Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek,...

54
Introduction to Quantum Metrology Introduction to Quantum Metrology Konrad Banaszek Faculty of Physics University of Warsaw Poland International Program on Quantum Information Bhubaneswar, 17-28 February 2014

Transcript of Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek,...

Page 1: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Introductionto Quantum MetrologyIntroductionto Quantum Metrology

Konrad BanaszekFaculty of PhysicsUniversity of WarsawPoland

International Programon Quantum Information

Bhubaneswar, 17-28 February 2014

Page 2: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Phase measurementPhase measurement

Page 3: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

P. Lenard,Ann. Physik 8, 149 (1902)

Photoelectric effectPhotoelectric effect

Page 4: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

PhotonsPhotons

Page 5: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Quantum pictureQuantum picture

N / jEj2

Page 6: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Phase estimatePhase estimate

hn¡i = ¡N cos(¼2 + ±Á) ¼ N±Á

Let

Our task is to guess small .

Photocount difference:

Statistical average:

Estimation procedure:

±Á =n¡N

Individual realizationof the experimentwith photons!¹n

Page 7: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Shot noiseShot noise

To identifya phase shift

No phase shift Phase shift

…hence the phase resolution

±Á = 0

Page 8: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

©(na; nb) =¼

2+

na ¡ nbN

Estimation qualityEstimation quality

Actual value

Measurement result

Estimate

Estimation procedure:

±Á =n¡N

Page 9: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Fisher informationFisher information

Cramér-Rao bound:for unbiased estimators

¢~Á ¸ 1qF(Á)

Page 10: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

ProofProof

Cauchy-Schwarz inequality:

Take

and on the RHS use the assumption of unbiasedness:

Page 11: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

For one photon sent into the Mach-Zehnderinterferometer . Using photons yields

and the precision is bounded by the shot noise limit:

AdditivityAdditivity

F(Á) = N

When variables are statistically independent

p(r1; r2jÁ) = p(r1jÁ)p(r2jÁ)

F(Á) = F1(Á) + F2(Á)

the Fisher information is additive:

¢~Á ¸ 1pN

F(Á) = 1 N

Page 12: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Two-photon interferometryTwo-photon interferometry

?

Page 13: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Two-photon interferenceTwo-photon interference

&

Probability amplitudes:

– + –

Only if photons are indistinguishable!

Page 14: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Parametric down-conversionParametric down-conversion

,p pk

,s sk

,i ik

Energy conservation: sp i

Momentum conservation: sp i k k k

sp

i

Page 15: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Hong-Ou-Mandel experimentHong-Ou-Mandel experiment

C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)

Page 16: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Two-photon phase shiftTwo-photon phase shift

&

Page 17: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

ObservationObservationJ. G. Rarity et al., Phys. Rev. Lett. 65, 1348 (1990)

Page 18: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Fringe spacingFringe spacing

For two copies

Page 19: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

General pictureGeneral picture

Prep

arat

ion

Sens

ing

Det

ectio

n

Prep

arat

ion

Page 20: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Quantum measurementQuantum measurement

jÃÁi

p(rjÁ) = hÃÁjMrjÃÁi

Result probability:

Page 21: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Quantum Fisher informationQuantum Fisher information

For any measurement

F(Á) · FQ(Á) := 4³h@ÁÃj@ÁÃi ¡ jhÃÁj@ÁÃij2

´fMrg

where

j@ÁÃi=@

@ÁjÃÁi

Quantum Fisher information characterizes ”localdistinguishability” between states

jÃÁi jÃÁ+±Ái ¼ jÃÁi+ ±Áj@ÁÃiand

Review: M. G. A. Paris, Int. J. Quant. Inf. 7, 125 (2009)

Page 22: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Symmetric logarthmic derivativeSymmetric logarthmic derivative

Implicit definition

@

@Á%Á =

1

2(LÁ%Á+ %ÁLÁ)

LÁ = 2h³I ¡ jÃÁihÃÁj

´j@ÁÃihÃÁj

Explicit expression for : %Á = jÃÁihÃÁj

+jÃÁih@ÁÃj³I ¡ jÃÁihÃÁj

´i

Upper bound:

1

p(rjÁ)

Ã@

@Áp(rjÁ)

!2·

¯¯¯¯

Tr[%ÁMrLÁ]qTr(Mr%Á)

¯¯¯¯

2

Page 23: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Schwarz inequalitySchwarz inequality

¯¯Tr(AyB)

¯¯2 · Tr(AyA)Tr(ByB)

F(Á) ·X

rjTr(AyrBr)j2

Ayr =

q%Á

qMr

qTr(Mr%Á)

;

Take:

Br =qMrLÁ

q%Á

· TrÃX

rAyrAr

!Tr

ÃX

rByrBr

!Then:

= Tr(%ÁL2Á) = FQ(Á)

Page 24: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Phase measurementPhase measurement

where is operator of the number of photons sentthrough the phase shifter.

Quantum Fisher information

jÃÁi= einsÁjÃi

ns

FQ(Á) = 4(¢ns)2

is proportional to the variance of the photon numberin the sensing arm!

Transformation of the input state by a phase shifter:

Page 25: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Interferometric Cramér-Rao boundInterferometric Cramér-Rao bound

– photon number uncertainty in the sensing arm

¢Á – precision of phase estimation

¢Á¢ns ¸1

2

“Heisenberg” uncertainty relation:

Task: maximize for a fixed total numberof photons N.

Page 26: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Optimal precisionOptimal precision

N photons sent to a 50/50 beam splitter yield the shot-noise limit:

0 NMaximum possibledefines the Heisenberglimit:

For the total number of N photons:

Page 27: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

NOON stateNOON state

The optimal N photon state:

For a review: V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004)

Page 28: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

LossesLosses

If a photon is lost:

When no photons are lost:

Prep

arat

ion

M.A. Rubin and S. Kaushik, Phys. Rev. A 75, 053805 (2007)G. Gilbert, M. Hamrick, Y.S. Weinstein, J. Opt. Soc. Am. B 25, 1336 (2008)

Page 29: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Two-photon caseTwo-photon case

No photon lost:

One photon lost:

Two photons lost:

Page 30: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

WeightsWeights

h0 1

Page 31: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

LabLab

Page 32: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

SchematicSchematic

Page 33: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

RealizationRealization

Page 34: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Source

BIBOHWP

IF 5nm

PBS

Page 35: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

J1 J2

h JD

Interferometer

Page 36: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

FringesFringes

Page 37: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Measurement resultsMeasurement resultsO

ptim

al

2-ph

oton

N00

N

Page 38: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Reconstructed phaseReconstructed phase

Optimal

2-photon NOON

Page 39: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

PrecisionPrecision

Optimal

2-NOON

Shot noise

M. Kacprowicz, R. Demkowicz-Dobrzański, W. Wasilewski, K. Banaszek,and I. A. Walmsley, Nature Photonics 4, 357 (2010)

Page 40: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

General approach: one-arm lossesGeneral approach: one-arm lossesl photons lost

Prep

arat

ion

Page 41: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

PrecisionPrecisionOne-arm losses Two-arm losses

Optimal

Chopped n00n

N00N state

U. Dorner, R. Demkowicz-Dobrzański et al.,Phys. Rev. Lett. 102, 040403 (2009)

R. Demkowicz-Dobrzański, U. Dorner et al.,Phys. Rev. A 80, 013825 (2009)

Page 42: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

ScalingScaling

100%90%80%60%

quantumshot noise multipass

K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley,Quantum states made to measure, Nature Photonics 3, 673 (2009)

Page 43: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

General pictureGeneral picture

Actual value

%Á = ¤Á(%ini)

Quantum Cramér-Rao bound using SLD:

F(Á) · Tr(%ÁL2Á);@

@Á%Á =

1

2(LÁ%Á+ %ÁLÁ)

Page 44: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Completely positive mapsCompletely positive maps

¤Á = p+(Á)¤++ p¡(Á)¤¡+O((dÁ)2)

K. Matsumoto, arXiv:1006.0300 (2010)

Let be extremal and “distances” be defined through¤§¤§ = ¤Á § ²§@Á¤Á

²§

Page 45: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Classical simulationClassical simulation

Actual value

%Á = ¤Á(%ini)

p§(Á) ¤Á

p(rjÁ)

¢Á ¸s²+²¡N

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, Nature Comm. 3, 1063 (2012)

Page 46: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Specific channelsSpecific channels

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, Nature Comm. 3, 1063 (2012)

Page 47: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Asymptotic scalingAsymptotic scaling

Prep

arat

ion

When N photons are used:

¢~Á ¸s1¡ ´

´N

Theoretical toolbox:J. Kołodyński and R. Demkowicz-Dobrzański, New J. Phys. 15, 073043 (2013)

F · ´N

1¡ ´

Page 48: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Gravitational wave detectionGravitational wave detection

GEO600 Experiment

¢~Ásqueezed¢~Ástandard

¼ 0:66

J. Abadie et al. (The LIGO Scientific Collaboration), Nature Phys. 7, 962 (2011)

Page 49: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

ModelModel

strongcoherent

squeezed r

When power is carried dominantlyby the coherent field ¢~Á =

vuut1¡ ´+ ´e¡2r

´hNi

Page 50: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Undefined photon numberUndefined photon number

When no externalphase is used:

% =1M

N=0

pn%N

Convexity of Fisherinformation:

F(%) ·1X

N=0

pnF(%N)

Bound for the fixedphoton number:

·1X

N=0

pn´N

1¡ ´=

´hNi1¡ ´

¢~Á =

vuut1¡ ´+ ´e¡2r

´hNi¢~Á ¸

s1¡ ´

´hNi

General limit: Squeezed scheme:

Saturates if e¡2r ¿ (1¡ ´)=´

Page 51: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

ResultResultR. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel,Phys. Rev. A 88, 041802(R) (2013)

Assumed uniform transmission h = 62%

Shot noiselimit

10dB squeezing(implemented)

16dB squeezingand ultimatebound

Page 52: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Optimality of squezed statesOptimality of squezed states

¢Áoptimal¢Ásqueezed

R. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel,Phys. Rev. A 88, 041802(R) (2013)

Page 53: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

OutlookOutlook

K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley,Quantum states made to measure, Nature Photonics 3, 673 (2009)

Either... • ideal single-photon sources• deterministic state preparation• quantum non-demolition

measurements• 100% efficient detectors… or …• imperfection-tolerant schemes… or …• a combination of the above

Resources:• total amount of light used• number of photons sent through the sample• passes through the sample• external phase reference

Performance:• statistical uncertainty• resolution• …?

Page 54: Introduction to Quantum Metrology - iopb.res.inipqi2014/school-konrad.pdf · Outlook K. Banaszek, R. Demkowicz-Dobrzański, and I. A. Walmsley, Quantum statesmadeto measure, Nature

Multipass strategyMultipass strategy

N times

Inspired by B. L. Higgins et al., Nature 450, 393 (2007)

• The acquired phase exhibits Heisenberg-type scaling

• Sensitivity to losses is analogous as for N00N states!

R. Demkowicz-Dobrzański, Laser Phys. 20, 1197 (2010)