Introduction to Integration Area and Definite Integral Chapter 4. INTEGRALS.

29
Introduction to Integration Area and Definite Integral Chapter 4. INTEGRALS

Transcript of Introduction to Integration Area and Definite Integral Chapter 4. INTEGRALS.

Introduction to Integration

Area and Definite Integral

Chapter 4. INTEGRALS

4.1 Area problem

• We know how to compute areas of rectilinear objects, such as rectangles, triangles, polygons

• How do we define and compute areas of more complicated regions (e.g. area enclosed by a circle)?

• Idea: approximate such regions by rectilinear regions (for example, by polygons)

Area under the curve y=f(x) between a and b

x

y

a

y = f(x)

bx

Assume f(x) ≥0 on [a,b] and consider regionR = { (x,y) | a ≤x ≤ b, 0 ≤ y ≤ f(x) }

(x,y)

f(x)

What is the area of R?

=xnx1 x2xi-1 xi

Approximation by rectangles

x

y

a

y = f(x)

bx0=

• Divide [a,b] into n intervals of equal length

• Use right endpoints to built rectangles (columns)

Area of i-th column is f(xi)•∆x

x

y

a

y = f(x)

bx0= =xnx1 x2xi-1 xi

f(xi)

∆x

f(xi)f(xi)∆x

Total area of all columns is

x

y

a

y = f(x)

bx0= =xnx1 x2xi-1 xi

f(xi)

∆x

f(xi)∆x

f(x2)∆xf(x1)∆x

f(xn)∆x

xxfxxfxxfxxf ni )(...)(...)()( 21

xxfRn

iin

1

)(

Definition. Area under the curve is

x

y

a

y = f(x)

b

xxfRAn

ii

nn

n

1

)(limlim

n=14

Theorem. If f is continuous on [a,b] then the following limit exists:

x

y

a

y = f(x)

b

xxfAn

ii

n

1

)(lim

How to find xi

x

a bx0= =xnx1 x2xi-1 xi

∆x ∆x ∆x

nabaxaxxax

nabaxaxax

axoax

/)(22

/)(1

2

1

0

nabiaxiaxi /)(

nabx /)(

Using left endpoints

=xnx1 x2xi-1 xi

x

y

a

y = f(x)

bx0=

=xnx1 x2 xi-1xi

x

y

a

y = f(x)

bx0=

f(xi-1)

∆x

f(xi-1)

Area of i-th column is f(xi-1)•∆x

=xnx1 x2 xi-1xi

x

y

a

y = f(x)

bx0=

f(xi-1)

∆x

Total area of all columns is

xxfxxfxxfxxf ni )(...)(...)()( 1110

xxfLn

iin

11)(

=xnx1 x2 xi-1xi

x

y

a bx0=

Note: Ln ≠ Rn

Ln - Rn = ?

xxfxxfxxfxxfR nin )(...)(...)()( 21

xxfxxfxxfxxfL nin )(...)(...)()( 120

Nevertheless…

• Theorem. If f(x) is continuous on [a,b], then both limits and

exist and

nnR

lim n

nL

lim

nn

nn

LR

limlim

x*nx*ix*2

Using sample points

=xnx1 x2xi-1 xi

x

y

a

y = f(x)

bx0=

Choose a sample point - an arbitrary point xi* in [xi-1, xi]for each i

x*1

xi-1x1 x2

Area of i-th column is f(xi*)•∆x

x

y

a

y = f(x)

bx0= =xnxi

f(xi*)

∆x

f(xi*)

x*i

f(xi*)∆x

Total area of all columns is

xxfxxfxxfxxf ni )(...)(...)()( ***2

*1

xxfn

ii

1

*)(

x*i=xnx1 x2

xi-1 xi

x

y

a

y = f(x)

bx0= x*1 x*2 x*n

Theorem

• If f(x) is continuous on [a,b], then the limit

exists and does not depend on the choice of sample points

xxfn

ii

n

1

*)(lim

4.2 Definite Integral

• Now we consider functions that may change sign on [a,b]

• In this case, we need to take into account sign of f(x)

• Idea: use “signed area”

A3

A2

A1

Signed area

x

y

a

y = f(x)

b

“Net Area” = A1 – A2 + A3

x*n

x*i

x*2

Choose sample points

=xnx1 x2

xi-1 xi x

y

a

y = f(x)

bx0= x*1

x*i

Signed area of i-th column is f(xi*)•∆x

=xnx1 x2

xi-1 xi x

y

a

y = f(x)

bx0=

f(xi*)

∆x

Net area of all columns is

xxfxxfxxfxxf ni )(...)(...)()( ***2

*1

xxfn

ii

1

*)(

x*n

x*i

x*2=xnx1 x2

xi-1 xi x

y

a

y = f(x)

bx0= x*1

Riemann Sum that correspond ton and given choice of sample points

xxfn

ii

1

*)(

x*n

x*i

x*2=xnx1 x2

xi-1 xi x

y

a

y = f(x)

bx0= x*1

Definite Integral of function f from a to b is defined as the limit of Riemann sums

xxfdxxfn

ii

b

an

1

*)(lim)(

x*n

x*i

x*2=xnx1 x2

xi-1 xi x

y

a

y = f(x)

bx0= x*1

Theorem

• If f(x) is continuous on [a,b], then the definite integral of function f from a to b

exists and does not depend on the choice of sample points

xxfdxxfn

ii

b

an

1

*)(lim)(

Terminology

b

a

dxxf )(Lower limit

Upper limit

Integral sign

Integrand

Definite Integral in terms of area:

b

a

AAAdxxf 321)(

A3

A2

A1

x

y

a

y = f(x)

b