Introduction to PCR and analysis of gene expression using RT-PCR

62
Brad Porter Lecture: Introduction to PCR & nalysis of Gene Expression Using RT-PC Fri, June 15, 2007 11:00 – 11:50 AM

Transcript of Introduction to PCR and analysis of gene expression using RT-PCR

Page 1: Introduction to PCR and analysis of gene expression using RT-PCR

Brad Porter

Lecture:

Introduction to PCR & Analysis of Gene Expression Using RT-PCR

Fri, June 15, 200711:00 – 11:50 AM 

Page 2: Introduction to PCR and analysis of gene expression using RT-PCR

Briefly, what is PCR?

Page 3: Introduction to PCR and analysis of gene expression using RT-PCR

http://www.sumanasinc.com/webcontent/anisamples/molecularbiology/pcr.html

Polymerase Chain Reaction

DNA Denatures at 94°C

Primers anneal to single stranded DNA ~55°C

Thermostable TAQ polymerase extends primers at ~72°C

5’3’

5’ 3’

Target DNA is doubled.Cycle is then repeated.

Target DNA

Page 4: Introduction to PCR and analysis of gene expression using RT-PCR

How was PCR discovered?

Page 5: Introduction to PCR and analysis of gene expression using RT-PCR

PCR originates from DNAsequencing. So, lets first review DNA sequencing.

Page 6: Introduction to PCR and analysis of gene expression using RT-PCR

Primer

3’5’

5’3’

Primer Anneals & DNA Polymerase Adds Deoxynucleoside triphosphates

37°C

Extension

New DNA strandis created

Sequencing is performed by DNA replication

Page 7: Introduction to PCR and analysis of gene expression using RT-PCR

ATGCATGCATGC????????????????????????????????????3’ 5’

TACGTACGTACGATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer

3’

DNAPol.

TACGTACGTACG????????????????????????????????ATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer

3’

DNAPol.

dNTPs (or bases) are being added, butwe do not know the sequence.

Page 8: Introduction to PCR and analysis of gene expression using RT-PCR

What if DNA extension could be terminatedat a known nucleotide using a mixture of

normal bases and termination bases

TACGTACGTACGTGTATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer DNA

Pol.

A

TACGTACGTACGTGT CGATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer

A

DNAPol.

A

Normal base getsincorporated

By probability termination will occurat every “A”

Page 9: Introduction to PCR and analysis of gene expression using RT-PCR

dATPdGTPdCTPdTTP+

dATPdGTPdCTP+dTTP

dATPdGTP+dCTPdTTP

dATP+dGTPdCTPdTTP

A

T

GC

DNA

What if four reactions were set up tostop at each nucleotide?

Page 10: Introduction to PCR and analysis of gene expression using RT-PCR

TACGTACGTACG ATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer

DNAPol.

T

TACGTACGTACG GATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer

T

DNAPol.

T

Normal base getsincorporated

Page 11: Introduction to PCR and analysis of gene expression using RT-PCR

TACGTACGTACGT ATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer

DNAPol.

G

TACGTACGTACGT TACATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer

G

DNAPol.

G

Normal base getsincorporated

Page 12: Introduction to PCR and analysis of gene expression using RT-PCR

TACGTACGTACGTGTAATGCATGCATGC????????????????????????????????????

3’ 5’

5’Primer

DNAPol.

C

Page 13: Introduction to PCR and analysis of gene expression using RT-PCR

ATACGTACGTACG???5’

TACGTACGTACG??????5’ A

TACGTACGTACG???????5’

TACGTACGTACG?????5’ G

GTACGTACGTACG?5’

TACGTACGTACG???????5’

CTACGTACGTACG????5’

TACGTACGTACG???????5’

TACGTACGTACG??5’ T

TTACGTACGTACG5’

TACGTACGTACG???????5’

Page 14: Introduction to PCR and analysis of gene expression using RT-PCR

ATACGTACGTACG???5’

TACGTACGTACG??????5’ A

TACGTACGTACG?????5’ G

GTACGTACGTACG?5’

TACGTACGTACG??5’ T

TTACGTACGTACG5’

CTACGTACGTACG????5’

TACGTACGTACG???????5’

5’

3’

Chain-termination providessequence!

Page 15: Introduction to PCR and analysis of gene expression using RT-PCR

dATPdGTPdCTPdTTP+ ddTTP

dATPdGTPdCTP+ ddCTP

dTTP

dATPdGTP + ddGTP

dCTPdTTP

dATP + ddATP

dGTPdCTPdTTP

What causes chain termination?

Dideoxynucleoside Triphosphates

Page 16: Introduction to PCR and analysis of gene expression using RT-PCR

Deoxynucleoside triphosphatesDeoxy adenosine triphosphate (dATP)Deoxy guanosine triphosphate (dGTP)Deoxy thymidine triphosphate (dTTP)Deoxy cytidine triphosphate (dCTP)

ChainTermination

3’

5’

DNAPolymerase

Lacks a 3’ hydroxyl group.Acts as a terminator because, once incorporated, no other nucelotide can be added.

X3’

5’

DNAPolymerase

Dideoxynucleoside triphosphatesDideoxy adenosine triphosphate (ddATP)Dideoxy guanosine triphosphate (ddGTP)Dideoxy thymidine triphosphate (ddTTP)Dideoxy cytidine triphosphate (ddCTP)

ChainExtension

Page 17: Introduction to PCR and analysis of gene expression using RT-PCR

PhD 1943 Cambridge University

Nobel Prize In Chemistry 1958Amino acid sequence of insulin

Nobel Prize In Chemistry 1980Sequenced the first genome, phage Φ-X174, by hand using a method that he developed.Frederick Sanger

The Sanger Dideoxy sequencing methodwas the foundation for the discovery ofPCR.

Page 18: Introduction to PCR and analysis of gene expression using RT-PCR

http://smcg.cifn.unam.mx/enp-unam/03-EstructuraDelGenoma/animaciones/secuencia.swf

Dideoxy sequencing, one more time.

Page 19: Introduction to PCR and analysis of gene expression using RT-PCR

Ok, but what is the connectionbetween DNA sequencing and

PCR?

Page 20: Introduction to PCR and analysis of gene expression using RT-PCR

1983Emeryville, CaliforniaCetus Corporation

Henry Erlich was working on methods for detecting point mutations.

5’-TACGTACGTACGA*GGAGTCCGGAATG-3’

A? T? G? C?

Page 21: Introduction to PCR and analysis of gene expression using RT-PCR

Why not do Sanger sequencing at a single base pair?

Kary B. Mullis

5’-TACGTACGTACGA*GGAGTCCGGAATG-3’

CCTCAGGCCTTAC-5’+

ddTTP ddCTPddGTPddATP

Page 22: Introduction to PCR and analysis of gene expression using RT-PCR

First step to a Nobel Prize:

As you think, ignore obvious problems.

Page 23: Introduction to PCR and analysis of gene expression using RT-PCR

Kary wanted to use total genomic DNA, but he forgot the primer would likely mis-pair and ruin his experiment. In “misguided puttering”, Kary kept thinking!

CC

TC

AG

GC

CT

TA

C-5’

CCTCAGGCCTTAC-5’

CCTCAGGCCTTAC-5’

CCTCAGGCCTTAC-5’

Page 24: Introduction to PCR and analysis of gene expression using RT-PCR

Kary and girlfriend chemist Jennifer BarnettMendocino County

Page 25: Introduction to PCR and analysis of gene expression using RT-PCR

What if I use twoprimers for confirmation?

+

ddTTP ddCTPddGTPddATP

3’-ATGCATGCATGCT*CCTCAGGCCTTAC-5’

5’-GAATTCTACGTACGTACGAF-long

5’-TACGTACGTACGA*GGAGTCCGGAATG-3’

CCTCAGGCCTTAC-5’

R-short

Page 26: Introduction to PCR and analysis of gene expression using RT-PCR

+

ddTTP ddCTPddGTPddATP

3’-ATGCATGCATGCTACCTCAGGCCTTAC-5’5’-GAATTCTACGTACGTACGATF-long

5’-TACGTACGTACGATGGAGTCCGGAATG-3’ ACCTCAGGCCTTAC-5’ R-short

F-long

R-short

Page 27: Introduction to PCR and analysis of gene expression using RT-PCR

What about straynucleotide triphosphates?

+

ddTTP ddCTPddGTPddATP

3’-ATGCATGCATGCT*CCTCAGGCCTTAC-5’

5’-GAATTCTACGTACGTACGAF-long

5’-TACGTACGTACGA*GGAGTCCGGAATG-3’

CCTCAGGCCTTAC-5’

R-short

dNTP

dNTP

Page 28: Introduction to PCR and analysis of gene expression using RT-PCR

I can destroy straydNTPs with alkalinephosphatase!

But, bacterial alkaline phosphatase will remain because it cannotbe heat killed. It will destroy theddNTP’s (not true).

Page 29: Introduction to PCR and analysis of gene expression using RT-PCR

Second step to a Nobel Prize:

Make up problems thatdo not exist and try

to solve them.

Page 30: Introduction to PCR and analysis of gene expression using RT-PCR

I can deplete nucleotidesby adding polymerasefirst without ddNTP’s

3’-ATGCATGCATGCT*CCTCAGGCCTTAC-5’

5’-GAATTCTACGTACGTACGAF-long

5’-TACGTACGTACGA*GGAGTCCGGAATG-3’

CCTCAGGCCTTAC-5’

R-short

dNTP

dNTP

Page 31: Introduction to PCR and analysis of gene expression using RT-PCR

Denature and anneal primers

Polymerase extension

DNA replicated!

Anderson Valley

Third step to a Nobel Prize. Recognize PCR when

you find it.

1 Copy

2 Copies!

Page 32: Introduction to PCR and analysis of gene expression using RT-PCR

NOBEL PRIZE!

…..not so fast

Page 33: Introduction to PCR and analysis of gene expression using RT-PCR

Final step to a Nobel Prize:

Try to get someoneto listen to you.

Page 34: Introduction to PCR and analysis of gene expression using RT-PCR

“…no one was particularly enthusiastic about it.”

1984 annual Cetus Scientific Meeting…..”nobody seemed to be interested in my poster….” “People would glance at it and keep walking.”

At first, people did not get it.

Then Joshua Lederberg (also a NobelLaureate) said:

“Why didn’t I think of that?”

Page 35: Introduction to PCR and analysis of gene expression using RT-PCR

1993 Nobel Prize

Page 36: Introduction to PCR and analysis of gene expression using RT-PCR

So, how is PCR important to your life,right now?

Many SNP’s are associated withdisease. Do you have a risk allele?

Page 37: Introduction to PCR and analysis of gene expression using RT-PCR

Let’s set up a PCR reactionand find out!

Page 38: Introduction to PCR and analysis of gene expression using RT-PCR

Loci for Type 2 Diabetes and Triglyceride Levels

GCAGCTCACCTCCAGCTTTAGTTTTC[C/T]CATGACAGTAAGTCTATTACCCTCC

Risk allele

Page 39: Introduction to PCR and analysis of gene expression using RT-PCR

First, you need to select primers for PCR

• No, you do not need a computer program to selectprimers.

• I prefer 24 bp long and end on G or C

• Others prefer 20 bp long and end on A or T

• Try to have at least 50% G’s +C’s to ensurereasonable annealing temperature

That’s about it. Do not waste too much time selectingprimers.

Page 40: Introduction to PCR and analysis of gene expression using RT-PCR

Forward Primer Selection

TAAATTCTTTGGAACAGGGGCATGGATTATAAAAGATGTAAGATAATAAAAAGCATTTGTATTTGACTTTGGAATGTATTGTACTTACATTTGTCTAGAGGTGTGTCTATTCTGGCTATTCTCTTTAAAGGAGCCATTCTATCGTGAACAGATCCTGTTGGAGCTGTTTTCTTGTTCTACCAACCTTCAGCCACCTCTCTGTCTTTCATATTACTTATTGGCAGGGTTTCAAAAGGTTTTAGTCCTTACTTAATATAAACAAAAATGTACAATATTGACAAAGTTTCAGTTAAGCAGATGAAATTCTAAGAGTTAAGCTGGGATTTTCCAAAATAATCCTGTTAACAGACTTGAAAGCACTTATCAGTTCTGTCTAATGAAGACATTAGAACACCATAACCTTTCCGG

CCCATTTTCTTTGTCAATAAGCGTTCTTGCCCTGTCAGCAGCTCACCTCCAGCTTTAGTTTTCXCATGACAGTAAGTCTATTACCCTCCTGATCTGTCTTCTGGCTCCTCCTACCCAGGATGGGGAAGGTTTTTGACTTTACTGATATTCTCAGAACAAATTTTGGGAAGTAAATATAAGGTTTTCCAGTCGGGTGCAGTGGCTCACGCCTATGATCCCAGCGCTTTGGGAAACCAAGGTGGGTGGATCACCTGAGGTCAGGAGTTTGAGACCAGCTTGGCCAATAAGGTGAAACCCCATCTCTACAAAAATTAGTTGGGCGTGGTGGCGGCACCTGTAAATCCAGCTACTCAGGAGGCTGAGGCAAGAGGATTGCTTGAATCTGGGAGCCGGAGGTTGAAGTGAACTGAGATTGGGCCACTGCATTCTAGCCTGGGCGACAAGAGTGAAGCTCCATCTCAAAAAAAAAAAAAAAGATGAGGTTTTCCTTAAGAGCACTAACCTAGTATACTGCACAGGTGCCTGTATTCATGCATCCCACACAGAAAGAGAAAATACTTGTCTGAACTTGTCCATAAATTCAGAATCCTGCCCCTTAAC

Forward Primer: 5’-AGAACACCATAACCTTTCCGGCCC-3’

Page 41: Introduction to PCR and analysis of gene expression using RT-PCR

TAAATTCTTTGGAACAGGGGCATGGATTATAAAAGATGTAAGATAATAAAAAGCATTTGTATTTGACTTTGGAATGTATTGTACTTACATTTGTCTAGAGGTGTGTCTATTCTGGCTATTCTCTTTAAAGGAGCCATTCTATCGTGAACAGATCCTGTTGGAGCTGTTTTCTTGTTCTACCAACCTTCAGCCACCTCTCTGTCTTTCATATTACTTATTGGCAGGGTTTCAAAAGGTTTTAGTCCTTACTTAATATAAACAAAAATGTACAATATTGACAAAGTTTCAGTTAAGCAGATGAAATTCTAAGAGTTAAGCTGGGATTTTCCAAAATAATCCTGTTAACAGACTTGAAAGCACTTATCAGTTCTGTCTAATGAAGACATTAGAACACCATAACCTTTCCGG

CCCATTTTCTTTGTCAATAAGCGTTCTTGCCCTGTCAGCAGCTCACCTCCAGCTTTAGTTTTCXCATGACAGTAAGTCTATTACCCTCCTGATCTGTCTTCTGGCTCCTCCTACCCAGGATGGGGAAGGTTTTTGACTTTACTGATATTCTCAGAACAAATTTTGGGAAGTAAATATAAGGTTTTCCAGTCGGGTGCAGTGGCTCACGCCTATGATCCCAGCGCTTTGGGAAACCAAGGTGGGTGGATCACCTGAGGTCAGGAGTTTGAGACCAGCTTGGCCAATAAGGTGAAACCCCATCTCTACAAAAATTAGTTGGGCGTGGTGGCGGCACCTGTAAATCCAGCTACTCAGGAGGCTGAGGCAAGAGGATTGCTTGAATCTGGGAGCCGGAGGTTGAAGTGAACTGAGATTGGGCCACTGCATTCTAGCCTGGGCGACAAGAGTGAAGCTCCATCTCAAAAAAAAAAAAAAAGATGAGGTTTTCCTTAAGAGCACTAACCTAGTATACTGCACAGGTGCCTGTATTCATGCATCCCACACAGAAAGAGAAAATACTTGTCTGAACTTGTCCATAAATTCAGAATCCTGCCCCTTAAC

Reverse Primer Selection

Reverse Primer: 5’-GCGTGAGCCACTGCACCCGACTGG-3’

Page 42: Introduction to PCR and analysis of gene expression using RT-PCR

AGAACACCATAACCTTTCCGGCCCATTTTCTTTGTCAATAAGCGTTCTTGCCCTGTCAGCAGCTCACCTCCAGCTTTAGTTTTCXCATGACAGTAAGTCTATTACCCTCCTGATCTGTCTTCTGGCTCCTCCTACCCAGGATGGGGAAGGTTTTTGACTTTACTGATATTCTCAGAACAAATTTTGGGAAGTAAATATAAGGTTTTCCAGTCGGGTGCAGTGGCTCACGC

Amplified Fragment Will Be 230bp

Page 43: Introduction to PCR and analysis of gene expression using RT-PCR

Forward Primer: 5’-AGAACACCATAACCTTTCCGGCCC-3’

Reverse Primer: 5’-GCGTGAGCCACTGCACCCGACTGG-3’

Page 44: Introduction to PCR and analysis of gene expression using RT-PCR

TAAATTCTTTGGAACAGGGGCATGGATTATAAAAGATGTAAGATAATAAAAAGCATTTGTATTTGACTTTGGAATGTATTGTACTTACATTTGTCTAGAGGTGTGTCTATTCTGGCTATTCTCTTTAAAGGAGCCATTCTATCGTGAACAGATCCTGTTGGAGCTGTTTTCTTGTTCTACCAACCTTCAGCCACCTCTCTGTCTTTCATATTACTTATTGGCAGGGTTTCAAAAGGTTTTAGTCCTTACTTAATATAAACAAAAATGTACAATATTGACAAAGTTTCAGTTAAGCAGATGAAATTCTAAGAGTTAAGCTGGGATTTTCCAAAATAATCCTGTTAACAGACTTGAAAGCACTTATCAGTTCTGTCTAATGAAGACATTAGAACACCATAACCTTTCCGG

CCCATTTTCTTTGTCAATAAGCGTTCTTGCCCTGTCAGCAGCTCACCTCCAGCTTTAGTTTTCXCATGACAGTAAGTCTATTACCCTCCTGATCTGTCTTCTGGCTCCTCCTACCCAGGATGGGGAAGGTTTTTGACTTTACTGATATTCTCAGAACAAATTTTGGGAAGTAAATATAAGGTTTTCCAGTCGGGTGCAGTGGCTCACGCCTATGATCCCAGCGCTTTGGGAAACCAAGGTGGGTGGATCACCTGAGGTCAGGAGTTTGAGACCAGCTTGGCCAATAAGGTGAAACCCCATCTCTACAAAAATTAGTTGGGCGTGGTGGCGGCACCTGTAAATCCAGCTACTCAGGAGGCTGAGGCAAGAGGATTGCTTGAATCTGGGAGCCGGAGGTTGAAGTGAACTGAGATTGGGCCACTGCATTCTAGCCTGGGCGACAAGAGTGAAGCTCCATCTCAAAAAAAAAAAAAAAGATGAGGTTTTCCTTAAGAGCACTAACCTAGTATACTGCACAGGTGCCTGTATTCATGCATCCCACACAGAAAGAGAAAATACTTGTCTGAACTTGTCCATAAATTCAGAATCCTGCCCCTTAAC

5’-AGAACACCATAACCTTTCCGG

CCC-3’

Forward Primer: 5’-AGAACACCATAACCTTTCCGGCCC-3’

Before ordering: Imagine the primers annealing to the DNA

Reverse Primer: 5’-GCGTGAGCCACTGCACCCGACTGG-3’

AGCCACTGCACCCGACTGG-3’ Reverse Primer: 5’-GCGTG

Page 45: Introduction to PCR and analysis of gene expression using RT-PCR

Order From IDT

Forward Primer: 5’-AGAACACCATAACCTTTCCGGCCC-3’

Reverse Primer: 5’-GCGTGAGCCACTGCACCCGACTGG-3’

Page 46: Introduction to PCR and analysis of gene expression using RT-PCR

Start

Finish

H20 28.25μl10XPCR Buffer 5.0μl25mM MgCl2 3.0μl4mM dNTP’s 2.5μl10pmol Forward Primer 5.0μl (10pmol)10pmol Reverse Primer 5.0μl (10pmol)Template DNA >104 copies of target sequence (1.0μl)TAQ Polymerase 0.25μl (5u/μl)

PCR Components

Page 47: Introduction to PCR and analysis of gene expression using RT-PCR

Use thin-wallPCR tubes

Use thin-wall tubes designed for PCR

Page 48: Introduction to PCR and analysis of gene expression using RT-PCR

Old School “Perkin Elmer 2400” PCR Thermocycler

Hot bonnet prevents condensation.

Page 49: Introduction to PCR and analysis of gene expression using RT-PCR

Mineral Oil

Sample

If your thermocycler does not have a hot bonnetor if you will need to open the hot bonnet to

remove or modify a reaction, use mineraloil.

Page 50: Introduction to PCR and analysis of gene expression using RT-PCR

Runs on antifreeze and refrigerant

Paper towels to adsorb leakingorange-colored antifreeze.

Page 51: Introduction to PCR and analysis of gene expression using RT-PCR

Antifreeze

Page 52: Introduction to PCR and analysis of gene expression using RT-PCR

R134a frigerant

Page 53: Introduction to PCR and analysis of gene expression using RT-PCR

Radiator &fan

Page 54: Introduction to PCR and analysis of gene expression using RT-PCR

New Thermocyclers = Peltier Cooling & Gradient Blocks

Peltier effect It occurs when a current is passed through two dissimilar metals or semiconductors (n-type and p-type) that are connected to each other at two junctions (Peltier junctions). The current drives a transfer of heat from one junction to the other: one junction cools off while the other heats up; as a result, the effect is often used for thermoelectric cooling. This effect was observed in 1834 by Jean Peltier.

Page 55: Introduction to PCR and analysis of gene expression using RT-PCR

A typical PCR thermocycling program

Page 56: Introduction to PCR and analysis of gene expression using RT-PCR

55°C

62°C61°C

60°C59°C58°C57°C56°C

Gradient thermocyclers allow for optimization of the annealing temperature

Page 57: Introduction to PCR and analysis of gene expression using RT-PCR

What is RT-PCR?

Reverse Transcription- Polymerase Chain Reaction

Page 58: Introduction to PCR and analysis of gene expression using RT-PCR

RT-PCR is like any other PCR exceptit uses cDNA as a template.

Page 59: Introduction to PCR and analysis of gene expression using RT-PCR

How do you make cDNA?

cDNA can be created from RNA using

RNA-dependent DNA polymerase

(reverse transcriptase)

Page 60: Introduction to PCR and analysis of gene expression using RT-PCR

How do you make cDNA?

mRNA AAAAAAAAAAAA5’- -3’TTTTTTTTTTTT-5’

mRNA AAAAAAAAAAAA5’- -3’TTTTTTTTTTTT-5’cDNA

Reverse transcriptase Oligo (dT) Primer

Template For PCR

3’-

3’-

Page 61: Introduction to PCR and analysis of gene expression using RT-PCR

RT-PCR measures the presenceof cDNA corresponding to

its respective RNA.

RT-PCR is, therefore, used to indirectly estimate RNA abundance which

MAY indicate the level of gene expression.

Page 62: Introduction to PCR and analysis of gene expression using RT-PCR

Major Points

• Sequencing and PCR both use DNA polymerase and replicate DNA (PCR uses TAQ DNA polymerase).

• Kary Mullis discovered PCR while thinking about a possible dideoxy sequencing experiment.

• Half of a Nobel discovery is finding it, the other half is realizing what you have found.

• RT-PCR is used to estimate gene expression