Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton...

36
Introduction to scanning FCS Enrico Gratton University of California Irvine Laboratory for Fluorescence Dynamics

Transcript of Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton...

Page 1: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Introduction to scanning FCS

Enrico Gratton

University of California Irvine

Laboratory for Fluorescence Dynamics

Page 2: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

The principle of FCS and scanning FCS

Introduction to number fluctuations

Measuring single molecules passing through the volume of illumination

Scanning FCS provides spatiotemporal correlations 

Page 3: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Outline

• Introduction

• The principle of scanning FCS

• Data acquisition, processing and analysis

• Scanning FCS in cells

• Example

Page 4: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

When we first applied FCS to cells, a series of problem arose

• The average intensity suddenly changed, perhaps due to the passage of a vesicle at the point of observation

• Bleaching of the immobile fraction occurred, causing a large deviation of the apparent correlation curve

• The cell could have moved, so that the volume of observation was not any more the chosen one

Introduction to scanning FCS

Page 5: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

• Manufacturers (Zeiss and ISS) built instrument for solution experiments.  They were asked by many researchers to be able to directly perform FCS measurements in cells

• Zeiss produced the Confocor 2 and Confocor 3, in which it was possible to alternate the capability of performing FCS at one point with the confocal unit

• ISS produced an instrument to raster scan the sample in a “conventional FCS unit”, thereby joining imaging with FCS, but always at two separate times

At the LFD we took a radically different approach:

the scanning FCS principle

Approaches to FCS in cells

Page 6: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Scanning FCS and RICS 

1.00 1.00 0.66 0.14

1Shift (pixel)  2 4 8

0.00

0

Correlation 

Single point FCSRICS

Fluctuation analysis: single point and scanningSingle point FCS

Time 0 1 2 4 8

Correlation 1.0 1.0 0.9 0.6 0.3

Page 7: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

If we can move the point at which we acquire FCS data fast enough to other points and then return to the original point “before” the particle had left the volume of excitation, then we can “multiplex the time” and collect FCS data at several points simultaneously!

The principle of scanning FCS

Collect data here

move there

thereRapid

ly back at p

oint 1

Page 8: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

The fastest way to scan several points and the return to the original point is to perform a circular orbit using the scanner galvo.

The x‐ and y‐galvos are driven by 2 sine waves shifted by 90 degrees, thereby obtaining a projected orbit on the sample.

One orbit could be performed in times of less than 1 ms, using conventional galvo drivers and in microseconds using AOD

Why circular scanning?  Circular scanning is faster!

Page 9: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

What is the minimum time required for an orbit so that we will not miss the “fastest” diffusion process in a cell?

EGFP diffuses with an apparent diffusion of approximately 20 m2/s.  The transit across the laser beam (assuming a w0 of 0.35 m) is about 1.5 ms! (formula used: time=wo

2/4D)

Therefore 0.5 to 1 ms per orbit should catch the GFP diffusing in  a cell.  Faster diffusing molecules will be partially missed.  

Instead, faster blinking and other fast intramolecular processes will not be missed!! (why?)

Timing in scanning FCS

Page 10: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Normalized autocorrelation curve of EGFP in solution (•), EGFP in the cell (• ), AK1‐EGFP in the cell(•), AK1b‐EGFP in the cytoplasm of the cell(•). 

Autocorrelation of EGFP & Adenylate Kinase ‐EGFP

Time (s)

G()

EGFPsolution

EGFPcell

EGFP-AK in the cytosol

EGFP-AK in the cytosol

Page 11: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

orbit

Diffusing particles

Light is collected along the orbit, generally at 64 or 128 points.  If the orbit period is 1ms, the dwell time at each point  is about 16 s (64 points) or 8 s (128 points).

The separation between the points depends on the orbit radius.

For an orbit radius of 5 m, the length of the orbit is about 32 m.  At 64 points per orbit the average distance is about 0.5 m (0.25 m at 128 points).

Why the distance between points is important?

Acquiring scanning‐FCS data

Page 12: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

If the orbit radius is larger than 5 m, the points are separated by more than the width of the PSF(assuming 64 points per orbit: 2πR/64~500nm)

Setting the conditions of the instrument for no‐overlap limits the capability of obtaining spatial correlations along the orbit

No overlap

overlap

Overlapping volumes in scanning FCS

Page 13: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Data processing in scanning FCS

The data stream is presented as a “carpet” in which the horizontal coordinate represents data along the orbit and the vertical coordinate represents  data at successive orbits (Hyperspace).

x-coordinate1201101009080706050403020100

y-co

ordi

nate

120

110

100

90

80

70

60

50

40

30

20

10

0

Data processing in scanning FCS

x -c oord inate6050403020100

Tim

e

25242322212019181716151413121110

9876543210

“carpet”

6 m image1 m radius orbit

Page 14: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

How we proceed to determine the diffusion of particles, the number of particles and their brightness??

• Select a column of the carpet.  It is a time sequence at a specific point of the orbit!• Perform autocorrelation operation along a column• What we obtain?• What is the sampling time along one of these column?  • What is the dwell time along one of these columns?

Line plot

250200150100500

1,400

1,200

1,000

800

600

400

200

0

Intensity along a column

Perform the autocorrelation operationCorrelation plot (log averaged)

Tau (s)0.001 0.01 0.1 1 10 100

G(t)

5

4

3

2

1

0

Recovered value for D=0.1 m2/s(= to the value input in the simulation! )

Analyzing data in scanning FCS

Page 15: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Every column should be equivalent for an homogeneous sample, so that we can calculate the ACF for every column and then fit all the columns either globally or individually.

ACF along each columnThe calculation takes few seconds

6055504540353025201510

G1

16

14

12

10

8

6

4

2

0

D1

0.001

0.01

0.1

1

10

100

Individual fit at each line

D=0.1m2/s

The G(0) changes from line to line, because the statistics is poor, but the D is pretty constant at the expected value of D=0.1um2/s

Carpet analysis

Page 16: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Global correlation functionThe periodicity is due to the scanning period which is 1 ms

Clearly, we are sampling fast with respect to the relaxation due to diffusion.  (How can we see that this is the case?)

Global correlation function for a solution experiment

D=0.1μm2/sR=1μm

123

32

line 1 line 2 …

2

3

32

Page 17: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Global correlation function for a solution experiment

D=10μm2/s

R=5μm

We are not scanning fast enough!

No spatial correlations!

line 1 line 2

Page 18: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Diffusion: Fluctuations come from particle IN and OUT the focal volume Apparent Dcoef will decrease

Binding: Protein ON and OFF from an immobile structure Apparent Dcoef will not change

How to distinguish Diffusion from Binding?

PSF scaling analysis: we can average adjacent columns to increase the apparent size of the PSF

INOUT

OFF ON

Page 19: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

What about the PCH analysis, can that be done?Since we have a sequence, we can plot the histogram first globally and then individually for each column

PCH average

counts4,0003,0002,0001,0000

0.1

1

10

100

1,000

10,000

100,000

1,000,000

Global  histogram (more statistics!)

PCH average

counts3,0002,0001,0000

0 1

1

10

100

1,000

10,000

Single histogram at one column

PCH analysis at each column

Page 20: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

B=10x

PCH analysis at each column

Simulation: scanning FCS through zones of  different brightness

Page 21: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Why scanning FCS in homogeneous samples?

Is there any advantage to perform scanning FCS instead of single point FCS for a solution sample?

A major issue in FCS is that we need the volume of the PSF to calculate the diffusion coefficient

In scanning FCS we know the distance between points along the orbit.  We can calculate the time for a molecule to diffuse between the two volumes

What about cross‐correlation between columns?

Page 22: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Scanning FCS in cells (some surprises!)

Example of scanning at an adhesion64 points sampled along the orbitPeriod of scanning is 1 ms,Radius of scanning is 2 mDistance between pixel is about 0.2 m

What are the questions?•What is the apparent “diffusion” coefficient of paxillin ?•Is the diffusion coefficient homogeneous?•Is paxillin monomeric (i.e., what is the brightness)?•What is the number of particles in the different parts of the adhesion?

The “real world”What we do with the ‘changes in intensity”?There is some fast initial bleaching followed up by a slow increase in intensity

Line plot

250200150100500

0.03

0.028

0.026

0.024

0.022

0.02

0.018

0.016

x-coordinate6050403020100

Tim

e

320

300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

0

Page 23: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Welcome to the real world!

Scanning a moving target:  GUV.  How to determine the diffusion in the membrane?

Data from Pierre Moens (2007)

Detrend?Centering?

Page 24: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Column6050403020100

<N>

(red

)2.62.42.2

21.81.61.41.2

10.80.60.4

<B> (blue)

1.0551.051.0451.041.0351.031.0251.021.0151.011.00510.9950.99

Bin by 8 (what is this?) 

Now the right part of the adhesion shows larger brightness.  Also the number of molecules and the brightness curve are displaced one with respect to the other.This analysis shows the map of the brightness across  the adhesion

Was the amplitude statistics modified by filtering the slow varying component??

Carpet Brightness and Number analysis

Page 25: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Described so far

Circular versus line‐scanning

Line scanning can be performed with any confocal microscope

Line scanning is not as fast as circular scanning (few ms versus a fraction of a ms)

For homogeneous samples, is there any advantage in performing scanning‐FCS (either circular or line) with respect to single point FCS??

Filtering operations on the data and integrity of the original statistics 

Page 26: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Observations

Even in the “simplest” implementation, FCS in cells requires precautions in data analysis and interpretation

Maps of diffusion coefficients, number of particles and brightness can be obtained if we can deal with slowly varying fluctuations

The software for data analysis must offer a series of tools to the user for data filtering, analysis and presentation.  It is not enough to collect line scanning data!

The user must set up the instrument parameters (line period, dwell time, etc) for the particular experiment

Page 27: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

This was an “introduction” to scanning FCS

We discussed the analysis of the carpet columns as individual time traces at separate points

We have not considered the correlation between adjacent columns or between distant columns

We need to develop new concepts and mathematical tools to account for these spatial correlations

As we understand the scanning experiment we discover a new worldabout fluctuation methods that was not possible to explore with single point FCS

What is next?

Page 28: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

What is next?

Pair Correlation

Spatial Resolution RICS

Orbital Tracking

Page 29: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Example

In collaboration with: Francesco Cardarelli, NEST, Scuola Normale Superiore, Pisa, Italy

Scanning FCS on single Nuclear Pore Complexes (NPCs)

100 nmDavid Goodsell, The machinery of life

Page 30: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Example

The NPC regulates nucleocytoplasmic transport through: 

1. Unidirectional through the nuclear pore complex (NPC)

2. Driven by specific aminoacidic sequences (NLS/NES)

3. Not affected by molecular size4. Energy‐dependent

1. Bidirectional through the NPC2. Regulated by molecular size  (limit: 

60‐70 kDa)3. Energy‐independent

Passive diffusion Active import

Page 31: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Example

Molecular transport across the NPC

???

• NPC consists of about 30 different polypeptides called nucleoporins (Nups), but little is known about their organization

• Active transport is mediated through receptors called karyopherins (importins and exportins)

Can we apply scanning FCS to study dynamics through the pore?

Page 32: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Example

10 μm 1 μm1 μm

• Kapβ1‐GFP is able to bind nucleoporinsand we use it as a dynamic marker of NPCs.

• The entire NPC can perform local nanometer diffusive motion within the nuclear envelope or follow global rearrangements of the cell. It is crucial that we subtract this motion if we want to distinguish between the diffusion of the molecules from the overall thermal motion of the NPC. 

10 μm

0.5μm

Scanning FCS + Orbital tracking of the NPC

Page 33: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Example

Fluorescence intensity along the orbit over time. 

The PSF is scanned along a 64‐points orbit of 180nm in radius (R) around the pore

total ACF carpet 

Average ACF plot (black) and ACF of column 23 (red).

5 μm

Kapβ1‐GFP

(1 cycle=16 orbits).

τ~10ms 

Page 34: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

• Localization of Kapβ1‐GFP in energy‐depleting conditions. Cumulative FRAP results show the energy dependence of Kapβ1 shuttling. 

• A single NPC in energy‐depleting conditions is analyzed by the scanning FCS + Tracking. The obtained ACF carpet and the average ACF curve show absence of detectable humps along the orbit.

The hump is dependent on energy

Kapβ1‐GFP  no ATP

5 μmKapβ1‐GFP no ATP

Kapβ1‐GFP no ATP

Example

Page 35: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

• We performed the experiment on cells co‐expressing Kapβ1‐GFP and mCherry to check if the effect was specific to Kapβ1 properties

• ACF carpets obtained in the two channels are different: the humps are visible only in the Kapβ1‐GFP channel. The mCherry channel shows passive diffusion.

• The average ACF curves show the different behavior of Kapβ1‐GFP and mCherry at the pore.

The hump is dependent on Kapβ1 properties

5 μm

Kapβ1‐GFP  mCherry

Kapβ1‐GFP  mCherry

Example

Page 36: Introduction to scanning FCS - users.df.uba.arusers.df.uba.ar/mad/Workshop/Gratton scanningFCS.pdf · Scanning FCS in cells (some surprises!) Example of scanning at an adhesion 64

Conclusions

• Scanning FCS can be applied in combination with a tracking algorithm to study molecular transport across single NPCs in live cells

• The ACF shows a characteristic time distribution corresponding to the shuttling of Kapβ1‐GFP through the NPC

• The pair correlation analysis (not shown) can also be applied to discriminate between diffusive motion and directed transport across the NPC channel