Introduction to Population Balance Modeling Spring 2007.

59
Introduction to Population Balance Modeling Spring 2007

Transcript of Introduction to Population Balance Modeling Spring 2007.

Page 1: Introduction to Population Balance Modeling Spring 2007.

Introduction to Population Balance Modeling

Spring 2007

Page 2: Introduction to Population Balance Modeling Spring 2007.

Topics

• Modeling Philosophies– Where Population Balance Models (PBMs) fit in

• Important Characteristics

• Framework

• Uses– Cancer Examples

• Parameter Identification

• Potential Applications

Page 3: Introduction to Population Balance Modeling Spring 2007.

Variations of Scale

• Tumor scale properties– Physical characteristics– Disease class

• Cellular level– Growth and death rates– Mutation rates

• Subcellular characteristics– Genetic profile– Reaction networks (metabol- and prote-omics)– CD markers

M.-F. Noirot-Gros, Et. Dervyn, L. J. Wu, P. Mervelet, J. Errington, S. D. Ehrlich, and P. Noirot (2002) An expanded view of bacterial DNA replication . Proc. Natl. Acad. Sci. USA, 99(12): 8342-8347.

Steel 1977

Page 4: Introduction to Population Balance Modeling Spring 2007.

Level of Model Detail – Population Growth

• Empirical Models– Course structure– Averaged cell behavior– Gompertz growth

• Mechanistic Models– Fine structure– Cdc/Cdk interactions

• Population Balance Models– “key” parameters (i.e. DNA, volume, age)– Details are lumped and averaged– Heterogeneous behavior

Model Detail

Page 5: Introduction to Population Balance Modeling Spring 2007.

State vector

• Completely averaged– X = [ ]

• Few state variables– X = [size spatial_location internal_drug_level]

• More mechanistic– X = [Cdk1 CycA CycE…]

• Population Balance– Expected distribution among cells

Page 6: Introduction to Population Balance Modeling Spring 2007.

Population Balance Model Requirements

• Advantages– Simplified description

of system– Flexible framework

• Disadvantages– Proper identification of

system (Burundi not the same as Denmark)

– Identification of rates

• Transition rates (e.g. division rate)

• Rates of change – growth rates

• Constitutive model or experiments

, 1 2 3( , , )i j x x x

1 2 3( , , , )x x xX y

Page 7: Introduction to Population Balance Modeling Spring 2007.

Modeling Philosophies

• Birth and death rates – Empirical– PBM – vary with age and country– Mechanistic – need to know the causes behind age-dependence

Hjortsø 2005

Page 8: Introduction to Population Balance Modeling Spring 2007.

Expected Number Density

• Distribution of cell states

• Total number density

1 1

1 1

( , ; ) ( , ; ) ( , )

( , ; , ; ) ( , ; , ; ) ( , ) '

b

a

d b

c a

E N a b t N a b t n x t dx

E N a b c d t N a b c d t n x t dxdx

2 discrete states (i.e. Denmark)

1 continuous variable (i.e. age)

2 continuous variables

(i.e. age and weight)

010

2030

40

0

10

20

30

40

0

2

4

6

8

Age - cell 1 (hrs)

Multi-dimensional number density

Age - cell 2 (hrs)N

um

be

r D

en

sity

Page 9: Introduction to Population Balance Modeling Spring 2007.

Population Description

• Continuous variables• Time• Cell

– Mass– Volume– Age– DNA or RNA– Protein

• Patient– Age

• Discrete indices• Cell

– Cell cycle phase– Genetic mutations– Differentiation state

• Patient– M / F– Race / ethnicity

Page 10: Introduction to Population Balance Modeling Spring 2007.

Example – Cell Cycle Specific Behaviors

• Cell cycle specific drug– Discrete – cell cycle phase, p– Continuous – age, τ, (time since last transition)

(3, )

Phase 1G0/G1

Phase 2S

Phase 3G2/M

1( , , )n p t

(1, ) (2, )

k

Page 11: Introduction to Population Balance Modeling Spring 2007.

Cell Cycle Control (Tyson and Novak 2004)

Page 12: Introduction to Population Balance Modeling Spring 2007.

Cell cycle arrest (Tao et al. 2003)

Page 13: Introduction to Population Balance Modeling Spring 2007.

PBMs in biological settings

• Cell cycle-specific chemo

• Budding yeast dynamics

• Rate of monoclonal antibody production in hybridoma cells

• Bioreactor productivity under changing substrate conditions

• Ecological models– Predator-prey

Page 14: Introduction to Population Balance Modeling Spring 2007.

Topics

• Modeling Philosophies– Where Population Balance Models (PBMs) fit in

• Important Characteristics

• Framework

• Uses– Cancer Examples

• Parameter Identification

• Potential Applications

Page 15: Introduction to Population Balance Modeling Spring 2007.

• Tumor scale properties– Physical characteristics– Disease class

• Cellular level– Growth and death rates– Mutation rates

• Subcellular characteristics– Genetic profile– Reaction networks (metabol- and prote-omics)– CD markers

Variations of Scale

Page 16: Introduction to Population Balance Modeling Spring 2007.

Modeling Philosophies

• Birth and death rates – Empirical– PBM – vary with age and country (STATE VECTOR)– Mechanistic – need to know the causes behind age-dependence

Hjortsø 2005

Page 17: Introduction to Population Balance Modeling Spring 2007.

Population Balance Model Requirements

• Advantages– Simplified description

of system– Flexible framework

• Disadvantages– Proper identification of

system (Burundi not the same as Denmark)

– Identification of rates

• Transition rates (e.g. division and rates)

• Rates of change – growth rates

• Constitutive model or experiments

, 1 2 3( , , )i j x x x

1 2 3( , , , )x x xX y

Page 18: Introduction to Population Balance Modeling Spring 2007.

Cell Cycle Control (Tyson and Novak 2004)

Page 19: Introduction to Population Balance Modeling Spring 2007.

Changes Number Density• Changes in cell states

• Cell behavior (growth, division and death, and phase transitions) are functions of a cell’s state

x

n1(x,t)

Page 20: Introduction to Population Balance Modeling Spring 2007.

Population Balance – pure growth

b

a

b

adxtxntxX

xdxtxn

t),(),(),( 11

),(),(),(),(),( 111 tbXtbntaXtandxtxndt

d b

a

( , ) ( , )n a t X a t ( , ) ( , )n b t X b t

( )x a ( )x bdx

1( , )n x t

x

Growth rate 0),(),(),(

11

txntxX

xt

txn

Page 21: Introduction to Population Balance Modeling Spring 2007.

Transitions between discrete states

1,1,1

1,11,1

1 ),,1(),(),,(),,(),,1(),,1(),,1(

ii

ii txntxtxintxitxntxX

xt

txn

1(1, , ) (1, , )n a t X a t1(1, , ) (1, , )n b t X b t

( )x a ( )x b

1(1, , )n x t

x

Growth rate Transition rates

( )x a ( )x bdx

1(2, , )n x t

x

2,1 1( , ) (2, , )b

ax t n x t dx

Page 22: Introduction to Population Balance Modeling Spring 2007.

Cell division and death

1( , ) ( , )b

ak x t n x t dx

1( , ) ( , )b

ax t n x t dx

),(),(),('),'(),'('2),(),(),(

1111 txntxktxdxtxntxxxPtxntxX

xt

txnx

( , ) ( , )n a t X a t ( , ) ( , )n b t X b t

( )x a ( )x b

1( , )n x t

x

Growth rate Division rate Death rate

12 ' ( ', ) ( ', ) 'b

a xP x x x t n x t dx dx

Page 23: Introduction to Population Balance Modeling Spring 2007.

Mathematical ModelCellular -> Macroscopic

• Tumor size and character– Simulate cells and observe

bulk behavior

• Cell behavior– Mutations– Spatial effects– Cell cycle phase– Quiescence – Pharmacodynamics

• Mostly theoretical work– Occasionally some

parameters available

• Optimization of chemo– Dosage– Frequency– Drug combinations

• Solid tumor– Size limitations due to nutrients and

inhibitors

• Leukemia– Quiescent and proliferating

populations– Cell cycle-specific chemotherapy

• Mutations– Branching process

Page 24: Introduction to Population Balance Modeling Spring 2007.

Growth Transition Rates

DeathTransition Rates

Treatment Evaluation

Stochastic Effects

Cancer Growth

Bone marrow model –In vitro CD34+ cultures

Stochastic Models

Cancer transition ratesIn vitro BrdU/Annexin V

Inverse Model

Inverse Model

Drug Concentrations

Bone MarrowPeriphery \

MCV MeasurementsMCV Measurements

Cancer Growth Model

Page 25: Introduction to Population Balance Modeling Spring 2007.

Cancer Growth

Cancer Growth Model

Growth Transition Rates

DeathTransition Rates

Drug Concentrations

Treatment Evaluation

Page 26: Introduction to Population Balance Modeling Spring 2007.

Example – Cell Cycle Specific Behaviors

• Cell cycle specific drug– Discrete – cell cycle phase, p– Continuous – age, τ, (time since last transition)

• (3, )

Phase 1G0/G1

Phase 2S

Phase 3G2/M

1( , , )n p t

(1, ) (2, )

k(C)

Page 27: Introduction to Population Balance Modeling Spring 2007.

In vitro verification

• Total population dynamics

• Phase oscillations– Period– Amplitude– Dampening

• Co-culture of Jurkat and HL60 performed for selective treatment

Sherer et al. 2006

Page 28: Introduction to Population Balance Modeling Spring 2007.

Use in Treatment Designs

Timing effectsTreatment Optimization

Heathy cells vs. cancerous

Drug Dosage

Administration Timings

Page 29: Introduction to Population Balance Modeling Spring 2007.

Model ExtrapolationIn vivo factors

Drug half-life Activation of quiescent population in bone marrow

Page 30: Introduction to Population Balance Modeling Spring 2007.

Age-averaged PBM

Gardner SN. “Modelling multi-drug chemotherapy: tailoring treatment to individuals.” Journal of Theoretical Biology, 214: 181-207, 2002.

Page 31: Introduction to Population Balance Modeling Spring 2007.

Prognosis Tree

a < 0.01

If a<0.01 if a>0.01

Page 32: Introduction to Population Balance Modeling Spring 2007.

Growth Transition Rates

DeathTransition Rates

Cancer Growth

Bone marrow model –In vitro CD34+ cultures

Inverse ModelDrug Concentrations

Bone MarrowPeriphery \

MCV MeasurementsMCV Measurements

Cancer Growth Model

Page 33: Introduction to Population Balance Modeling Spring 2007.

Modeling a surrogate marker for the drug 6MP

• Bone marrow– 6MP inhibits DNA synthesis

• Blood stream– Red blood cells (RBCs) become larger– RBC size correlates with steady-state 6MP level

Blood Stream

Mature RBCsBone Marrow

Maturing~120 days

Stemcell reticulocyte

Page 34: Introduction to Population Balance Modeling Spring 2007.

RBC Maturation

• Cell volume• DNA inhibition

– Time since division– DNA synthesis rateDNA synthesis rate

• Maturation– Discrete state

• Transferrin and glycophorin A

– ContinuousContinuous• Time spent in state

Hillman and Finch 1996

Page 35: Introduction to Population Balance Modeling Spring 2007.

Forward Model (hypothetical)

• Days: 6TGN reaches steady-state (SS)

• Weeks: Marrow maturation in new SS

• Months: Periphery in new SS

0 50 100 150 200 250164

166

168

170

172

174

176

178

180

182

Time (days)

Pe

rip

he

ral M

CV

(fL

)

Drug Concentration Effects on MCV

0 mg/mL/day

50 mg/mL/day

100 mg/mL/day0 mg/mL/day extrapolate

50 mg/mL/day extrapolate

100 mg/mL/day extrapolate

0 10 20 30 40 50 60 0 10 20 300

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Corpuscular Volume (fL/10)

Pro

ba

bili

ty D

istr

ibu

tio

n

Bone Marrow Corpuscular Volume Distributions

M = 0.25

M = 0.50M = 0.75

M = 1.00

Page 36: Introduction to Population Balance Modeling Spring 2007.

MCV => Drug level

0 50 100 150 200 250 300 350 400 450 5000

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

6TGN level (pM)

Pro

ba

bili

ty

6TGN level with MCV

8184

87

90

93

9699

Page 37: Introduction to Population Balance Modeling Spring 2007.

Topics

• Modeling Philosophies– Where Population Balance Models (PBMs) fit in

• Important Characteristics

• Framework

• Uses– Cancer Examples

• Parameter Identification

• Potential Applications

Page 38: Introduction to Population Balance Modeling Spring 2007.

Example – Cell Cycle Specific Behaviors

• Cell cycle specific drug– Discrete – cell cycle phase, p– Continuous – age, τ, (time since last transition)

• (3, )

Phase 1G0/G1

Phase 2S

Phase 3G2/M

1( , , )n p t

(1, ) (2, )

k(C)

Page 39: Introduction to Population Balance Modeling Spring 2007.

In vitro verification

• Total population dynamics

• Phase oscillations– Period– Amplitude– Dampening

• Co-culture of Jurkat and HL60 performed for selective treatment

Page 40: Introduction to Population Balance Modeling Spring 2007.

Age-averaged PBM

Gardner SN. “Modelling multi-drug chemotherapy: tailoring treatment to individuals.” Journal of Theoretical Biology, 214: 181-207, 2002.

Page 41: Introduction to Population Balance Modeling Spring 2007.

Prognosis Tree

a < 0.01

If a<0.01 if a>0.01

Page 42: Introduction to Population Balance Modeling Spring 2007.

Ramkrishna’s resonance chemotherapy model

• Hypothesis testing (potential protocols)

• Patient specific treatments

• Treatment strength necessary or desired

Page 43: Introduction to Population Balance Modeling Spring 2007.

Cell Cycle Transitions Γ(1,τ)

• Cannot measure ages

• Balanced growth– Γ => age distributions– Predict dynamics

• BrdU– Labels S subpopulation– Phase transient amidst

balanced growth

• Match transition rates

TransitionRates

InitialCondition

Model Predictions

BrdU Experimental Data

ObjectiveFunction

Page 44: Introduction to Population Balance Modeling Spring 2007.

Initial Condition

• Balanced growth

• Population increase

• Eigen analysis– Balanced growth age-distribution

0

1)(where)()(),( iiii fftNtn

0

1

0 0)(exp)(exp)( dDddDf out

iioutiii

)()(

tdt

tdDΝ

N

0

)()()( dfDDD joutij

inijij

TransitionRates

InitialCondition

Model Predictions

Page 45: Introduction to Population Balance Modeling Spring 2007.

Unbalanced subpopulation growth amidst total population balance growth

BrdU Experimental Data

Page 46: Introduction to Population Balance Modeling Spring 2007.

Cell Cycle Transition Rates

ΓG2/M

G0/G1 UL

G0/G1 L

S UL

S L

G2/M UL

G2/M LΓG0/G1 ΓS

BrdU

Labeling

(cell cycle)

8 hrs later

Page 47: Introduction to Population Balance Modeling Spring 2007.

Transition Rates Residence Time Distribution

Sherer et al. 2007

Page 48: Introduction to Population Balance Modeling Spring 2007.

Example – protein (p) structured cell cycle rates

Phase 1G0/G1

Ṗ(1,p)

Phase 2S

Ṗ(2,p)

Phase 3G2/M

Ṗ(3,p)

Γ(1,p) Γ(2,p)

Γ(3,p)

G0/G1 phase

S phase

G2/M phase high protein production

low protein production

Kromenaker and Srienc 1991

Page 49: Introduction to Population Balance Modeling Spring 2007.

Rate Identification Procedure

• Assume balanced growth– Specific growth rate

• Measure– Stable cell cycle phase

protein distributions– Protein distributions at

transition

• Inverse model– Phase transition rates– Protein synthesis rates

Page 50: Introduction to Population Balance Modeling Spring 2007.

Modeling a surrogate marker for the drug 6MP

• Bone marrow– 6MP inhibits DNA synthesis

• Blood stream– Red blood cells (RBCs) become larger– RBC size correlates with steady-state 6MP level

Blood Stream

Mature RBCsBone Marrow

Maturing~120 days

Stemcell reticulocyte

Page 51: Introduction to Population Balance Modeling Spring 2007.

RBC Maturation

• Cell volume• DNA inhibition

– Time since division– DNA synthesis rateDNA synthesis rate

• Maturation– Discrete state

• Transferrin and glycophorin A

– ContinuousContinuous• Time spent in state

Page 52: Introduction to Population Balance Modeling Spring 2007.

Maturation + division + growth rates

• Maturation– Tag cells in 1st stage

with pkh26– Track movement

• Division– Cell generations

• Growth– Satisfy volume

distributions

Page 53: Introduction to Population Balance Modeling Spring 2007.

MCV => Drug level

0 50 100 150 200 250 300 350 400 450 5000

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

6TGN level (pM)

Pro

ba

bili

ty

6TGN level with MCV

8184

87

90

93

9699

Page 54: Introduction to Population Balance Modeling Spring 2007.

Treatment Evaluation

• Actual cell behavior may be unobservable– Remission– Predictive models

• Model parameters known• Treatment constantly adjusted

– Immune system (Neutrophil count)– Toxic side effects

• Objective– Increase cure “rate”– Increase quality of life

• Quantitative comparison– Expected population– Likelihood of cure

Page 55: Introduction to Population Balance Modeling Spring 2007.

Small number of cells• Uncertainty in timing of events

– Extrinsically stochastic– Average out if large number of cells– Greater variations if small number of cells

• Master probability density– Monte Carlo simulations– Cell number probability distribution

• Seminal cancerous cells

• Nearing “cure”

• Dependent upon transition rate functions

Page 56: Introduction to Population Balance Modeling Spring 2007.

Cell number probability distribution & likelihood of cure

Sherer et al. 2007

Page 57: Introduction to Population Balance Modeling Spring 2007.

Approximate treatment necessary to nearly ensure cure

• Small expected population– Small population mean

• Be certain that the population is small– Small standard deviation in number of cells

Page 58: Introduction to Population Balance Modeling Spring 2007.

Patient Variability

Page 59: Introduction to Population Balance Modeling Spring 2007.

Quiescence – importance of structure of transition rates