INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1...

33
INTRODUCTION TO HYBRID SYSTEMS: ORIGINS, EXAMPLES, APPLICATIONS C. G. Cassandras Dept. of Manufacturing Engineering and Center for Information and Systems Engineering (CISE) Boston University [email protected] http://vita.bu.edu/cgc Christos G. Cassandras CODES Lab. - Boston University

Transcript of INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1...

Page 1: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

INTRODUCTION TOHYBRID SYSTEMS:

ORIGINS, EXAMPLES, APPLICATIONS

C. G. CassandrasDept. of Manufacturing EngineeringandCenter for Information and Systems Engineering (CISE)Boston [email protected]://vita.bu.edu/cgc

Christos G. Cassandras CODES Lab. - Boston University

Page 2: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

OUTLINE

WHAT’S A HYBRID SYSTEM…

HYBRID SYSTEMS AND COMPLEXITY:DECOMPOSITION: HYBRID SYSTEM → DESABSTRACTION: DES → HYBRID SYSTEM

EXAMPLES, APPLICATION AREAS

Christos G. Cassandras CODES Lab. - Boston University

Page 3: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

NEW “MODE”

x0

x1

),,( 1111 tuzgz =&

TIME

x1

x2

),,,( 11011 tuzxfx =

),,( 2222 tuzgz =&

),,,( 22122 tuzxfx =

Christos G. Cassandras CODES Lab. - Boston University

More on modeling frameworks, open problems, etc: [Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000]More on modeling frameworks, open problems, etc: [Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000]

TIME-DRIVENDYNAMICS

EVENT-DRIVENDYNAMICS

WHAT’S A HYBRID SYSTEM?

Page 4: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

WHAT’S A HYBRID SYSTEM? CONTINUED

TIME

x0

x1

TIME

x1

x2

TIME

x2

x3

TIME

x3

x4

TIME

xi

xi+1

xi

xi+1

),,(:DRIVENTIME

tuzgz iiii =&

),,,(:DRIVEN-EVENT

1 tuzxfx iiiii =+

Christos G. Cassandras CODES Lab. - Boston University

Page 5: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

WHAT’S A HYBRID SYSTEM? CONTINUED

x1 x2

Physical State, z

Temporal State, xxi

xi+1 = fi(xi,ui,t)SWITCHING TIMESHAVE THEIR OWN

DYNAMICS!

SWITCHING TIMESHAVE THEIR OWN

DYNAMICS!

),,( tuzgz iiii =&

hybrid

Switching Times

Christos G. Cassandras CODES Lab. - Boston University

Page 6: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

WHAT’S A HYBRID SYSTEM? CONTINUED

PLANT

CONTROLLER

REPLACE THE USUAL CONTROL LOOP BYREPLACE THE USUAL CONTROL LOOP BY

PLANTPLANT

CONTROLLER

EVENTS

SUPERVISOR

Christos G. Cassandras CODES Lab. - Boston University

Page 7: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

WHAT’S A HYBRID SYSTEM? CONTINUED

PLANT

EVENT-DRIVENDYNAMICS

TIME-DRIVENDYNAMICS

CONTROLLER

• Plant: time-driven + event-driven dynamics

• Controller affects bothtime-driven + event-driven components

• Control may becontinuous signal and/or discrete event

Christos G. Cassandras CODES Lab. - Boston University

Page 8: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

Christos G. Cassandras CODES Lab. - Boston University

TIME-DRIVENSYSTEMS

HYBRIDSYSTEMS

1980

1990

2000

EVENT-DRIVENSYSTEMS

CONTINUOUS DISCRETE

Page 9: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

DECOMPOSITION

Christos G. Cassandras CODES Lab. - Boston University

Page 10: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

Christos G. Cassandras CODES Lab. - Boston University

MORE COMPLEXLESS COMPLEX

TIME-DRIVENSYSTEM

EVENT-DRIVENSYSTEM

DECOMPOSITIONLESS COMPLEX

What exactlydoes that mean?

What exactlydoes that mean? HYBRID

SYSTEM

Page 11: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HIERARCHICAL DECOMPOSITION

PHYSICALPROCESSES

DISCRETE-EVENTPROCESSES

???

PLANNING

AIRCRAFTFLIGHTDYNAMICS

COMMANDS,RANDOMEVENTS

FLIGHT PLAN

Christos G. Cassandras CODES Lab. - Boston University

Page 12: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HIEARARCHICAL DECOMPOSITION CONTINUED

PHYSICALPROCESSES

DISCRETE-EVENTPROCESSES

???

PLANNINGDiff. Eq’s, Flows, LP

Automata, Petri nets,Queueing, Simulation

Diff. Eq’s, Detailed Simulation

MODELMODEL

Weeks - Months

Minutes - Weeks

msec - Hours

TIME SCALETIME SCALE

Christos G. Cassandras CODES Lab. - Boston University

Page 13: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID CONTROL SYSTEM

PHYSICALPROCESSES

DISCRETE-EVENTPROCESSES

CONTROLCONTROL

What exactlydoes that mean?

What exactlydoes that mean?

Christos G. Cassandras CODES Lab. - Boston University

Page 14: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

ABSTRACTION(AGGREGATION)

Christos G. Cassandras CODES Lab. - Boston University

Page 15: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

TIME-DRIVENSYSTEM

MORE COMPLEXLESS COMPLEX

HYBRIDSYSTEM

ZOOM OUT

EVENT-DRIVENSYSTEM

ABSTRACTION(AGGREGATION)LESS COMPLEX

Christos G. Cassandras CODES Lab. - Boston University

Page 16: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

LESS COMPLEX MORECOMPLEX

HYBRIDSYSTEM

Christos G. Cassandras CODES Lab. - Boston University

TIME-DRIVENSYSTEM

EVENT-DRIVENSYSTEM

HYBRIDSYSTEM

ABSTRACTION(AGGREGATION) DECOMPOSITION

Page 17: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

TOO CLOSE…too much

undesirabledetail

TOO FAR…model not

detailed enough

Christos G. Cassandras CODES Lab. - Boston University

JUST RIGHT…good model CREDIT: W.B. Gong

WHAT IS THE RIGHT ABSTRACTION LEVEL ?

Page 18: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

EXAMPLES

Christos G. Cassandras CODES Lab. - Boston University

Page 19: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEM EXAMPLES

1. Autonomous Switching, e.g., Hysteresis

uxx +=& uxx +−=&∆≥x

∆−≤x

∆−>x∆<x

Christos G. Cassandras CODES Lab. - Boston University

Page 20: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEM EXAMPLES CONTINUED

2. External Switching, e.g., Zeno’s bouncing ball

mgvvyvvx

yy

xx

−====

&&

&&

,0 ,

SwitchingEvents

Christos G. Cassandras CODES Lab. - Boston University

Page 21: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEM EXAMPLES CONTINUED

3. Controlled Switching, e.g., Interconnected tanks

Christos G. Cassandras CODES Lab. - Boston University

u1(t)

u3(t)

HIGH

LOW

HIGH

LOW

HIGH

LOW

u2(t)

Page 22: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEM EXAMPLES CONTINUED

4. Other cases of controlled switching:

- Diving: control depths for decompression

TRADEOFF: Safety vs. Time

- Vehicle transmission: control gear switching

TRADEOFF: Efficiency vs. Time

- Low-power electronics: power control

TRADEOFF: Power conservation vs. Time

- Manufacturing: process control + operational control

TRADEOFF: Product quality vs. Time

Christos G. Cassandras CODES Lab. - Boston University

Page 23: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEMS IN MANUFACTURING

Key questions facing manufacturing system integrators:

• How to integrate ‘process control’ with ‘operations control’ ?

• How to improve product QUALITY within reasonable TIME ?

PROCESS CONTROL• Physicists• Material Scientists• Chemical Engineers• ...

OPERATIONS CONTROL• Industrial Engineers, OR• Schedulers• Inventory Control• ...

Christos G. Cassandras CODES Lab. - Boston University

Page 24: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEMS IN MANUFACTURING CONTINUED

Throughout a manuf. process, each part is characterized by

• A PHYSICAL state (e.g., size, temperature, strain)

• A TEMPORAL state (e.g., total time in system, total time to due-date)

OPERATIONOPERATION

NEW TEMPORAL

STATE

TEMPORALSTATE

PHYSICALSTATE

NEW PHYSICAL

STATE

Time-drivenDynamics

Event-drivenDynamics

Christos G. Cassandras CODES Lab. - Boston University

Page 25: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEMS IN MANUFACTURING CONTINUED

EVENT-DRIVENCOMPONENT

TIME-DRIVENCOMPONENT

PartArrivals Part

Departures

ui ( )tuzgtz iii ,,)( =&

ai, zi(ai) xi, zi(xi)

{ } )(,max 1 iiiii usaxx += −

Christos G. Cassandras CODES Lab. - Boston University

Page 26: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

EXAMPLE

PROCESS TIMEPROCESS TIME

STATESTATE

ust be processed

this state(e.g., desired temperature)

zi(ui)

si(ui)

Every part starts

at this state

…and mto

Christos G. Cassandras CODES Lab. - Boston University

Page 27: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEMS IN COOPERATIVE CONTROL

Christos G. Cassandras CODES Lab. - Boston University

BASE

TARGET

THREATS

TIME-DRIVENDYNAMICS

EVENT: threat sensed

EVENT: info. communicated by team member

Page 28: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEMS IN COOP. CONTROL CONTINUED

Christos G. Cassandras CODES Lab. - Boston University

V1

V2

V3

V4

V5

Page 29: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

HYBRID SYSTEMS IN COOP. CONTROL CONTINUED

Christos G. Cassandras CODES Lab. - Boston University

V1

V2

V3

V4

V5

Optimal headingOver

Event-DrivenReceding Horizon

V6

Current Control Horizon

Page 30: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

ABSTRACTION OF A DISCRETE-EVENT SYSTEM

Christos G. Cassandras CODES Lab. - Boston University

DISCRETE-EVENTSYSTEM

Page 31: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

ABSTRACTION OF A DISCRETE-EVENT SYSTEM

DISCRETE-EVENTSYSTEM

HYBRIDSYSTEM

Christos G. Cassandras CODES Lab. - Boston University

EVENTSTIME-DRIVENFLOW RATE DYNAMICS

Page 32: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

http://vita.bu.edu/cgc/hybrid

Christos G. Cassandras CODES Lab. - Boston University

Page 33: INTRODUCTION TO HYBRID SYSTEMS · N E W “M O D E ” x0 x1 z&1 =g1(z1,u1,t) TIME x1 x2 x1 =f1(x0,z1,u1,t) z&2 =g2(z2,u2,t) x2 =f2(x1,z2,u2,t) Christos G. Cassandras CODES Lab. -

DESIGN, ANALYSIS, SYNTHESIS ISSUES

Differential equationswith jumps/switches:Stability, RobustnessOptimal Control, etc.

TIME-DRIVENWORLD

EVENT-DRIVENWORLD

Automata with state transitions dependent on diff. equations:Supervisory Control, ReachabilityPerturbation Analysis, etc.

DECIDABILITY, VERIFICATION, QUANTIZATION, SIMULATION, …[Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000][Proc. of IEEE Special Issue (Antsaklis, Ed.), 2000]

Christos G. Cassandras CODES Lab. - Boston University