Introduction to Orbital Mechanics: V, the Conic Sections...

54
MAE 5540 - Propulsion Systems Introduction to Orbital Mechanics: !V, the Conic Sections, and Kepler’s First Law Its not where you are, its how fast you are going” Isp=400sec Isp=300sec Isp=200sec !V m 0 /m f Sutton and Biblarz, Chapter 4

Transcript of Introduction to Orbital Mechanics: V, the Conic Sections...

Page 1: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Introduction to Orbital Mechanics:

!V, the Conic Sections, and Kepler’s First

Law

“Its not where you are,

its how fast you are going”

Isp=400sec

Isp=300sec

Isp=200sec

!V

m0/mf

Sutton and Biblarz, Chapter 4

Taylor Chapter 2
Page 2: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Example 1:

Isaac Newton explains how to launch a Satellite

Page 3: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Example 2:

Sub Orbital Launch

• Still “in orbit”

Around earth center

• What is velocity

At apogee is

Zero?

• Do we still need

!V?

Page 4: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

How Much Delta-V do you need?

Thrust, Weight, Lift, Drag

draggravityburnoutrequired VVVV !+!+!=!Orbit

Yes!

Page 5: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Rocket Design 101

…. How Much !V do you need to accomplish

the mission?

draggravityburnoutrequired VVVV !+!+!=!Orbit

• Obviously we have a LOT! To learn about !V!

Page 6: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Gravitational Physics• Now a bit of "gravitational physics"

Isaac Newton, (1642-1727)

Gravitational Physics

Page 7: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Orbital Velocity• Object in orbit is actually in "free-fall" that is ... the object is literally falling around the Earth (or Planet)

• When the Centrifugal Force of the "free-fall" counters the Gravitational Force ... the object is said to have achieved Orbital Velocity

V

Fgrav

Fcentrifugal

Orbital Velocity

Page 8: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

N-body problem

Page 9: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Gravitational Attraction on a10,000 kg Spacecraft

0.001

0.01

0.1

10

100

10000 20000 30000 40000

Orbital Altitude, kilometers

1

Att

racti

ve F

orce, N

ew

ton

s

Attraction of Earth

Attraction of Sun

Attraction of Moon

Geo

Page 10: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Page 11: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Page 12: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Two Body Problem

Page 13: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Page 14: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Kepler’s laws

Page 15: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Conic Sections

Page 16: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Circular Orbits:Circular orbits

Page 17: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

i

Page 18: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Circular Orbits

Page 19: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Elliptical Orbits:

!VT

• Adding "!V" turns a circularorbit into an elliptical orbit

Elliptical orbits

Page 20: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

What is an Ellipse?

b

a

c

Geometry of an Ellipse

(-c,o) (c,o)

y

x

!

xy

rpra

ra rp+ = 2 a

perifocus

apfocus

"line of apsides"

semi-major axis

semi-minor axis

Page 21: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Ellipse Equation: Earth

Centered at origin

b

a

c

(-c,0) (0,0)

y

x!

y

rpra

(-2c,0)

Page 22: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Polar-Form of theEllipse Equation

b

a

c

(o,o)

r pr a

(-c,o)

c

Geometry of an Ellipse(Earth Centered at perifocus)

(-2c,o)

y

x+c

!

j

i

Xx+2c

Page 23: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Polar-Form of theEllipse Equation (cont'd)

Page 24: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Polar-Form of Ellipse Equation (cont'd)

Page 25: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Polar-Form of Ellipse Equation (cont'd)

• Substituting and simplifyiing

Page 26: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Polar Form of Ellipse EquationPolar-Form of the Ellipse Equation

(concluded)

• Defining the elliptical eccentricity as

• The polar form of the ellipse equation reduces to

Page 27: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Parameters of theElliptical Orbit

Page 28: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Fundamental Elliptical Orbit Definitions

Ra Rp

perigee

apogee

2a

2b“Line of Apsides”

a -- Semi-major axis

b -- Semi-minor axis

e -- Orbital eccentricity

Page 29: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Fundamental Elliptical Orbit Definitionscont’d

Orbit Apogee and Perigee (closest and farthest approaches)… semi major axis and eccentricity related to apogee and perigee radius

Page 30: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Fundamental Elliptical Orbit Definitionscont’d

Location within an Orbit: “true anomaly” "

Ra Rp

perigee

apogee

2a

2b

!

Page 31: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Coordinate TransformationsCoordinate Transformations:

i

ji r

i!

!

!

{i, j} fixed in space

Page 32: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Coordinate Transformations:(cont;d)

i

ji r

i!

!

!

• A Matrix "trick" for coordinate transform in 2-D

Coordinate Transformations

Page 33: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Orbital Velocity

rr =

a 1! e2( )

1+ e " cos #( )"rir $

{a,e} % constant

parameters of the orbit

rV =

d

dt

rr( ) =

d

dt

a 1! e2( )

1+ e " cos #( )

&

'(

)

*+ "

rir +

a 1! e2( )

1+ e " cos #( )"

d

dt

rir( )

Velocity is the derivative of position ….

Page 34: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Orbital Velocity (2)

Differentiate r

d

dt

a 1! e2( )1+ e " cos #( )

$

%&

'

() = !

a 1! e2( )1+ e " cos #( )*+ ,-

2

$

%&

'

() " !e " sin #( ) " &#( )( ) =

a 1! e2( )1+ e " cos #( )*+ ,-

$

%&

'

() "

e " sin #( )

1+ e " cos #( )*+ ,-

$

%&

'

() " &#( ) =

e " sin #( )

1+ e " cos #( )*+ ,-

$

%&

'

() " r " &#( )

Differentiate ri

d

dt

rir( ) =

d

dt ri ! cos "( ) + j ! sin "( ) ( ) = -

ri ! sin "( ) + j ! cos "( ) ( ) ! &" = &" !

ri"

Page 35: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Orbital Velocity (3)

rV =

e ! sin "( )

1+ e ! cos "( )#$ %&! r ! &"( )

'

()

*

+, !

rir+

a 1- e2( )1+ e ! cos "( )

'

()

*

+, ! &" !

ri" =

r ! &"( )e ! sin "( )

1+ e ! cos "( )#$ %&

'

()

*

+, !

rir+

ri"

#

$..

%

&//

Need Kepler’s Second Law to get

&! ="

Page 36: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Page 37: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Parabolic Trajectories:Parabolic Trajectories

Page 38: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

What is a Parabola?

(0,0)

focus

y

xpp

Directrix

r

r!

• A parabola is the locus of all pointsequidistant from a fixed point (focus)and a line (Directrix)

• Cartesian form of the equation

Page 39: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Parabola EquationPolar Form

Use quadratic formulato solve

Page 40: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Parabola EquationPolar Form (cont'd)

Page 41: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Parabola EquationPolar Form (concluded)

• r must be > 0, therefore pick - sign

Perigee!

p = r
min
p = r
min
Page 42: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Hyperbolic Trajectories:

• If "V !" > 0 , then probe will approach anddepart along a hyperbolic trajectory

"Excess Hyperbolic Velocity" approach/departure" V! > 0

Parabolic approach/departure" V! = 0

Hyperbolic trajectories

Page 43: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

What is a Hyperbola?

c

c

a

left focus(apfocus) (2c,0)

right focus(perifocus)

(0,0)

b

c = a + b2 2 2

!

(c,0)

• A Hyperbola is the locus of all points whosedifference from two fixed points is constant

Cartesian Equation

Page 44: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Hyperbolic Equation:polar form

c

c

a

(2c,0)

right focus(perifocus)

(0,0)

b

c = a + b2 2 2

!

(c,0)

r

c

Page 45: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Hyperbolic Equation:polar form (cont'd)

Page 46: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Page 47: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Hyperbolic Asymptotes• What is the behavior of a Hyperbola at "infinity"i.e. along away from earth

Page 48: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Page 49: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Kepler’s First Law(Summary)

p = r
min
Page 50: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Homework:Compound Circular Orbits:

js

is

!s

as

ap

moon

planet

jp

ip

js

is

!s

as

moon

ap

!p

!p

TralfamadorTralfamador

Strangelove

Enterprise

E nterprise

2:

Stephen Whitmore
3
3
Page 51: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Homework:Compound Orbits(cont'd)

• Starship Enterprise orbits alien moon Tralfamador in a circular orbit of radius as

• Moon orbits alien planet Strangelove in circular orbit with radius ap

• Alien GPS system orbiting moon gives position relative to Tralfamadorian -fixed coordinate system.

• Due to gravitational damping Tralfamador, always keeps the same face directed towards Strangelove

Page 52: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Homework:Compound Orbits(cont'd)

• Compute the position vector of the Enterprise relative to Strangelove ... in the Strangeloveian -fixed coordinate system --

• Solution should have as, ap, !s, !p as parameters

Rsp

Page 53: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Coordinate TransformationsCoordinate Transformations:

i

ji r

i!

!

!

{i, j} fixed in space

Page 54: Introduction to Orbital Mechanics: V, the Conic Sections ...mae-nas.eng.usu.edu/MAE_5540_Web/propulsion_systems/section2/section2.1.pdfIntroduction to Orbital Mechanics:!V, the Conic

MAE 5540 - Propulsion Systems

Homework:Circular Orbits(concluded)

• Compute the velocity vector of the Enterprise relative to Strangelove ... in the Strangeloveian -fixed coordinate system.