Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6...

28
2/15/2008 1 1 Introduction to SAMCEF - MECANO Introduction to Introduction to SAMCEF MECANO SAMCEF MECANO 2 Introduction to SAMCEF - MECANO Outline Outline Introduction Generalized coordinates Kinematic constraints Time integration Description and paramerization of finite rotations Acknowledgements Michel Géradin (ULg) Doan D. Bao (GoodYear) Alberto Cardona (Intec, Argentina)

Transcript of Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6...

Page 1: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

1

1Introduction to SAMCEF - MECANO

Introduction to Introduction to

SAMCEF MECANOSAMCEF MECANO

2Introduction to SAMCEF - MECANO

OutlineOutline

IntroductionGeneralized coordinatesKinematic constraintsTime integrationDescription and paramerization of finite rotations

AcknowledgementsMichel Géradin (ULg)

Doan D. Bao (GoodYear)Alberto Cardona (Intec, Argentina)

Page 2: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

2

3Introduction to SAMCEF - MECANO

Fixed deformable structures

Fixed deformable structures

Finite Element Method

Finite Element Method

Articulated rigid systemsArticulated

rigid systems

MultibodyDynamics

MultibodyDynamics

?

how to analyze in a general manner flexible articulated

structures

Our GoalOur Goal

4Introduction to SAMCEF - MECANO

Strategic choicesStrategic choicesKinematic descriptionKinematic description

Recursive?Absolute?Absolute

Structural behaviorStructural behavior

Rigid ?Flexible ?Rigid/flexible

Motion equationsformulation

Motion equationsformulationSymbolic ?Numerical ?Numerical Time integrationTime integration

Implicit ? Explicit ? Implicit

Software architecture

Page 3: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

3

5Introduction to SAMCEF - MECANO

Modelling Modelling StepStep

Finite rotation parameterization

Finite motion description

Measures of deformation and relative motion

Rigid bodieszero deformation

Flexible elementselastic strains

+ internal work

Jointsrelative motion + external work

Mechanical elements library

• rigid members• flexible members• rigid articulations• flexible articulations• active members

Control systemlibrary

FE structuralsubstructuring

6Introduction to SAMCEF - MECANO

Modelling Modelling StepStep

Mechanical elements library

• rigid members• flexible members• rigid articulations• flexible articulations• active members

Control systemlibrary

FE structuralsubstructuring

DAE system equations• dynamic equilibrium• kinematic constraints

Post-processingkinematics

internal forceselement stresses

Page 4: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

4

7Introduction to SAMCEF - MECANO

The MECANO The MECANO softwaresoftware

Preprocessing• topological description (FE)

• mechanical properties• response specification

Preprocessing• topological description (FE)

• mechanical properties• response specification

Initial Assembly

Static analysisequilibrium configuration

static forces

Static analysisequilibrium configuration

static forces

Kinetostatic analysistrajectories

quasi-static forces

Kinetostatic analysistrajectories

quasi-static forces

Dynamic analysistrajectories

dynamic forces

Dynamic analysistrajectories

dynamic forces

Linearized analysiseigenvalues

stability

Linearized analysiseigenvalues

stability

Preprocessing• trajectories

• loads and stresses• animation

Preprocessing• trajectories

• loads and stresses• animation

8Introduction to SAMCEF - MECANO

The MECANO The MECANO element libraryelement library

Some rigid joint elements

Hinge joint

Gear joint

Prismatic joint

Cylindrical joint

Spherical joint

Rack-and-pinion

Kinematic constraints

Page 5: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

5

9Introduction to SAMCEF - MECANO

The MECANO element libraryThe MECANO element library

Cam contact

Point-on-plane

Wheel + tyre model

Cable + pulley

some non-holonomic joints

Kinematic constraints

10Introduction to SAMCEF - MECANO

The MECANO The MECANO element libraryelement library

BushingSpring-damper-stop

Nonlinear beam

Superelement

The basic elastic elements

Kinematic constraints

Page 6: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

6

11Introduction to SAMCEF - MECANO

The MECANO element libraryThe MECANO element library

Hydraulic actuator

Nonlinear constraint

Nonlinear feedback

Some nonlinear and control features

Kinematic constraints

12Introduction to SAMCEF - MECANO

The MECANO element libraryThe MECANO element library

Rail-wheel contact

Kinematic constraints

Page 7: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

7

13Introduction to SAMCEF - MECANO

The MECANO element libraryThe MECANO element library

Flexible slider

Kinematic constraints

14Introduction to SAMCEF - MECANO

The MECANO element libraryThe MECANO element library

Symbolic element representation

Kinematic constraints

Page 8: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

8

15Introduction to SAMCEF - MECANO

Domains of applicationDomains of application

• mechanical engineering• automotive industry• sport industry• aeronautics• space structures• biomechanics• ...

16Introduction to SAMCEF - MECANO

Dynamic car Dynamic car behaviorbehavior

M. Ebalard, J. Mercier (PSA Citroën)Utilisation du logiciel Mecano pour le comportement routier à PSA

Adequacy of Mecano• association of kinematicjoints with finite elements• open software through user element capability

Examples of application

Page 9: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

9

17Introduction to SAMCEF - MECANO

Landing gear analysisLanding gear analysis

Research conducted in framework of ELGAR consortium

Examples of application

18Introduction to SAMCEF - MECANO

Landing gear analysisLanding gear analysisFunctional phases• deployment/retraction• ground impact• rolling• breaking• taxiing

Examples of application

Model components• mechanism• damper (internal hydraulic system)• tyre: contact, deformation, friction

Page 10: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

10

19Introduction to SAMCEF - MECANO

MEA antenna: result animationMEA antenna: result animation

Examples of application

20Introduction to SAMCEF - MECANO

Simulation of Cluster satellite boom deploymentSimulation of Cluster satellite boom deployment

Examples of application

Page 11: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

11

21Introduction to SAMCEF - MECANO

Generalized coordinates for mechanism analysisGeneralized coordinates for mechanism analysis• Generalized co-ordinates

description of various typesthe 4-bar mechanism example

• The finite element method for articulated systemskinematics

elasto-dynamicsdifferential-algebraic equations of motionnumerical integration by Newmark algorithmthe double pendulum example

Generalized coordinates

22Introduction to SAMCEF - MECANO

IntroductionIntroduction• Classical approach: minimal number of DOF.

• Lagrangian coordinates: best suited to robotics

• open-tree structure + associated graph

• loop closure conditions

• lack of generality, difficult for flexible systems

• Cartesian coordinates: large scale simulation packages

• inherent topology description

• large sets of differential-algebraic equations (DAE)

• still difficult for flexible systems

• Nonlinear Finite element coordinates:

• inherent topology description

• simplification of kinematic constraints

• geometrically nonlinear effects naturally included

Generalized coordinates

Page 12: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

12

23Introduction to SAMCEF - MECANO

The 4The 4--bar mechanism examplebar mechanism example

• Simplest planar, closed-loop mechanism• one single variable: crank angle β

Gruebler’s formula m : number of jointsN: number of bodiesp : number of DOF removed by joint i

F = 1F = 3(N − 1)−mXi=1

pi

Generalized coordinates

24Introduction to SAMCEF - MECANO

Minimal coordinatesMinimal coordinates Expression in terms of minimal coordinate β

cosθ2 =d2 + s2 + 2r` cosβ

2ds− r2 − `2

sin(θ3 + φ) =c

ρ

θj = f(β) j = 2, . . . 4

From geometry

(`− r cosβ) cos θ3 + r sinβ sin θ3 = s− d cos θ2

θ1 = 2π − β − θ2 − θ3

Generalized coordinates

Page 13: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

13

25Introduction to SAMCEF - MECANO

Minimal coordinates: Minimal coordinates: kinematickinematic transformertransformer

Input-output relationship

Complex mechanisms as assembly of transformers

Generalized coordinates

26Introduction to SAMCEF - MECANO

LagrangianLagrangian coordinatescoordinates

3 generalized coordinates

2 closure conditions

Equations of motion: 3 differential Equations of motion: 3 differential equations linked by 2 constraintsequations linked by 2 constraints(DAE)(DAE)

qT = [θ1 θ2 θ3 ]

`1 cosθ1 + `2 cos(θ1 + θ2) + `3 cos(θ1 + θ2 + θ3)− `4 = 0`1 sin θ1 + `2 sin(θ1 + θ2) + `3 sin(θ1 + θ2 + θ3) = 0

Generalized coordinates

Page 14: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

14

27Introduction to SAMCEF - MECANO

Cartesian coordinatesCartesian coordinates

8 kinematic constraints

9 generalized coordinates qT = [ x1 y1 θ1 x2 y2 θ2 x3 y3 θ3 ]

x1 −`12 cosθ1 = 0 y1 −

`12 sin θ1 = 0

x1 +`12 cosθ1 − x2 +

`22 cos θ2 = 0 y1 +

`12 sin θ1 − y2 +

`22 sin θ2 = 0

x2 +`22 cosθ1 − x2 +

`32 cos θ3 = 0 y2 +

`22 sin θ2 − y3 +

`32 sin θ3 = 0

x3 +`32 cosθ3 = `4 y3 +

`32 sin θ3 = 0

Equations of motion: 9 Equations of motion: 9 differential equations linked differential equations linked by 8 constraintsby 8 constraints (DAE)(DAE)

Generalized coordinates

28Introduction to SAMCEF - MECANO

Finite Element coordinatesFinite Element coordinates

Strong formStrong form of of kinematickinematic constraintsconstraints• 4 boundary nodal constraints

• 4 assembly nodal constraints

13 generalized coordinates:• 12 finite element DOF q• 1 driving DOF βq = [x1 y1 . . . x6 y6 ]

T

• 3 zero strain constraints

• 1 driving constraints (implicit)

x1 = 0, y1 = 0x6 = 0, y6 = `4

x2 = x3 y2 = y3x4 = x5 y4 = y5

²1 = 0 ²2 = 0 ²3 = 0

y2 cosβ − x2 sinβ = 0ΦD(q) = 0

²i =1

2

`2i − `2i,0

`2i,0

Generalized coordinates

Page 15: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

15

29Introduction to SAMCEF - MECANO

Finite element description of a mechanical systemFinite element description of a mechanical system

q = DOF at structural level

qe = DOF at element level

Le = DOF localization operator(boolean)

λ = lagrangian multipliers

qe = Leq

Φ(qe, qe, t) = 0

• Boolean constraints: localization of DOF• Implicit constraints: algebraic treatment

System topology results implicitly from Boolean assembly and

constraint description

Kinematic constraints

30Introduction to SAMCEF - MECANO

Classification of Classification of kinematickinematic constraintsconstraints

• Holonomic constraints

• Restrict the number of DOF of the system

Φ(q, t) = 0

• Non-holonomic constraints

• Restrict the system behavior

• Unilateral constraints

ex: prismatic joint

ex: rolling motion

Ψ(q, q, t) ≥ 0

Ψ(q, q, t) = 0

Kinematic constraints

Page 16: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

16

31Introduction to SAMCEF - MECANO

Classical mechanical pairsClassical mechanical pairs

revolute

cylindrical

prismatic

screw

planar

spherical

Only 3 lower pairs• surface contact• motion reversibility

• All other mechanical pairs are higher pairs

Other modes of classification:• number of DOF (1 for all lower pairs)• mode of closure

32Introduction to SAMCEF - MECANO

The algebraic constrained problemThe algebraic constrained problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

minqF(q)

subject to

Φ(q) = 0

Possible methods of solution• constraint elimination• Lagrange multipliers• penalty function• augmented Lagrangian• perturbed Lagrangian

Formulated in terms of

Residual vector

r(q) =∂F

∂q

Jacobian matrix

Hessian matrix

Bmj =∂Φm∂qj

B such that

H such that Hij =∂2F

∂qi∂qj

Page 17: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

17

33Introduction to SAMCEF - MECANO

Constraint elimination methodConstraint elimination method• First variation of constraints

δΦ =Bδq = 0• Partitioning into independent and dependent variables

BIδqI +BDδqD = 0

• Elimination of dependent variables

δq =RδqIreduction

matrix R =

⎡⎣ I

−B−1D BI

⎤⎦

RT ∂F

∂q=RT r(q) = 0

• Projected residual equation

• exact verification of constraints• complex and computationally expensive

34Introduction to SAMCEF - MECANO

• provides exact solution regardless of penalty and scaling factors

• quadratic term reinforces positive character of H

• scaling factor required for pivoting

Augmented Augmented LagrangianLagrangian methodmethod

F∗p (q,λ) = F(q) + (kλTΦ+

p

2ΦTΦ)

⎡⎣H + pBTB kBT

kB 0

⎤⎦⎡⎣∆q∆λ

⎤⎦ =⎡⎣−r? −BT (kλ? + pΦ)

⎤⎦

p penalty coefficientk scaling factor

Augmented functional

Second-order solution method: by Newton-Raphson

q = q? +∆qλ = λ? +∆λ

pBTB

Page 18: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

18

35Introduction to SAMCEF - MECANO

Constrained dynamic problemsConstrained dynamic problems

Z t2

t1[δ(L− kλTΦ− pΦTΦ) + δW]dt = 0

Mq +BT (pΦ+ kλ) = g(q, q, t)Φ(q, t) = 0

Hamilton’s principle

Matrix form of constrained motion

equations

• Differential - Algebraic nature (DAE)• vanishing of penalty term at equilibrium → exact• scaling of constraints for numerical conditioning• multipliers λ = forces needed to close constraints• all remaining forces (internal, external, complementary inertia) in RHS

Kinematic constraints

36Introduction to SAMCEF - MECANO

Constrained equations of motionConstrained equations of motion

Mq +BT (pΦ+ kλ) = g(q, q, t)Φ(q, t) = 0

Methods of solution

• Constraint reduction• Constraint regularization → m+n ODE + constraint stabilization• second-order solution → linearization

But: specific problem of numerical stability of time integration

Kinematic constraints

Page 19: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

19

37Introduction to SAMCEF - MECANO

Linearization of motion equationsLinearization of motion equationsM 00 0

¸∆q∆λ

¸+Ct 00 0

¸∆q∆λ

¸+Kt kBT

0 kB

¸∆q∆λ

¸=r?

−Φ?

¸+O(∆2)

Residual vector of equilibrium r = g(q, q, t)−Mq −BT (pΦ+ kλ)

Ct = −∂g

∂qKt = −

∂g

∂q+∂(Mq)

∂q+∂(BT (pΦ+ kλ))

∂q

Kt ' −∂g

∂q+ pBTB + k

∂(BTλ)

∂q

Tangent damping matrix Tangent stiffness matrix

approx.• plays central role for convergence in iteration• quality of approximation needed depends on penalty factor

Kinematic constraints

38Introduction to SAMCEF - MECANO

Integration of motion equations: Integration of motion equations: Implicit MethodImplicit Method

Motivationsfiltering of high frequencies (elasticity)• independence of algorithm stability on time step size• one-step method simplicity of software• experience in structural dynamics.

Newmark algorithm

Application to multibody systems• appropriate integration of rotation motion• stability in presence of constraints (DAE)

Page 20: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

20

39Introduction to SAMCEF - MECANO

Implicit integration Implicit integration Differential - algebraic equations

Correction of solution at time t

q = q∗ +∆qq = q∗ +∆qq = q∗ +∆qλ = λ∗ +∆λ

Linearized equations of motion

Linearized matrices

r(q, q, q,λ) =Mq+BTλ− g(q, q, t) = 0Φ(q, t) = 0

(q∗, q∗, q∗, λ∗)

KT =∂r

∂q= −

∂g

∂q+

∂q(Mq∗ +BTλ∗)

CT =∂r

∂q= −

∂g

∂q

Tangent damping

Tangent stiffness

M 00 0

¸∆q∆λ

¸+

CT 00 0

¸∆q∆λ

¸+

KT BT

B 0

¸∆q∆λ

¸=

r∗

−Φ∗

¸

40Introduction to SAMCEF - MECANO

NewmarkNewmark formula formula

• Interpolation of displacements and velocities

qn+1 = qn + (1− γ)hqn + γhqn+1qn+1 = qn + hqn + (

12− β)h2qn ++βh

2qn+1

γ =1

2and β =

1

4

• Free parameters: average constant acceleration

γ =1

2+ α and β =

1

4(γ +

1

2)2 α > 0

• Introduction of numerical damping

Page 21: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

21

41Introduction to SAMCEF - MECANO

Integration procedure Integration procedure q0n+1 = 0q0n+1 = qn + (1− γ)hqnq0n+1 = qn + hqn + (

12 − β)h2qn

qk+1n+1 = qkn+1 +∆q = q

kn+1 +

1βh2∆q

qk+1n+1 = qkn+1 +∆q = q

kn+1 +

γβh∆q

qkn+1 = qkn+1 +∆q

ST BT

B 0

¸∆q∆λ

¸=

r∗

−Φ∗

¸

ST =KT +γ

βhCT +

1

βh2M

krk < ² and kΦk < η

• Prediction at time t

• Correction

• Correction equation

Iteration matrix

• Convergence check

42Introduction to SAMCEF - MECANO

The double pendulum The double pendulum

qT = [x1 y1 θ1 x2 y2 θ2 ]

• Description by Cartesian coordinates (redundant)

K = 12m1(x

21 + y

21) +

12m2(x

22 + y

22)

P = m1gy1 +m2gy2

• Kinetic and potential energies

Φ =

⎡⎢⎢⎣x1 − `1 sinθ1y1 + `1 cos θ1

x2 − x1 − `2 sin θ2y2 − y1 + `2 cos θ2

⎤⎥⎥⎦• Kinematic constraints

B =

⎡⎢⎢⎣1 0 −`1 cos θ1 0 0 00 1 −`1 sinθ1 0 0 0−1 0 0 1 0 −`2 cos θ20 −1 0 0 1 −`2 sin θ2

⎤⎥⎥⎦• Constraint matrix

• External force vector and mass matrix are constant• Tangent stiffness contains only geometric terms

KT = diag [ 0 0 `1(λ1 sin θ1 − λ2 cos θ1) 0 0 `2(λ3 sin θ2 − λ4 cos θ2) ]

m1 = m2 = 1.l1 = l2 = 1.,(θ1 = π/2, θ2 = 0

Page 22: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

22

43Introduction to SAMCEF - MECANO

(γ = 12 , β =

14 )NewmarkNewmark integration : integration : undampedundamped

• normal evolution of angular displacements and velocities• but: numerical instability detected after 2 sec.

44Introduction to SAMCEF - MECANO

(γ = 12 , β =

14 )NewmarkNewmark integration : integration : undampedundamped

Weak instability: generated by kinematic constraints

Numerical damping

Page 23: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

23

45Introduction to SAMCEF - MECANO

((γ = 1

2 + α, β = 14 (12 + γ)2, α = 0.015)

NewmarkNewmark integration with damping integration with damping

Normal aspect of response over 5 sec. period, but ...

46Introduction to SAMCEF - MECANO

NewmarkNewmark integration with damping integration with damping ((γ = 1

2 + α, β = 14 (12 + γ)2, α = 0.015)

Unacceptable amount of energy loss

Search for better compromise between accuracy and stability

Page 24: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

24

47Introduction to SAMCEF - MECANO

Kinematics of finite motionKinematics of finite motion

• Spherical motionEigenvalue analysis of rotation operatorEuler theorem Explicit expressions of rotation operator Expression in terms of linear invariantsExponential map

• General motion of rigid body• Velocity analysis of spherical motion• Explicit expression of angular velocities

Rotation parameterizationCartesian rotation vector

Finite Motion

48Introduction to SAMCEF - MECANO

Spherical motionSpherical motion

Initial position: material configuration X

Current position: material configuration x

Spatial coordinates

x = [x1 x2 x3]T

X = [X1 X2 X3]T

material coordinates

[~E1 ~E2 ~E3]

Base vectors of initial configuration

Base vectors of current configuration [~e1 ~e2 ~e3]

Spherical motion such that:• length of position vector unaffected by pure rotation• relative angle between 2 directions remain constant

Linear transformation

x = RX RT =R−1 det(R) = 1withProper orthogonal

Finite Motion

Page 25: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

25

49Introduction to SAMCEF - MECANO

Euler theorem Euler theorem

If a rigid body undergoes a motion leaving fixed one of its points, then a set of points of the body lying on a line that passes through that point, remains fixed as well.

Finite Motion

50Introduction to SAMCEF - MECANO

Explicit expressions of rotation operator Explicit expressions of rotation operator

Outer product expression

Orthonomality implies 6 constraints

rTi rj = δijR = [ r1 r2 r3 ]

R =R(α1,α2,α3)3 independent rotation parameters

R =Xi

eiETi

Inner product expression

R =

⎡⎣ET1 e1 ET1 e2 ET1 e3

ET2 e1 ET2 e2 ET2 e3

ET3 e1 ET3 e2 ET3 e3

⎤⎦

Finite Motion

Page 26: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

26

51Introduction to SAMCEF - MECANO

Expression in terms of linear invariantsExpression in terms of linear invariants

R=Icosφ+(1−cosφ)nnT +nsinφ

Rotation operator

Invariants

tr(R) =λ1 +λ2 +λ3 =1+2cosφvect(R) =nsinφ

Finite Motion

52Introduction to SAMCEF - MECANO

Exponential mapExponential map

• Differentiate with respect to φ

x =RX

• verify thatdR

dφRT = n

dx

dφ− nx = 0 with x(0) =X

• differential motion

• integration

x = exp(nφ) X R = exp(nφ)

Finite Motion

Page 27: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

27

53Introduction to SAMCEF - MECANO

General motion of rigid bodyGeneral motion of rigid body

xP = x0 +RXP

Combination of translation and rotation

spatial motion of origin

material coordinates of

point P

Finite Motion

54Introduction to SAMCEF - MECANO

Velocity analysis of spherical motionVelocity analysis of spherical motion

xP =RXP RT =R−1

ω = RRTvP = ωxP

ω = vect(RRT )ω = vect(RRT )

V P = ΩXP Ω =RT R

Ω = vect(RT R)Ω = vect(RT R)

vP = xP = RXP V P =RT vP

Spatial description Material descriptionDifferentiate

with

= RRT + (RRT )T = 0

with with

spatial angular velocities material angular velocities

spatial velocities material velocities

skew-symmetry

Finite Motion

Page 28: Introduction to SAMCEF MECANO - Cours dispensés … system library FE structural substructuring 6 Introduction to SAMCEF - MECANO Modelling Step Mechanical elements library • rigid

2/15/2008

28

55Introduction to SAMCEF - MECANO

Cartesian rotation vectorCartesian rotation vector

Ψ = nφdefined as

R = I +sin kΨ k

kΨ keΨ +

1− cos kΨ k

kΨ k2eΨ eΨ

Rotation operator

Trigonometric form

R = exp( eΨ)Exponential map

Ω = T (Ψ)Ψ ω = T T (Ψ)Ψ

T (Ψ) = I +

µcos kΨk − 1

kΨk2

¶ eΨ+ µ1 − sin kΨkkΨk

¶ eΨ eΨkΨk2

Angular velocities

Tangent operator limkΨk→0

T (Ψ) = limkΨk→0

R(Ψ) = I

Limit properties

Finite Motion