0

• For structures of lateral dimensions < re, quantum confinement effects can be expected.

Page 7: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Nobel Prize in Physics 2000

Herbert Kroemer Zhores I. Alferov Jack S. Kilby..for developing semiconductor heterostructures ..for his part in the

in high-speed and optoelectronics integrated circuit

25 % 25 % 50 %

Page 8: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

What is a heterostructure ?

A device build from different semiconductor materials, thus exploiting the differences in band structure.

original drawing by Herbert Kroemer, 1957

AlGaAs AlGaAsGaAs

collector base emitter

bipolar transistor

Page 9: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Molecular Beam Epitaxy

Page 10: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

thermodynamics of heteroepitaxy: growth modes

• Frank-van der Merwe: ∆γ ≤ 0wetting of the substrate,layer-by-layer growth

• Volmer-Weber: ∆γ > 0no wetting, three-dimensional island growth

• Stranski-Krastanow : ∆γ ≤ 0 for the first layer(s), later ∆γ > 0 (e.g. due to lattice mismatch)island growth on the wetting layer

∆γ = γf + γi −γs

f: films: substratei: interface

Page 11: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Heterostructures: Band gaps/Misfits

lattice constant [Å]

Page 12: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Heterostructures: electrostatic potential

∆−

∆=

kTE

kTE

nekTw cc

I 2exp

2 020εε

∆EV

∆Ec EF

inversion depletion

DD Ne

kTw 202εε

=

Page 13: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer
Page 14: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Heterostructures: sub-bands

• Quantization of electron motion in z-direction → sub-bands

• “remote” doping → µ > 105 cm2/Vs– Ballistic motion of the electrons for d < vF τ– Fractional Quantum Hall Effect

ε2―εF > kT )(*2

)( 222

yxii kkm

++=h

εε k

Page 15: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

From 2D to 0D: Density of States

3D

2D

1D

0D

Page 16: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

From 2D to 1D and 0D: Practical ways

• By engineering– Lithography + etching– Cleaved-edge overgrowth– Confinement induced by

• electrostatics (gate)• STM tip, ..• strain

• By self-assembly– Colloidal quantum dots– Epitaxial quantum dots

Page 17: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Cleaved-edge overgrowthWidening of the potential well→ quantum wire

Page 18: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Colloidal CdSe Quantum dots

application: fluorescence markers in cellsnanocrystals of different sizes(different growth conditions)

wet chemical synthesis

tri-n-octyl phosphine oxide +di-methyl-cadmium

tri-n-octyl phosphine + bis-(trimethyl-silyl) selenide

1 sec

Page 19: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Self-Assembled Quantum Dots

Transmission electron micrograph (D. Gerthsen, TU Karlsruhe)

Page 20: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Epitaxial Quantum Dots: discrete DOS

cathodoluminescence temperature-independent line width

Page 21: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Applications

• 2D heterostructures:– high-electron-mobility transistor (HEMT) → high-

frequency electronics (cell phone, satellite TV)– solar cells with high efficiency

• Quantum dots:– light-emitting diodes, lasers – optical and IR detectors

Page 22: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

mean free path of carriers in 2 DEG can be larger than gate length → ballistic transport

Page 23: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

What is a laser ?

Light Amplification by stimulated emission of radiation

Requirements:• lasing medium with many objects (atoms, molecules, quantum dots, …)

capable of resonant electronic transitions• population inversion

Page 24: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Heterostructures in Non-Equilibriumdouble-heterostructure diode in forward bias

n-AlGaAs p-AlGaAsi-GaAs

quasi-Fermi level for electrons

quasi-Fermi level for holes

DOS ?e–

h+

strong inversion in i-GaAs !

Page 25: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Quantum Dot Laser

• lower threshold current than Quantum Well Laser• threshold current less temperature-dependent• varying the size and shape of the dot allows to tune emission

wavelength (without need to introduce different chemical elements)

1 ps

20-40ps

Page 26: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

p-GaAs

p-AlGaAsp-GaAsn-GaAs

n-AlGaAs

n-GaAs

Ti-Pt-Au

Ni-Ge-Au

light-emitting layer

Semiconductor Lasers: graded-index waveguide

(110) Cleavage plane →(semi-)transparent mirrors

Page 27: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Semiconductor Lasers: VCSELVertical-Cavity Surface-Emitting Laser

electrical contact

upper mirror

blindlaser medium

lower mirror

electrical contactGalliumarsenide semicond. substrate

Page 28: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Summary

• molecular beam epitaxy → semiconductor heterostructures → band structure engineering → many novel devices

• semiconductors are an ideal playground to see quantum confinement effects, due to small electron wavevectors / large exciton radii

• self-assembled structures advantageous over “engineered” structures (small size, high density,..)

Page 29: Introduction to semiconductor nanostructuresth.fhi-berlin.mpg.de/.../Introduction_to_Semiconductor_Nanostructures.pdf · Introduction to semiconductor nanostructures Peter Kratzer

Literature

• textbooks– P. Y. Yu and M. Cardona, Fundamentals of Semiconductors,

Springer, 1996– R. Enderlin and A. Schenk, Grundlagen der Halbleiterphysik,

Akademie-Verlag, 1992 – D. Bimberg, M. Grundmann, and N.N. Ledentsov, Quantum

Dot Heterostructures, Wiley, 1999• articles

– Zh. I. Alferov, V. M. Andreev, and N. N. Ledentsov , http://link.edu.ioffe.ru/pti80en/alfer_en

– Zh. Alferov, Semiconductors 32 (1998), 1