Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18....

127
Introduction to Multi-Armed Bandits and Reinforcement Learning Training School on Machine Learning for Communications Paris, 23-25 September 2019

Transcript of Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18....

Page 1: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Introduction to Multi-ArmedBandits and ReinforcementLearningTraining School on Machine Learning for CommunicationsParis, 23-25 September 2019

Page 2: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Hi, I’m Lilian BessonI finishing my PhD in telecommunication and machine learningI under supervision of Prof. Christophe Moy at IETR &

CentraleSupélec in Rennes (France)I and Dr. Émilie Kaufmann in Inria in Lille

Thanks to Émilie Kaufmann for most of the slides material!

I Lilian.Besson @ Inria.frI → perso.crans.org/besson/ & GitHub.com/Naereen

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 2/ 92

.Who am I ?

Page 3: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

It’s an old name for a casino machine!

→ c© Dargaud, Lucky Luke tome 18.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 3/ 92

.What is a bandit?

Page 4: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Why Bandits?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 4/ 92

Page 5: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

A (single) agent facing (multiple) arms in a Multi-Armed Bandit.

NO!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 5/ 92

.Make money in a casino?

Page 6: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

A (single) agent facing (multiple) arms in a Multi-Armed Bandit.

NO!Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 5/ 92

.Make money in a casino?

Page 7: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Clinical trialsI K treatments for a given symptom (with unknown effect)

I What treatment should be allocated to the next patient, based onresponses observed on previous patients?

Online advertisementI K adds that can be displayed

I Which add should be displayed for a user, based on the previousclicks of previous (similar) users?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 6/ 92

.Sequential resource allocation

Page 8: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Clinical trialsI K treatments for a given symptom (with unknown effect)

I What treatment should be allocated to the next patient, based onresponses observed on previous patients?

Online advertisementI K adds that can be displayed

I Which add should be displayed for a user, based on the previousclicks of previous (similar) users?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 6/ 92

.Sequential resource allocation

Page 9: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Opportunistic Spectrum AccessI K radio channels (orthogonal frequency bands)

I In which channel should a radio device send a packet, based on thequality of its previous communications?

→ see the next talk at 4pm !

Communications in presence of a central controllerI K assignments from n users to m antennas ( combinatorial bandit)

I How to select the next matching based on the throughput observed inprevious communications?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 7/ 92

.Dynamic channel selection

Page 10: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Opportunistic Spectrum AccessI K radio channels (orthogonal frequency bands)

I In which channel should a radio device send a packet, based on thequality of its previous communications? → see the next talk at 4pm !

Communications in presence of a central controllerI K assignments from n users to m antennas ( combinatorial bandit)

I How to select the next matching based on the throughput observed inprevious communications?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 7/ 92

.Dynamic channel selection

Page 11: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Opportunistic Spectrum AccessI K radio channels (orthogonal frequency bands)

I In which channel should a radio device send a packet, based on thequality of its previous communications? → see the next talk at 4pm !

Communications in presence of a central controllerI K assignments from n users to m antennas ( combinatorial bandit)

I How to select the next matching based on the throughput observed inprevious communications?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 7/ 92

.Dynamic channel selection

Page 12: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Numerical experiments (bandits for “black-box” optimization)

I where to evaluate a costly function in order to find its maximum?

Artificial intelligence for games

I where to choose the next evaluation to perform in order to find thebest move to play next?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 8/ 92

.Dynamic allocation of computational resources

Page 13: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Numerical experiments (bandits for “black-box” optimization)

I where to evaluate a costly function in order to find its maximum?Artificial intelligence for games

I where to choose the next evaluation to perform in order to find thebest move to play next?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 8/ 92

.Dynamic allocation of computational resources

Page 14: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I rewards maximization in a stochastic bandit model= the simplest Reinforcement Learning (RL) problem (one state)=⇒ good introduction to RL !

I bandits showcase the important exploration/exploitation dilemmaI bandit tools are useful for RL

(UCRL, bandit-based MCTS for planning in games. . . )I a rich literature to tackle many specific applicationsI bandits have application beyond RL (i.e. without “reward”)I and bandits have great applications to Cognitive Radio→ see the next talk at 4pm !

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 9/ 92

.Why talking about bandits today?

Page 15: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Multi-armed BanditI Performance measure (regret) and first strategiesI Best possible regret? Lower boundsI Mixing Exploration and ExploitationI The Optimism Principle and Upper Confidence Bounds (UCB)

AlgorithmsI A Bayesian Look at the Multi-Armed Bandit ModelI Many extensions of the stationary single-player bandit modelsI Summary

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 10/ 92

.Outline of this talk

Page 16: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

K arms ⇔ K rewards streams (Xa,t)t∈N

At round t, an agent:I chooses an arm AtI receives a reward Rt = XAt ,t (from the environment)

Sequential sampling strategy (bandit algorithm):At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal: Maximize sum of rewardsT∑

t=1Rt .

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 11/ 92

.The Multi-Armed Bandit Setup

Page 17: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

K arms ⇔ K probability distributions : νa has mean µa

ν1 ν2 ν3 ν4 ν5

At round t, an agent:I chooses an arm AtI receives a reward Rt = XAt ,t ∼ νAt (i.i.d. from a distribution)

Sequential sampling strategy (bandit algorithm):At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal: Maximize sum of rewards E[

T∑t=1

Rt

].

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 11/ 92

.The Stochastic Multi-Armed Bandit Setup

Page 18: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

→ Interactive demo on this web-pageperso.crans.org/besson/phd/MAB_interactive_demo/

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 12/ 92

.Discover bandits by playing this online demo!

Page 19: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Historical motivation [Thompson 1933]

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,I chooses a treatment AtI observes a (Bernoulli) response Rt ∈ 0, 1 : P(Rt = 1|At = a) = µa

Goal: maximize the expected number of patients healed.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 13/ 92

.Clinical trials

Page 20: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Modern motivation ($$$$) [Li et al, 2010](recommender systems, online advertisement, etc)

ν1 ν2 ν3 ν4 ν5

For the t-th visitor of a website,I recommend a movie AtI observe a rating Rt ∼ νAt (e.g. Rt ∈ 1, . . . , 5)

Goal: maximize the sum of ratings.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 14/ 92

.Online content optimization

Page 21: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Opportunistic spectrum access [Zhao et al. 10] [Anandkumar et al. 11]

streams indicating channel quality

Channel 1 X1,1 X1,2 . . . X1,t . . . X1,T ∼ ν1Channel 2 X2,1 X2,2 . . . X2,t . . . X2,T ∼ ν2

. . . . . . . . . . . . . . . . . . . . . . . .Channel K XK ,1 XK ,2 . . . XK ,t . . . XK ,T ∼ νK

At round t, the device:I selects a channel AtI observes the quality of its communication Rt = XAt ,t ∈ [0, 1]

Goal: Maximize the overall quality of communications.→ see the next talk at 4pm !

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 15/ 92

.Cognitive radios

Page 22: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Performance measureand first strategies

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 16/ 92

Page 23: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Bandit instance: ν = (ν1, ν2, . . . , νK ), mean of arm a: µa = EX∼νa [X ].

µ? = maxa∈1,...,K

µa and a? = argmaxa∈1,...,K

µa.

Maximizing rewards ⇔ selecting a? as much as possible⇔ minimizing the regret [Robbins, 52]

Rν(A,T ) := Tµ?︸︷︷︸sum of rewards ofan oracle strategyalways selecting a?

− E[ T∑

t=1Rt

]︸ ︷︷ ︸

sum of rewards ofthe strategyA

What regret rate can we achieve?=⇒ consistency: Rν(A,T )/T =⇒ 0 (when T →∞)=⇒ can we be more precise?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 17/ 92

.Regret of a bandit algorithm

Page 24: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Bandit instance: ν = (ν1, ν2, . . . , νK ), mean of arm a: µa = EX∼νa [X ].

µ? = maxa∈1,...,K

µa and a? = argmaxa∈1,...,K

µa.

Maximizing rewards ⇔ selecting a? as much as possible⇔ minimizing the regret [Robbins, 52]

Rν(A,T ) := Tµ?︸︷︷︸sum of rewards ofan oracle strategyalways selecting a?

− E[ T∑

t=1Rt

]︸ ︷︷ ︸

sum of rewards ofthe strategyA

What regret rate can we achieve?=⇒ consistency: Rν(A,T )/T =⇒ 0 (when T →∞)=⇒ can we be more precise?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 17/ 92

.Regret of a bandit algorithm

Page 25: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Na(t) : number of selections of arm a in the first t rounds∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =K∑

a=1∆aE [Na(T )] .

Proof.Rν(A,T ) = µ?T − E

[ T∑t=1

XAt ,t

]= µ?T − E

[ T∑t=1

µAt

]

= E[ T∑

t=1(µ? − µAt )

]

=K∑

a=1(µ? − µa)︸ ︷︷ ︸

∆a

E[ T∑

t=11(At = a)︸ ︷︷ ︸Na(T )

].

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 18/ 92

.Regret decomposition

Page 26: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Na(t) : number of selections of arm a in the first t rounds∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =K∑

a=1∆aE [Na(T )] .

Proof.Rν(A,T ) = µ?T − E

[ T∑t=1

XAt ,t

]= µ?T − E

[ T∑t=1

µAt

]

= E[ T∑

t=1(µ? − µAt )

]

=K∑

a=1(µ? − µa)︸ ︷︷ ︸

∆a

E[ T∑

t=11(At = a)︸ ︷︷ ︸Na(T )

].

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 18/ 92

.Regret decomposition

Page 27: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Na(t) : number of selections of arm a in the first t rounds∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =K∑

a=1∆aE [Na(T )] .

A strategy with small regret should:I select not too often arms for which ∆a > 0 (sub-optimal arms)I . . . which requires to try all arms to estimate the values of the ∆a

=⇒ Exploration / Exploitation trade-off !

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 18/ 92

.Regret decomposition

Page 28: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Idea 1 : =⇒ EXPLORATION

Draw each arm T/K times

→ Rν(A,T ) =

1K

∑a:µa>µ?

∆a

T = Ω(T )

I Idea 2 : Always trust the empirical best arm =⇒ EXPLOITATION

At+1 = argmaxa∈1,...,K

µa(t) using estimates of the unknown means µa

µa(t) = 1Na(t)

t∑s=1

Xa,s1(As =a)

→ Rν(A,T ) ≥ (1− µ1)× µ2 × (µ1 − µ2)T = Ω(T )(with K = 2 Bernoulli arms of means µ1 6= µ2)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 19/ 92

.Two naive strategies

Page 29: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Idea 1 : =⇒ EXPLORATION

Draw each arm T/K times

→ Rν(A,T ) =

1K

∑a:µa>µ?

∆a

T = Ω(T )

I Idea 2 : Always trust the empirical best arm =⇒ EXPLOITATION

At+1 = argmaxa∈1,...,K

µa(t) using estimates of the unknown means µa

µa(t) = 1Na(t)

t∑s=1

Xa,s1(As =a)

→ Rν(A,T ) ≥ (1− µ1)× µ2 × (µ1 − µ2)T = Ω(T )(with K = 2 Bernoulli arms of means µ1 6= µ2)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 19/ 92

.Two naive strategies

Page 30: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Given m ∈ 1, . . . ,T/K,I draw each arm m timesI compute the empirical best arm a = argmaxa µa(Km)I keep playing this arm until round T

At+1 = a for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for K = 2 arms. If µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]= ∆E [m + (T − Km)1 (a = 2)]≤ ∆m + (∆T )× P (µ2,m ≥ µ1,m)

µa,m: empirical mean of the first m observations from arm a

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 20/ 92

.A better idea: Explore-Then-Commit (ETC)

Page 31: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Given m ∈ 1, . . . ,T/K,I draw each arm m timesI compute the empirical best arm a = argmaxa µa(Km)I keep playing this arm until round T

At+1 = a for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for K = 2 arms. If µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]= ∆E [m + (T − Km)1 (a = 2)]≤ ∆m + (∆T )× P (µ2,m ≥ µ1,m)

µa,m: empirical mean of the first m observations from arm a

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 20/ 92

.A better idea: Explore-Then-Commit (ETC)

Page 32: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Given m ∈ 1, . . . ,T/K,I draw each arm m timesI compute the empirical best arm a = argmaxa µa(Km)I keep playing this arm until round T

At+1 = a for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for K = 2 arms. If µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]= ∆E [m + (T − Km)1 (a = 2)]≤ ∆m + (∆T )× P (µ2,m ≥ µ1,m)

µa,m: empirical mean of the first m observations from arm a=⇒ requires a concentration inequality

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 20/ 92

.A better idea: Explore-Then-Commit (ETC)

Page 33: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Given m ∈ 1, . . . ,T/K,I draw each arm m timesI compute the empirical best arm a = argmaxa µa(Km)I keep playing this arm until round T

At+1 = a for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.Assumption 1: ν1, ν2 are bounded in [0, 1].

Rν(T ) = ∆E[N2(T )]= ∆E [m + (T − Km)1 (a = 2)]≤ ∆m + (∆T )× exp(−m∆2/2)

µa,m: empirical mean of the first m observations from arm a=⇒ Hoeffding’s inequality

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 21/ 92

.A better idea: Explore-Then-Commit (ETC)

Page 34: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Given m ∈ 1, . . . ,T/K,I draw each arm m timesI compute the empirical best arm a = argmaxa µa(Km)I keep playing this arm until round T

At+1 = a for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.Assumption 2: ν1 = N (µ1, σ

2), ν2 = N (µ2, σ2) are Gaussian arms.

Rν(ETC,T ) = ∆E[N2(T )]= ∆E [m + (T − Km)1 (a = 2)]≤ ∆m + (∆T )× exp(−m∆2/4σ2)

µa,m: empirical mean of the first m observations from arm a=⇒ Gaussian tail inequality

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 22/ 92

.A better idea: Explore-Then-Commit (ETC)

Page 35: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Given m ∈ 1, . . . ,T/K,I draw each arm m timesI compute the empirical best arm a = argmaxa µa(Km)I keep playing this arm until round T

At+1 = a for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.Assumption 2: ν1 = N (µ1, σ

2), ν2 = N (µ2, σ2) are Gaussian arms.

Rν(ETC,T ) = ∆E[N2(T )]= ∆E [m + (T − Km)1 (a = 2)]≤ ∆m + (∆T )× exp(−m∆2/4σ2)

µa,m: empirical mean of the first m observations from arm a=⇒ Gaussian tail inequality

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 22/ 92

.A better idea: Explore-Then-Commit (ETC)

Page 36: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Given m ∈ 1, . . . ,T/K,I draw each arm m timesI compute the empirical best arm a = argmaxa µa(Km)I keep playing this arm until round T

At+1 = a for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.Assumption: ν1 = N (µ1, σ

2), ν2 = N (µ2, σ2) are Gaussian arms.

For m = 4σ2

∆2 log(

T ∆2

4σ2

),

Rν(ETC,T ) ≤ 4σ2

[log(T∆2

2

)+ 1

]= O

( 1∆ log(T )

).

+ logarithmic regret!− requires the knowledge of T (' OKAY) and ∆ (NOT OKAY)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 23/ 92

.A better idea: Explore-Then-Commit (ETC)

Page 37: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Given m ∈ 1, . . . ,T/K,I draw each arm m timesI compute the empirical best arm a = argmaxa µa(Km)I keep playing this arm until round T

At+1 = a for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.Assumption: ν1 = N (µ1, σ

2), ν2 = N (µ2, σ2) are Gaussian arms.

For m = 4σ2

∆2 log(

T ∆2

4σ2

),

Rν(ETC,T ) ≤ 4σ2

[log(T∆2

2

)+ 1

]= O

( 1∆ log(T )

).

+ logarithmic regret!− requires the knowledge of T (' OKAY) and ∆ (NOT OKAY)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 23/ 92

.A better idea: Explore-Then-Commit (ETC)

Page 38: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I explore uniformly until the random time

τ = inf

t ∈ N : |µ1(t)− µ2(t)| >

√8σ2 log(T/t)

t

0 200 400 600 800 1000

−1.

0−

0.5

0.0

0.5

1.0

I aτ = argmax a µa(τ) and (At+1 = aτ ) for t ∈ τ + 1, . . . ,T

Rν(S-ETC,T ) ≤ 4σ2

∆ log(T∆2

)+ C

√log(T ) = O

( 1∆ log(T )

).

=⇒ same regret rate, without knowing ∆ [Garivier et al. 2016]Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 24/ 92

.Sequential Explore-Then-Commit (2 Gaussian arms)

Page 39: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Two Gaussian arms: ν1 = N (1, 1) and ν2 = N (1.5, 1)

0 200 400 600 800 10000

100

200

300

400

500 UniformFTLSequential-ETC

0 200 400 600 800 10000

5

10

15

20

25

30

35

40

Sequential-ETC

Expected regret estimated over N = 500 runs for Sequential-ETC versusour two naive baselines.

(dashed lines: empirical 0.05% and 0.95% quantiles of the regret)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 25/ 92

.Numerical illustration

Page 40: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

For two-armed Gaussian bandits,

Rν(ETC,T ) . 4σ2

∆ log(T∆2

)= O

( 1∆ log(T )

).

=⇒ problem-dependent logarithmic regret boundRν(algo,T ) = O(log(T )).

Observation: blows up when ∆ tends to zero. . .

Rν(ETC,T ) . min[4σ2

∆ log(T∆2

),∆T

]

≤√T min

u>0

[4σ2

u log(u2), u]≤ C√T .

=⇒ problem-independent square-root regret boundRν(algo,T ) = O(

√T ).

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 26/ 92

.Is this a good regret rate?

Page 41: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Best possible regret?Lower Bounds

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 27/ 92

Page 42: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Context: a parametric bandit model where each arm is parameterized byits mean ν = (νµ1 , . . . , νµK ), µa ∈ I.

distributions ν ⇔ µ = (µ1, . . . , µK ) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := KL(νµ, νµ′

)= EX∼νµ

[log dνµ

dνµ′(X )

]

Theorem [Lai and Robbins, 1985]For uniformly efficient algorithms (Rµ(A,T ) = o(Tα) for all α ∈ (0, 1)and µ ∈ IK ),

µa < µ? =⇒ lim infT→∞

Eµ[Na(T )]logT ≥ 1

kl(µa, µ?) .

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 28/ 92

.The Lai and Robbins lower bound

Page 43: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Context: a parametric bandit model where each arm is parameterized byits mean ν = (νµ1 , . . . , νµK ), µa ∈ I.

distributions ν ⇔ µ = (µ1, . . . , µK ) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := (µ− µ′)2

2σ2 (Gaussian bandits with variance σ2)

Theorem [Lai and Robbins, 1985]For uniformly efficient algorithms (Rµ(A,T ) = o(Tα) for all α ∈ (0, 1)and µ ∈ IK ),

µa < µ? =⇒ lim infT→∞

Eµ[Na(T )]logT ≥ 1

kl(µa, µ?) .

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 28/ 92

.The Lai and Robbins lower bound

Page 44: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Context: a parametric bandit model where each arm is parameterized byits mean ν = (νµ1 , . . . , νµK ), µa ∈ I.

distributions ν ⇔ µ = (µ1, . . . , µK ) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := µ log(µ

µ′

)+ (1− µ) log

( 1− µ1− µ′

)(Bernoulli bandits)

Theorem [Lai and Robbins, 1985]For uniformly efficient algorithms (Rµ(A,T ) = o(Tα) for all α ∈ (0, 1)and µ ∈ IK ),

µa < µ? =⇒ lim infT→∞

Eµ[Na(T )]logT ≥ 1

kl(µa, µ?) .

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 28/ 92

.The Lai and Robbins lower bound

Page 45: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I For two-armed Gaussian bandits, ETC satisfies

Rν(ETC,T ) . 4σ2

∆ log(T∆2

)= O

( 1∆ log(T )

),

with ∆ = |µ1 − µ2|.

I The Lai and Robbins’ lower bound yields, for large values of T ,

Rν(A,T ) & 2σ2

∆ log(T∆2

)= Ω

( 1∆ log(T )

),

as kl(µ1, µ2) = (µ1−µ2)2

2σ2 .

=⇒ Explore-Then-Commit is not asymptotically optimal.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 29/ 92

.Some room for better algorithms?

Page 46: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Mixing Exploration andExploitation

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 30/ 92

Page 47: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

The ε-greedy rule [Sutton and Barton, 98] is the simplest way toalternate exploration and exploitation.

ε-greedy strategyAt round t,I with probability ε

At ∼ U(1, . . . ,K)I with probability 1− ε

At = argmaxa=1,...,K

µa(t).

=⇒ Linear regret: Rν (ε-greedy,T ) ≥ εK−1K ∆minT .

∆min = mina:µa<µ?

∆a.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 31/ 92

.A simple strategy: ε-greedy

Page 48: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

A simple fix: make ε decreasing!

εt-greedy strategyAt round t,I with probability εt := min

(1, K

d2t

)probability with t

At ∼ U(1, . . . ,K)I with probability 1− εt

At = argmaxa=1,...,K

µa(t − 1).

Theorem [Auer et al. 02]

If 0 < d ≤ ∆min, Rν (εt-greedy,T ) = O(

1d2K log(T )

).

=⇒ requires the knowledge of a lower bound on ∆min.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 32/ 92

.A simple strategy: ε-greedy

Page 49: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

The Optimism PrincipleUpper Confidence Bounds Algorithms

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 33/ 92

Page 50: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Step 1: construct a set of statistically plausible modelsI For each arm a, build a confidence interval Ia(t) on the mean µa :

Ia(t) = [LCBa(t),UCBa(t)]

LCB = Lower Confidence BoundUCB = Upper Confidence Bound

Figure: Confidence intervals on the means after t rounds

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 34/ 92

.The optimism principle

Page 51: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Step 2: act as if the best possible model were the true model(“optimism in face of uncertainty”)

Figure: Confidence intervals on the means after t rounds

Optimistic bandit model = argmaxµ∈C(t)

maxa=1,...,K

µa

I That is, select

At+1 = argmaxa=1,...,K

UCBa(t).

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 35/ 92

.The optimism principle

Page 52: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(α)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 36/ 92

Page 53: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− 1/t.

=⇒ tool: concentration inequalitiesExample: rewards are σ2 sub-Gaussian

E[Z ] = µ and E[eλ(Z−µ)

]≤ eλ2σ2/2. (1)

Hoeffding inequalityZi i.i.d. satisfying (1). For all (fixed) s ≥ 1

P(Z1 + · · ·+ Zs

s ≥ µ+ x)≤ e−sx2/(2σ2)

I νa bounded in [0, 1]: 1/4 sub-GaussianI νa = N (µa, σ

2): σ2 sub-Gaussian

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 37/ 92

.How to build confidence intervals?

Page 54: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− 1/t.

=⇒ tool: concentration inequalitiesExample: rewards are σ2 sub-Gaussian

E[Z ] = µ and E[eλ(Z−µ)

]≤ eλ2σ2/2. (1)

Hoeffding inequalityZi i.i.d. satisfying (1). For all (fixed) s ≥ 1

P(Z1 + · · ·+ Zs

s ≤ µ− x)≤ e−sx2/(2σ2)

I νa bounded in [0, 1]: 1/4 sub-GaussianI νa = N (µa, σ

2): σ2 sub-Gaussian

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 37/ 92

.How to build confidence intervals?

Page 55: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− 1/t.

=⇒ tool: concentration inequalitiesExample: rewards are σ2 sub-Gaussian

E[Z ] = µ and E[eλ(Z−µ)

]≤ eλ2σ2/2. (1)

Hoeffding inequalityZi i.i.d. satisfying (1). For all (fixed) s ≥ 1

P(Z1 + · · ·+ Zs

s ≤ µ− x)≤ e−sx2/(2σ2)

BCannot be used directly in a bandit model as the number ofobservations s from each arm is random!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 37/ 92

.How to build confidence intervals?

Page 56: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Na(t) =∑t

s=1 1(As =a) number of selections of a after t roundsI µa,s = 1

s∑s

k=1 Ya,k average of the first s observations from arm aI µa(t) = µa,Na(t) empirical estimate of µa after t rounds

Hoeffding inequality + union bound

P(µa ≤ µa(t) + σ

√α log(t)Na(t)

)≥ 1− 1

t α2 −1

Proof.

P(µa > µa(t) + σ

√α log(t)Na(t)

)≤ P

∃s ≤ t : µa > µa,s + σ

√α log(t)

s

t∑s=1

P

µa,s < µa − σ

√α log(t)

s

≤ t∑s=1

1tα/2 = 1

tα/2−1 .

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 38/ 92

.How to build confidence intervals?

Page 57: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Na(t) =∑t

s=1 1(As =a) number of selections of a after t roundsI µa,s = 1

s∑s

k=1 Ya,k average of the first s observations from arm aI µa(t) = µa,Na(t) empirical estimate of µa after t rounds

Hoeffding inequality + union bound

P(µa ≤ µa(t) + σ

√α log(t)Na(t)

)≥ 1− 1

t α2 −1

Proof.

P(µa > µa(t) + σ

√α log(t)Na(t)

)≤ P

∃s ≤ t : µa > µa,s + σ

√α log(t)

s

t∑s=1

P

µa,s < µa − σ

√α log(t)

s

≤ t∑s=1

1tα/2 = 1

tα/2−1 .

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 38/ 92

.How to build confidence intervals?

Page 58: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

UCB(α) selects At+1 = argmaxa UCBa(t) where

UCBa(t) = µa(t)︸ ︷︷ ︸exploitation term

+√α log(t)Na(t)︸ ︷︷ ︸

exploration bonus

.

I this form of UCB was first proposed for Gaussian rewards[Katehakis and Robbins, 95]

I popularized by [Auer et al. 02] for bounded rewards:UCB1, for α = 2 → see the next talk at 4pm !

I the analysis was UCB(α) was further refined to hold for α > 1/2 inthat case [Bubeck, 11, Cappé et al. 13]

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 39/ 92

.A first UCB algorithm

Page 59: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

0

1

6 31 436 17 9

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 40/ 92

.A UCB algorithm in action (movie)

Page 60: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(α)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 41/ 92

Page 61: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Theorem [Auer et al, 02]UCB(α) with parameter α = 2 satisfies

Rν(UCB1,T ) ≤ 8

∑a:µa<µ?

1∆a

log(T ) +(1 + π2

3

)( K∑a=1

∆a

).

TheoremFor every α > 1 and every sub-optimal arm a, there exists a constantCα > 0 such thatEµ[Na(T )] ≤ 4α

(µ? − µa)2 log(T ) + Cα.

It follows thatRν(UCB(α),T ) ≤ 4α

∑a:µa<µ?

1∆a

log(T ) + KCα.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 42/ 92

.Regret of UCB(α) for bounded rewards

Page 62: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Several ways to solve the exploration/exploitation trade-offI Explore-Then-CommitI ε-greedyI Upper Confidence Bound algorithms

I Good concentration inequalities are crucial to build good UCBalgorithms!

I Performance lower bounds motivate the design of (optimal)algorithms

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 43/ 92

.Intermediate Summary

Page 63: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

A Bayesian Look at theMAB Model

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 44/ 92

Page 64: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Bayesian Bandits

Two points of view

Bayes-UCB

Thompson Sampling

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 45/ 92

Page 65: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

1952 Robbins, formulation of the MAB problem

1985 Lai and Robbins: lower bound, first asymptotically optimal algorithm

1987 Lai, asymptotic regret of kl-UCB1995 Agrawal, UCB algorithms1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits2002 Auer et al: UCB1 with finite-time regret bound2009 UCB-V, MOSS. . .

2011,13 Cappé et al: finite-time regret bound for kl-UCB

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 46/ 92

.Historical perspective

Page 66: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

1933 Thompson: a Bayesian mechanism for clinical trials1952 Robbins, formulation of the MAB problem1956 Bradt et al, Bellman: optimal solution of a Bayesian MAB problem1979 Gittins: first Bayesian index policy1985 Lai and Robbins: lower bound, first asymptocally optimal algorithm1985 Berry and Fristedt: Bandit Problems, a survey on the Bayesian MAB1987 Lai, asymptotic regret of kl-UCB + study of its Bayesian regret1995 Agrawal, UCB algorithms1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits2002 Auer et al: UCB1 with finite-time regret bound2009 UCB-V, MOSS. . .2010 Thompson Sampling is re-discovered

2011,13 Cappé et al: finite-time regret bound for kl-UCB2012,13 Thompson Sampling is asymptotically optimal

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 47/ 92

.Historical perspective

Page 67: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

νµ = (νµ1 , . . . , νµK ) ∈ (P)K .

I Two probabilistic models two points of view!

Frequentist model Bayesian modelµ1, . . . , µK µ1, . . . , µK drawn from a

unknown parameters prior distribution : µa ∼ πa

arm a: (Ya,s)si.i.d.∼ νµa arm a: (Ya,s)s |µ

i.i.d.∼ νµa

I The regret can be computed in each case

Frequentist Regret Bayesian regret(regret) (Bayes risk)

Rµ(A,T )= Eµ

[T∑

t=1(µ? − µAt )

]Rπ(A,T )= Eµ∼π

[T∑

t=1(µ? − µAt )

]=∫Rµ(A,T )dπ(µ)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 48/ 92

.Frequentist versus Bayesian bandit

Page 68: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Two types of tools to build bandit algorithms:

Frequentist tools Bayesian tools

MLE estimators of the means Posterior distributionsConfidence Intervals πt

a = L(µa|Ya,1, . . . ,Ya,Na(t))

0

1

9 3 448 18 21

0

1

6 3 451 5 34

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 49/ 92

.Frequentist and Bayesian algorithms

Page 69: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Bernoulli bandit model µ = (µ1, . . . , µK )I Bayesian view: µ1, . . . , µK are random variables

prior distribution : µa ∼ U([0, 1])

=⇒ posterior distribution:

πa(t) = L (µa|R1, . . . ,Rt)

= Beta(Sa(t)︸ ︷︷ ︸#ones

+1,Na(t)− Sa(t)︸ ︷︷ ︸#zeros

+1)

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

π0

πa(t)

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

πa(t)

πa(t+1)

si Xt+1

= 1

πa(t+1)

si Xt+1

= 0

Sa(t) =t∑

s=1Rs1(As =a) sum of the rewards from arm a

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 50/ 92

.Example: Bernoulli bandits

Page 70: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

A Bayesian bandit algorithm exploits the posterior distributions of themeans to decide which arm to select.

0

1

2 4 346 107 40

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 51/ 92

.Bayesian algorithm

Page 71: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Bayesian Bandits

Two points of view

Bayes-UCB

Thompson Sampling

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 52/ 92

Page 72: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, . . . , µK )I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means

(µ1, . . . , µK ) after t observations

The Bayes-UCB algorithm chooses at time t

At+1 = argmaxa=1,...,K

Q(1− 1

t(log t)c , πa(t))

where Q(α, π) is the quantile of order α of the distribution π.

α

Q(α,π)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 53/ 92

.The Bayes-UCB algorithm

Page 73: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, . . . , µK )I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means

(µ1, . . . , µK ) after t observations

The Bayes-UCB algorithm chooses at time t

At+1 = argmaxa=1,...,K

Q(1− 1

t(log t)c , πa(t))

where Q(α, π) is the quantile of order α of the distribution π.

Bernoulli reward with uniform prior:I πa(0) i .i .d∼ U([0, 1]) = Beta(1, 1)I πa(t) = Beta(Sa(t) + 1,Na(t)− Sa(t) + 1)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 53/ 92

.The Bayes-UCB algorithm

Page 74: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, . . . , µK )I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means

(µ1, . . . , µK ) after t observations

The Bayes-UCB algorithm chooses at time t

At+1 = argmaxa=1,...,K

Q(1− 1

t(log t)c , πa(t))

where Q(α, π) is the quantile of order α of the distribution π.

Gaussian rewards with Gaussian prior:I πa(0) i .i .d∼ N (0, κ2)I πa(t) = N

(Sa(t)

Na(t)+σ2/κ2 ,σ2

Na(t)+σ2/κ2

)Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 53/ 92

.The Bayes-UCB algorithm

Page 75: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

0

1

6 19 443 4 27

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 54/ 92

.Bayes UCB in action (movie)

Page 76: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Bayes-UCB is asymptotically optimal for Bernoulli rewards

Theorem [K.,Cappé,Garivier 2012]Let ε > 0. The Bayes-UCB algorithm using a uniform prior over the armsand parameter c ≥ 5 satisfies

Eµ[Na(T )] ≤ 1 + ε

kl(µa, µ?) log(T ) + oε,c (log(T )) .

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 55/ 92

.Theoretical results in the Bernoulli case

Page 77: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Bayesian Bandits

Insights from the Optimal Solution

Bayes-UCB

Thompson Sampling

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 56/ 92

Page 78: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

1933 Thompson: in the context of clinical trial, the allocation of a treatmentshould be some increasing function of its posterior probability to be optimal

2010 Thompson Sampling rediscovered under different namesBayesian Learning Automaton [Granmo, 2010]Randomized probability matching [Scott, 2010]

2011 An empirical evaluation of Thompson Sampling: an efficient algorithm,beyond simple bandit models[Li and Chapelle, 2011]

2012 First (logarithmic) regret bound for Thompson Sampling[Agrawal and Goyal, 2012]

2012 Thompson Sampling is asymptotically optimal for Bernoulli bandits[K., Korda and Munos, 2012][Agrawal and Goyal, 2013]

2013- Many successful uses of Thompson Sampling beyond Bernoulli bandits(contextual bandits, reinforcement learning)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 57/ 92

.Historical perspective

Page 79: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Two equivalent interpretations:I “select an arm at random according to its probability of being the best”I “draw a possible bandit model from the posterior distribution and act

optimally in this sampled model” 6= optimistic

Thompson Sampling: a randomized Bayesian algorithm ∀a ∈ 1..K, θa(t) ∼ πa(t)At+1 = argmax

a=1...Kθa(t).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

μ1

θ1(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

μ2

θ2(t)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 58/ 92

.Thompson Sampling

Page 80: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Problem-dependent regret

∀ε > 0, Eµ[Na(T )] ≤ 1 + ε

kl(µa, µ?) log(T ) + oµ,ε(log(T )).

This results holds:I for Bernoulli bandits, with a uniform prior

[K. Korda, Munos 12][Agrawal and Goyal 13]I for Gaussian bandits, with Gaussian prior[Agrawal and Goyal 17]I for exponential family bandits, with Jeffrey’s prior [Korda et al. 13]

Problem-independent regret [Agrawal and Goyal 13]For Bernoulli and Gaussian bandits, Thompson Sampling satisfies

Rµ(TS,T ) = O(√

KT log(T )).

I Thompson Sampling is also asymptotically optimal for Gaussian withunknown mean and variance [Honda and Takemura, 14]

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 59/ 92

.Thompson Sampling is asymptotically optimal

Page 81: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I a key ingredient in the analysis of [K. Korda and Munos 12]

PropositionThere exists constants b = b(µ) ∈ (0, 1) and Cb <∞ such that

∞∑t=1

P(N1(t) ≤ tb

)≤ Cb.

N1(t) ≤ tb

= there exists a time range of length at least t1−b − 1

with no draw of arm 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

6

7

8

9

µ2

µ1

µ2 + δ

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 60/ 92

.Understanding Thompson Sampling

Page 82: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Short horizon, T = 1000 (average over N = 10000 runs)

0 100 200 300 400 500 600 700 800 900 1000−2

0

2

4

6

8

10

12

KLUCB

KLUCB+

KLUCB−H+

Bayes UCB

Thompson Sampling

FH−Gittins

K = 2 Bernoulli arms µ1 = 0.2, µ2 = 0.25

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 61/ 92

.Bayesian versus Frequentist algorithms

Page 83: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Long horizon, T = 20000 (average over N = 50000 runs)

K = 10 Bernoulli arms bandit problemµ = [0.1 0.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01]

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 62/ 92

.Bayesian versus Frequentist algorithms

Page 84: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Other Bandit Models

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 63/ 92

Page 85: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 64/ 92

Page 86: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationary

I piece-wise stationary / abruptly changingI slowly-varyingI adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 87: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)

I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationary

I piece-wise stationary / abruptly changingI slowly-varyingI adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 88: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationary

I piece-wise stationary / abruptly changingI slowly-varyingI adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 89: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationary

I piece-wise stationary / abruptly changingI slowly-varyingI adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 90: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationaryI piece-wise stationary / abruptly changing

I slowly-varyingI adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 91: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationaryI piece-wise stationary / abruptly changingI slowly-varying

I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 92: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationaryI piece-wise stationary / abruptly changingI slowly-varyingI adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 93: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationaryI piece-wise stationary / abruptly changingI slowly-varyingI adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 94: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Most famous extensions:I (centralized) multiple-actions

I multiple choice : choose m ∈ 2, . . . ,K − 1 arms (fixed size)I combinatorial : choose a subset of arms S ⊂ 1, . . . ,K (large space)

I non stationaryI piece-wise stationary / abruptly changingI slowly-varyingI adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)

Page 95: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

And many more extensions. . .I non stochastic, Markov models rested/restless

I best arm identification (vs reward maximization)I fixed budget settingI fixed confidence settingI PAC (probably approximately correct) algorithms

I bandits with (differential) privacy constraints

I for some applications (content recommendation)I contextual bandits : observe a reward and a context (Ct ∈ Rd)I cascading banditsI delayed feedback bandits

I structured bandits (low-rank, many-armed, Lipschitz etc)

I X -armed, continuous-armed bandits

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 66/ 92

.Many other bandits models and problems (2/2)

Page 96: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 67/ 92

Page 97: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Stationary MAB problemsArm a gives rewards sampled from the same distribution for any time step

∀t, ra(t) iid∼ νa = B(µa).

Non stationary MAB problems?(possibly) different distributions for any time step !

∀t, ra(t) iid∼ νa(t) = B(µa(t)).

=⇒ harder problem! And very hard if µa(t) can change at any step!

Piece-wise stationary problems!→ the litterature usually focuses on the easier case, when there are atmost YT = o(

√T ) intervals, on which the means are all stationary.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 68/ 92

.Piece-wise stationary bandits

Page 98: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Stationary MAB problemsArm a gives rewards sampled from the same distribution for any time step

∀t, ra(t) iid∼ νa = B(µa).

Non stationary MAB problems?(possibly) different distributions for any time step !

∀t, ra(t) iid∼ νa(t) = B(µa(t)).

=⇒ harder problem! And very hard if µa(t) can change at any step!

Piece-wise stationary problems!→ the litterature usually focuses on the easier case, when there are atmost YT = o(

√T ) intervals, on which the means are all stationary.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 68/ 92

.Piece-wise stationary bandits

Page 99: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Stationary MAB problemsArm a gives rewards sampled from the same distribution for any time step

∀t, ra(t) iid∼ νa = B(µa).

Non stationary MAB problems?(possibly) different distributions for any time step !

∀t, ra(t) iid∼ νa(t) = B(µa(t)).

=⇒ harder problem! And very hard if µa(t) can change at any step!

Piece-wise stationary problems!→ the litterature usually focuses on the easier case, when there are atmost YT = o(

√T ) intervals, on which the means are all stationary.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 68/ 92

.Piece-wise stationary bandits

Page 100: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

We plots the means µ1(t), µ2(t), µ3(t) of K = 3 arms. There are YT = 4break-points and 5 sequences between t = 1 and t = T = 5000:

0 1000 2000 3000 4000 5000Time steps t= 1. . . T, horizon T= 5000

0.2

0.4

0.6

0.8

Succ

essiv

e m

eans

of t

he K

=3 a

rms

History of means for Non-Stationary MAB, Bernoulli with 4 break-pointsArm #0Arm #1Arm #2

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 69/ 92

.Example of a piece-wise stationary MAB problem

Page 101: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

The “oracle” algorithm plays the (unknown) best armk∗(t) = argmax µk(t) (which changes between the YT ≥ 1 stationarysequences)

R(A,T ) = E[ T∑

t=1rk∗(t)(t)

]−

T∑t=1

E [r(t)] =( T∑

t=1max

kµk(t)

)−

T∑t=1

E [r(t)] .

Typical regimes for piece-wise stationary banditsI The lower-bound is R(A,T ) ≥ Ω(

√KTYT )

I Currently, state-of-the-art algorithms A obtainI R(A,T ) ≤ O(K

√TYT log(T )) if T and YT are known

I R(A,T ) ≤ O(KYT√

T log(T )) if T and YT are unknownI → our algorithm klUCB index + BGLR detector is state-of-the-art!

[Besson and Kaufmann, 19] arXiv:1902.01575

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 70/ 92

.Regret for piece-wise stationary bandits

Page 102: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

The “oracle” algorithm plays the (unknown) best armk∗(t) = argmax µk(t) (which changes between the YT ≥ 1 stationarysequences)

R(A,T ) = E[ T∑

t=1rk∗(t)(t)

]−

T∑t=1

E [r(t)] =( T∑

t=1max

kµk(t)

)−

T∑t=1

E [r(t)] .

Typical regimes for piece-wise stationary banditsI The lower-bound is R(A,T ) ≥ Ω(

√KTYT )

I Currently, state-of-the-art algorithms A obtainI R(A,T ) ≤ O(K

√TYT log(T )) if T and YT are known

I R(A,T ) ≤ O(KYT√T log(T )) if T and YT are unknown

I → our algorithm klUCB index + BGLR detector is state-of-the-art![Besson and Kaufmann, 19] arXiv:1902.01575

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 70/ 92

.Regret for piece-wise stationary bandits

Page 103: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Idea: combine a good bandit algorithm with an break-point detector

klUCB + BGLR achieves the best performance (among non-oracle)!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 71/ 92

.Results on a piece-wise stationary MAB problem

Page 104: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 72/ 92

Page 105: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

M players playing the same K -armed bandit (2 ≤ M ≤ K )

At round t:I player m selects Am,t ; then observes XAm,t ,tI and receives the reward

Xm,t =

XAm,t ,t if no other player chose the same arm0 else (= collision)

Goal:

I maximize centralized rewardsM∑

m=1

T∑t=1

Xm,t

I . . . without communication between playersI trade off : exploration / exploitation / and collisions !

Cognitive radio: (OSA) sensing, attempt of transmission if no PU,possible collisions with other SUs → see the next talk at 4pm !

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 73/ 92

.Multi-players bandits: setup

Page 106: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Idea: combine a good bandit algorithm with an orthogonalization strategy(collision avoidance protocol)

Example: UCB1 + ρrand. At round t each playerI has a stored rank Rm,t ∈ 1, . . . ,MI selects the arm that has the Rm,t-largest UCBI if a collision occurs, draws a new rank Rm,t+1 ∼ U(1, . . . ,M)I any index policy may be used in place of UCB1I their proof was wrong. . .I Early references: [Liu and Zhao, 10] [Anandkumar et al., 11]

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 74/ 92

.Multi-players bandits: algorithms

Page 107: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Idea: combine a good bandit algorithm with an orthogonalization strategy(collision avoidance protocol)

Example: our algorithm klUCB index + MC-TopM ruleI more complicated behavior (musical chair game)I we obtain a R(A,T ) = O(M3 1

∆2M

log(T )) regret upper bound

I lower bound is R(A,T ) = Ω(M 1∆2

Mlog(T ))

I order optimal, not asymptotically optimalI Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 74/ 92

.Multi-players bandits: algorithms

Page 108: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Idea: combine a good bandit algorithm with an orthogonalization strategy(collision avoidance protocol)

Example: our algorithm klUCB index + MC-TopM ruleI Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]

Remarks:I number of players M has to be known

=⇒ but it is possible to estimate it on the runI does not handle an evolving number of devices

(entering/leaving the network)I is it a fair orthogonalization rule?I could players use the collision indicators to communicate? (yes!)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 74/ 92

.Multi-players bandits: algorithms

Page 109: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

102 103 104

Time steps t=1. . . T, horizon T=50000,

101

102

103

104

Cum

ulat

ive

cent

raliz

ed re

gret

6 ∑ k=

1µ∗ kt−

9 ∑ k=

1µk

40[T

k(t)]

Multi-players M=6 : Cumulated centralized regret, averaged 40 times9 arms: [B(0.01), B(0.01), B(0.01), B(0.1) ∗ , B(0.12) ∗ , B(0.14) ∗ , B(0.16) ∗ , B(0.18) ∗ , B(0.2) ∗ ]

SIC-MMAB(UCB-H, T0 =265)SIC-MMAB(UCB, T0 =265)SIC-MMAB(kl-UCB, T0 =265)RhoRand-UCBRhoRand-kl-UCBRandTopM-UCBRandTopM-kl-UCBMCTopM-UCBMCTopM-kl-UCBSelfish-UCBSelfish-kl-UCBCentralizedMultiplePlay(UCB)CentralizedMultiplePlay(kl-UCB)MusicalChair(T0 =450)MusicalChair(T0 =900)MusicalChair(T0 =1350)Besson & Kaufmann lower-bound = 22.7 log(t)

Anandkumar et al.'s lower-bound = 14.3 log(t)

Centralized lower-bound = 3.79 log(t)

For M = 6 objects, our strategy (MC-TopM) largely outperform SIC-MMAB and ρrand.MCTopM + klUCB achieves the best performance (among decentralized algorithms) !

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 75/ 92

.Results on a multi-player MAB problem

Page 110: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Summary

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 76/ 92

Page 111: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Now you are aware of:I several methods for facing an exploration/exploitation dilemmaI notably two powerful classes of methods

I optimistic “UCB” algorithmsI Bayesian approaches, mostly Thompson Sampling

=⇒ And you can learn more about more complex bandit problems andReinforcement Learning!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 77/ 92

.Take-home messages (1/2)

Page 112: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

You also saw a bunch of important tools:I performance lower bounds, guiding the design of algorithmsI Kullback-Leibler divergence to measure deviationsI applications of self-normalized concentration inequalitiesI Bayesian tools. . .

And we presented many extensions of the single-player stationary MABmodel.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 78/ 92

.Take-home messages (2/2)

Page 113: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Check out the

“The Bandit Book”by Tor Lattimore and Csaba Szepesvári

Cambridge University Press, 2019.

→ tor-lattimore.com/downloads/book/book.pdf

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 79/ 92

.Where to know more? (1/3)

Page 114: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Reach me (or Émilie Kaufmann) out by email, if you have questions

Lilian.Besson @ Inria.fr→ perso.crans.org/besson/

Emilie.Kaufmann @ Univ-Lille.fr→ chercheurs.lille.inria.fr/ekaufman

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 80/ 92

.Where to know more? (2/3)

Page 115: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Experiment with bandits by yourself!

Interactive demo on this web-page→ perso.crans.org/besson/phd/MAB_interactive_demo/

Use our Python library for simulations of MAB problems SMPyBandits→ SMPyBandits.GitHub.io & GitHub.com/SMPyBandits

I Install with $ pip install SMPyBanditsI Free and open-source (MIT license)I Easy to set up your own bandit experiments, add new algorithms etc.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 81/ 92

.Where to know more? (3/3)

Page 116: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 82/ 92

.→ SMPyBandits.GitHub.io

Page 117: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Thanks for your attention !

Questions & Discussion ?

→ Break and then next talk by Christophe Moy“Decentralized Spectrum Learning for IoT”

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 83/ 92

.Conclusion

Page 118: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

Thanks for your attention !

Questions & Discussion ?

→ Break and then next talk by Christophe Moy“Decentralized Spectrum Learning for IoT”

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 83/ 92

.Conclusion

Page 119: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

c© Jeph Jacques, 2015, QuestionableContent.net/view.php?comic=3074

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 84/ 92

.Climatic crisis ?

Page 120: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

We are scientists. . .Goals: inform ourselves, think, find, communicate!I Inform ourselves of the causes and consequences of climatic crisis,I Think of the all the problems, at political, local and individual scales,I Find simple solutions !

=⇒ Aim at sobriety: transports, tourism, clothing, food,computations, fighting smoking, etc.

I Communicate our awareness, and our actions !

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 85/ 92

.Let’s talk about actions against the climatic crisis !

Page 121: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I My PhD thesis (Lilian Besson)“Multi-players Bandit Algorithms for Internet of Things Networks”→ perso.crans.org/besson/phd/→ GitHub.com/Naereen/phd-thesis/

I Our Python library for simulations of MAB problems, SMPyBandits→ SMPyBandits.GitHub.io

I “The Bandit Book”, by Tor Lattimore and Csaba Szepesvari→ tor-lattimore.com/downloads/book/book.pdf

I “Introduction to Multi-Armed Bandits”, by Alex Slivkins→ arXiv.org/abs/1904.07272

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 86/ 92

.Main references

Page 122: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I W.R. Thompson (1933). On the likelihood that one unknown probability exceedsanother in view of the evidence of two samples. Biometrika.

I H. Robbins (1952). Some aspects of the sequential design of experiments.Bulletin of the American Mathematical Society.

I Bradt, R., Johnson, S., and Karlin, S. (1956). On sequential designs formaximizing the sum of n observations. Annals of Mathematical Statistics.

I R. Bellman (1956). A problem in the sequential design of experiments. The indianjournal of statistics.

I Gittins, J. (1979). Bandit processes and dynamic allocation indices. Journal of theRoyal Statistical Society.

I Berry, D. and Fristedt, B. Bandit Problems (1985). Sequential allocation ofexperiments. Chapman and Hall.

I Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules.Advances in Applied Mathematics.

I Lai, T. (1987). Adaptive treatment allocation and the multi-armed banditproblem. Annals of Statistics.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 87/ 92

.References (1/6)

Page 123: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Agrawal, R. (1995). Sample mean based index policies with O(log n) regret for themulti-armed bandit problem. Advances in Applied Probability.

I Katehakis, M. and Robbins, H. (1995). Sequential choice from severalpopulations. Proceedings of the National Academy of Science.

I Burnetas, A. and Katehakis, M. (1996). Optimal adaptive policies for sequentialallocation problems. Advances in Applied Mathematics.

I Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of themultiarmed bandit problem. Machine Learning.

I Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. (2002). Thenonstochastic multiarmed bandit problem. SIAM Journal of Computing.

I Burnetas, A. and Katehakis, M. (2003). Asymptotic Bayes Analysis for the finitehorizon one armed bandit problem. Probability in the Engineering andInformational Sciences.

I Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning and Games.Cambridge University Press.

I Audibert, J-Y., Munos, R. and Szepesvari, C. (2009). Exploration-exploitationtrade-off using varianceestimates in multi-armed bandits. Theoretical ComputerScience.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 88/ 92

.References (2/6)

Page 124: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Audibert, J.-Y. and Bubeck, S. (2010). Regret Bounds and Minimax Policiesunder Partial Monitoring. Journal of Machine Learning Research.

I Li, L., Chu, W., Langford, J. and Shapire, R. (2010). A Contextual-BanditApproach to Personalized News Article Recommendation. WWW.

I Honda, J. and Takemura, A. (2010). An Asymptotically Optimal BanditAlgorithm for Bounded Support Models. COLT.

I Bubeck, S. (2010). Jeux de bandits et fondation du clustering. PhD thesis,Université de Lille 1.

I A. Anandkumar, N. Michael, A. K. Tang, and S. Agrawal (2011). Distributedalgorithms for learning and cognitive medium access with logarithmic regret. IEEEJournal on Selected Areas in Communications

I Garivier, A. and Cappé, O. (2011). The KL-UCB algorithm for bounded stochasticbandits and beyond. COLT.

I Maillard, O.-A., Munos, R., and Stoltz, G. (2011). A Finite-Time Analysis ofMulti-armed Bandits Problems with Kullback-Leibler Divergences. COLT.

I Chapelle, O. and Li, L. (2011). An empirical evaluation of Thompson Sampling.NIPS.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 89/ 92

.References (3/6)

Page 125: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I E. Kaufmann, O. Cappé, A. Garivier (2012). On Bayesian Upper ConfidenceBounds for Bandits Problems. AISTATS.

I Agrawal, S. and Goyal, N. (2012). Analysis of Thompson Sampling for themulti-armed bandit problem. COLT.

I E. Kaufmann, N. Korda, R. Munos (2012), Thompson Sampling : anAsymptotically Optimal Finite-Time Analysis. Algorithmic Learning Theory.

I Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic andnonstochastic multi-armed bandit problems. Fondations and Trends in MachineLearning.

I Agrawal, S. and Goyal, N. (2013). Further Optimal Regret Bounds for ThompsonSampling. AISTATS.

I O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz (2013).Kullback-Leibler upper confidence bounds for optimal sequential allocation.Annals of Statistics.

I Korda, N., Kaufmann, E., and Munos, R. (2013). Thompson Sampling for1-dimensional Exponential family bandits. NIPS.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 90/ 92

.References (4/6)

Page 126: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Honda, J. and Takemura, A. (2014). Optimality of Thompson Sampling forGaussian Bandits depends on priors. AISTATS.

I Baransi, Maillard, Mannor (2014). Sub-sampling for multi-armed bandits. ECML.I Honda, J. and Takemura, A. (2015). Non-asymptotic analysis of a new bandit

algorithm for semi-bounded rewards. JMLR.I Kaufmann, E., Cappé O. and Garivier, A. (2016). On the complexity of best arm

identification in multi-armed bandit problems. JMLRI Lattimore, T. (2016). Regret Analysis of the Finite-Horizon Gittins Index Strategy

for Multi-Armed Bandits. COLT.I Garivier, A., Kaufmann, E. and Lattimore, T. (2016). On Explore-Then-Commit

strategies. NIPS.I E.Kaufmann (2017), On Bayesian index policies for sequential resource allocation.

Annals of Statistics.I Agrawal, S. and Goyal, N. (2017). Near-Optimal Regret Bounds for Thompson

Sampling. Journal of ACM.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 91/ 92

.References (5/6)

Page 127: Introduction to Multi-Armed Bandits and Reinforcement Learning...c Dargaud,Lucky Luke tome 18. Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September,

I Maillard, O-A (2017). Boundary Crossing for General Exponential Families.Algorithmic Learning Theory.

I Besson, L., Kaufmann E. (2018). Multi-Player Bandits Revisited. AlgorithmicLearning Theory.

I Cowan, W., Honda, J. and Katehakis, M.N. (2018). Normal Bandits of UnknownMeans and Variances. JMLR.

I Garivier,A. and Ménard, P. and Stoltz, G. (2018). Explore first, exploite next: thetrue shape of regret in bandit problems, Mathematics of Operations Research

I Garivier, A. and Hadiji, H. and Ménard, P. and Stoltz, G. (2018). KL-UCB-switch:optimal regret bounds for stochastic bandits from both a distribution-dependentand a distribution-free viewpoints. arXiv: 1805.05071.

I Besson, L., Kaufmann E. (2019). The Generalized Likelihood Ratio Test meetsklUCB: an Improved Algorithm for Piece-Wise Non-Stationary Bandits.Algorithmic Learning Theory. arXiv: 1902.01575.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 92/ 92

.References (6/6)