Introduction to Genetics

165
Introduction to Genetics The varied patterns of stripes on zebras are due to differences in genetic makeup No two zebras have identical stripe patterns

description

Introduction to Genetics. The varied patterns of stripes on zebras are due to differences in genetic makeup No two zebras have identical stripe patterns. The Work of Gregor Mendel. What is an inheritance? To most people, it is money or property left to them by a relative who has passed away - PowerPoint PPT Presentation

Transcript of Introduction to Genetics

Page 1: Introduction to Genetics

Introduction to Genetics

• The varied patterns of stripes on zebras are due to differences in genetic makeup

• No two zebras have identical stripe patterns

Page 2: Introduction to Genetics

The Work of Gregor Mendel

• What is an inheritance?• To most people, it is money or property left to

them by a relative who has passed away• That kind of inheritance is important, of course• There is another form of inheritance, however,

that matters even more• This inheritance has been with you from the

very first day you were alive—your genesalive—your genes

Page 3: Introduction to Genetics

The Work of Gregor Mendel • Every living thing—plant or animal, microbe or human

being—has a set of characteristics inherited from its parent or parents

• Since the beginning of recorded history, people have wanted to understand how that inheritance is passed from generation to generation

• More recently, however, scientists have begun to appreciate that heredity holds the key to understanding what makes each species unique

• As a result, genetics, the scientific study of hereditygenetics, the scientific study of heredity, is now at the core of a revolution in understanding biology

Page 4: Introduction to Genetics

Gregor Mendel's Peas• The work of an Austrian monk named Gregor Mendel

was particularly important to understanding biological inheritance

• Gregor Mendel was born in 1822 in what is now the Czech Republic

• After becoming a priest, Mendel spent several years studying science and mathematics at the University of Vienna

• He spent the next 14 years working in the monastery and teaching at the high school

• In addition to his teaching duties, Mendel was in charge of the monastery garden

• In this ordinary garden, he was to do the work that In this ordinary garden, he was to do the work that changed biology foreverchanged biology forever

Page 5: Introduction to Genetics

GENETICS• Mendel:

– Studied patterns of inheritance by breeding pea plants in his monastery garden

– Seven years– Collected data from over 30,000 individual plants– Observations:

• Tall plants always produced seeds that grew into tall plants• Short plants always produced seeds that grew into short plants

– Tall and short pea plants were two distinct varieties, or pure lines • Strain is the term used to denote all plants pure for a specific trait • Offspring of pure lines (strains) have the same traits as their parents

– Mendel selected 7 pure lines (genes) with contrasting pairs of traits (14 traits / alleles / strains)

Page 6: Introduction to Genetics

Gregor Mendel's Peas• Mendel carried out his work with ordinary garden peas• He knew that part of each flower produces pollen, which

contains the plant's male reproductive cells, or sperm• Similarly, the female portion of the flower produces egg cells• During sexual reproduction, male and female reproductive cells

join, a process known as fertilization fertilization• Fertilization produces a new cell, which develops into a tiny

embryo encased within a seedseed• Pea flowers are normally self-pollinatingPea flowers are normally self-pollinating, which means that

sperm cells in pollen fertilize the egg cells in the same flower• The seeds that are produced by self-pollination inherit all of their

characteristics from the single plant that bore them• In effect, they have a single parentthey have a single parent

Page 7: Introduction to Genetics

Gregor Mendel's Peas• When Mendel took charge of the monastery garden, he

had several stocks of pea plants• These peas were true-breeding, meaning that if they

were allowed to self-pollinate, they would produce offspring identical to themselves

• One stock of seeds would produce only tall plants, another only short ones

• One line produced only green seeds, another only yellow seeds

• These true-breeding plants were the basis of These true-breeding plants were the basis of Mendel's experimentsMendel's experiments

Page 8: Introduction to Genetics
Page 9: Introduction to Genetics

Gregor Mendel's Peas• Mendel wanted to produce seeds by Mendel wanted to produce seeds by

joining male and female joining male and female reproductive cells from two different reproductive cells from two different plantsplants

• To do this, he had to prevent self-pollination

• He accomplished this by cutting cutting away the pollen-bearing male parts away the pollen-bearing male parts as shown in the figure at rightas shown in the figure at right and then dusting pollen from another plant onto the flower

• This process, which is known as cross-pollination,cross-pollination, produced seeds that had two different plants as parents

• This made it possible for Mendel to This made it possible for Mendel to cross-breed plants with different cross-breed plants with different characteristics, and then to study characteristics, and then to study the resultsthe results

Page 10: Introduction to Genetics

Gregor Mendel's Peas

Page 11: Introduction to Genetics
Page 12: Introduction to Genetics

Genes and Dominance• Mendel studied seven different pea plant traits• A traittrait is a specific characteristic, such as seed color or plant

height, that varies from one individual to another• Each of the seven traits Mendel studied had two contrasting

characters, for example, green seed color and yellow seed color

• Mendel crossed plants with each of the seven contrasting characters and studied their offspring

• We call each original pair of plants the P (parental) generation• The offspring are called the F1 , or “first filial,” generation• Filius and filia are the Latin words for “son” and “daughter”• The offspring of crosses between parents with different traits are

called hybridshybrids

Page 13: Introduction to Genetics

Genes and Dominance• What were those F1 hybrid plants like?• Did the characters of the parent plants blend in the offspring? • Not at allNot at all• To Mendel's surprise, all of the offspring had the character of

only one of the parents, as shown below• In each cross, the character of the other parent seemed to have In each cross, the character of the other parent seemed to have

disappeareddisappeared

Page 14: Introduction to Genetics

Genes and Dominance

Page 15: Introduction to Genetics
Page 16: Introduction to Genetics

Genes and Dominance• From this set of experiments, Mendel drew two conclusions:

– First conclusionFirst conclusion was that biological inheritance is determined by factorsfactors that are passed from one generation to the next

• Today, scientists call the chemical factors that determine traits genesgenes

• Each of the traits Mendel studied was controlled by one gene that occurred in two contrasting forms– These contrasting forms produced the different characters of

each trait– Example:

• The gene for plant height occurs in one form that produces tall plants and in another form that produces short plants

• The different forms of a gene are called allelesalleles– Allele (gene) for TallAllele (gene) for Tall– Allele (gene) for ShortAllele (gene) for Short

Page 17: Introduction to Genetics

Genes and Dominance• Second conclusion Second conclusion is calledis called the principle of the principle of

dominancedominance– The principle of dominance states that some alleles are some alleles are

dominant and others are recessivedominant and others are recessive• An organism with a dominant allele for a particular

form of a trait will always exhibit that form of the trait• An organism with a recessive allele for a particular

form of a trait will exhibit that form only when the dominant allele for the trait is not present

• In Mendel's experiments, the allele for tall plants was dominant and the allele for short plants was recessive

• The allele for yellow seeds was dominant, while the allele for green seeds was recessive

Page 18: Introduction to Genetics

Segregation• Mendel wanted the answer to

another question:• Had the recessive alleles

disappeared, or were they still present in the F1 plants?

• To answer this question, he allowed all seven kinds of F1 hybrid plants to produce an F2 (second filial) generation by self-pollination

• In effect, he crossed the Fhe crossed the F11 generation with itself to generation with itself to produce the Fproduce the F22 offspring, as offspring, as shown in the figure at rightshown in the figure at right

Page 19: Introduction to Genetics

Segregation

Page 20: Introduction to Genetics
Page 21: Introduction to Genetics

The F1 Cross  • The results of the F1 cross were remarkable• When Mendel compared the F2 plants, he

discovered that the traits controlled by the recessive alleles had reappeared!had reappeared!

• Roughly one fourth of the F2 plants showed the trait controlled by the recessive allele

• Why did the recessive alleles seem to disappear in the F1 generation and then reappear in the F2 generation?

• To answer this question, let's take a closer look at one of Mendel's crosses

Page 22: Introduction to Genetics

Explaining the F1 Cross  • To begin with, Mendel assumed that a dominant allele

had maskedmasked the corresponding recessive allele in the F1 generation– However, the trait controlled by the recessive allele showed

up in some of the F2 plants• This reappearance indicated that at some point the

allele for shortness had been separated from the allele for tallness– How did this separation, or segregation, of alleles occur?

• Mendel suggested that the alleles for tallness and shortness in the F1 plants segregated from each segregated from each other during the formation of the sex cells, or other during the formation of the sex cells, or gametesgametes– Did that suggestion make sense?

Page 23: Introduction to Genetics

Explaining the F1 Cross  • Let's assume, as perhaps Mendel did, that the F1

plants inherited an allele for tallness from the tall parent and an allele for shortness from the short parent– Because the allele for tallness is dominant, all the F1

plants are tall• When each F1 plant flowers and produces

gametes, the two alleles segregate from each other so that each gamete carries only a single copy of each gene– Therefore, each FTherefore, each F11 plant produces two types of plant produces two types of

gametes—those with the allele for tallness and gametes—those with the allele for tallness and those with the allele for shortnessthose with the allele for shortness

Page 24: Introduction to Genetics

Explaining the F1 Cross  • Look at the figure to the right

to see how alleles separated during gamete formation and then paired up again in the F2 generation

• Code letter is the first letter Code letter is the first letter of the dominant trait:of the dominant trait:– A capital letter T represents

a dominant allele: talltall– A lowercase letter t

represents a recessive allele: shortshort

• The result of this process is an F2 generation with new combinations of alleles

Page 25: Introduction to Genetics
Page 26: Introduction to Genetics

Explaining the F1 Cross 

Page 27: Introduction to Genetics

Segregation of Alleles     • During gamete formation, alleles

segregate from each other so that each gamete carries only a single copy of each gene

• Each F1 plant produces two types of gametes:– Those with the allele for

tallness– Those with the allele for

shortness• The alleles are paired up again The alleles are paired up again

when gametes fuse during when gametes fuse during fertilizationfertilization– The TT and Tt allele

combinations produce tall pea plants

– The tt is the only allele combination that produces a short pea plant

Page 28: Introduction to Genetics

Probability and Punnett Squares • Whenever Mendel performed a cross with pea

plants, he carefully categorized and counted the many offspring

• Every time Mendel repeated a particular cross, he obtained similar results– Example

• Whenever Mendel crossed two plants that were hybrid for stem height (Tt), about three fourths of the resulting plants were tall and about one fourth were short

• Mendel realized that the principles of principles of probability could be used to explain the probability could be used to explain the results of genetic crosses results of genetic crosses

Page 29: Introduction to Genetics

Genetics and Probability• The likelihood that a particular event will occur is

called probability• As an example of probability, consider an

ordinary event like flipping a coin:– There are two possible outcomes:

• The coin may land heads up or tails up– The chances, or probabilities, of either outcome

are equal• Therefore, the probability that a single coin flip

will come up heads is 1 chance in 2– This is 1/2, or 50 percent

Page 30: Introduction to Genetics

Genetics and Probability• If you flip a coin three times in a row, what is the

probability that it will land heads up every time?• Because each coin flip is an independent eventindependent event, the

probability of each coin's landing heads up is ½– Therefore, the probability of flipping three heads in a row is:

• ½ x ½ x ½ = 1/8

• As you can see, you have 1 chance in 8 of flipping heads three times in a row

• That the individual probabilities are multiplied That the individual probabilities are multiplied together illustrates an important point—past together illustrates an important point—past outcomes do not affect future onesoutcomes do not affect future ones

Page 31: Introduction to Genetics

Genetics and Probability• How is coin flipping relevant to genetics?

– The way in which alleles segregate is completely random, like a coin flipcompletely random, like a coin flip

• The principles of probability can be used to predict the outcomes of genetic crosses

Page 32: Introduction to Genetics

GENETICS

• Punnett Square:– If you know the genotype of the parents, it is

possible to predict the likelihood of an offspring’s inheriting a particular genotype

– Helpful way to visualize crosses– Alleles contained in the gametesgametes of the

parents are arranged on the top and left of the square

– The predicted genotypes of the possible possible offspringoffspring are shown in the inner boxes

Page 33: Introduction to Genetics

GENETICS

• Monohybrid Cross:– Cross between individuals that involves one

pair contrasting traits

Page 34: Introduction to Genetics

Punnett Squares• The gene combinations that might result

from a genetic cross can be determined by drawing a diagram known as a Punnett square

• The Punnett square shown to the right shows one of Mendel's segregation experiments

• The types of gametes produced by each F1 parent are shown along the top and left sides of the square

• The possible gene combinations for the F2 offspring appear in the four boxes that make up the square

• The letters in the Punnett square represent alleles

• In this example, T represents the dominant allele for tallness and t represents the recessive allele for shortness

• Punnett squares can be used to Punnett squares can be used to predict and compare the genetic predict and compare the genetic variations that will result from a crossvariations that will result from a cross

Page 35: Introduction to Genetics

Punnett Squares

Page 36: Introduction to Genetics

HOMOZYGOUS X HOMOZYGOUS

Page 37: Introduction to Genetics

HOMOZYGOUS X HOMOZYGOUS

Page 38: Introduction to Genetics

Punnett Squares• The principles of

probability can be used to predict the outcomes of genetic crosses

• This Punnett square shows the probability of each possible outcome of a cross between hybrid tall (Tt) pea plants

Page 39: Introduction to Genetics

Punnett Squares• Organisms that have two

identical alleles for a particular trait (TT or tt) in this example—are said to be homozygoushomozygous

• Organisms that have two different alleles (Tt) for the same trait are—heterozygouseterozygous

• Homozygous organisms are true-breeding for a particular trait (TT, tt)

• Heterozygous organisms are hybrid for a particular trait (Tt)

Page 40: Introduction to Genetics

HETEROZYGOUS X HETEROZYGOUS

Page 41: Introduction to Genetics

HOMOZYGOUS X HETEROZYGOUS

Page 42: Introduction to Genetics

HETEROZYGOUS X HETEROZYGOUS

Page 43: Introduction to Genetics

Punnett Squares• All of the tall plants have the

same phenotypephenotype, or physical characteristics (word description)– Appearance to the eye– They do not, however, have

the same genotype, or genetic makeup (Code letters or word description)

– The genotype of one third of the tall plants is TT, while the genotype of two thirds of the tall plants is Tt

• The plants in the figure to the right have the same phenotype (Tall) but different genotypes (TT and Tt)

Page 44: Introduction to Genetics

Punnett Squares

Page 45: Introduction to Genetics

GENETICS

• Test Cross:– If you know the phenotype of an organism, is

it possible to determine its genotype?• If an organism shows the recessive trait, you know

that the genotype of that individual is homozygous recessive

• A Test Cross can help determine the genotype of the unknown

– A genetic cross using a homozygous recessive type (known) to determine whether an individual is homozygous or heterozygous dominant (unknown)

Page 46: Introduction to Genetics

TEST CROSS

Page 47: Introduction to Genetics

TEST CROSS

Page 48: Introduction to Genetics

GENETICS

• Punnett Square:– If you know the genotype of the parents, it

is possible to predict the likelihood of an offspring’s inheriting a particular genotype

– Helpful way to visualize crosses– Alleles contained in the gametes of the

parents are arranged on the top and left of the square

– The predicted genotypes of the possible The predicted genotypes of the possible offspring are shown in the inner boxesoffspring are shown in the inner boxes

Page 49: Introduction to Genetics

GENETICS

• Genotype: Code of two letters that represents the two alleles per characteristic

• Example:– A tall pea plant’s genotype can be TT or Tt– A short pea plant’s genotype is tt– A green pod’s genotype can be GG or Gg– A yellow pod’s genotype is gg– A yellow pea seed’s genotype can be YY or Yy– A green pea seed’s genotype is yy

Page 50: Introduction to Genetics
Page 51: Introduction to Genetics

GENETICS• Phenotype: The visual appearance of an

organism– TT is tall plant– Tt is tall plant– tt is short plant– GG is a green pod– Gg is a green pod– gg is a yellow pod– YY is a yellow seed– Yy is a yellow seed– yy is a green seed

Page 52: Introduction to Genetics
Page 53: Introduction to Genetics

GENETICS

• Additional terms that supplement genotype:– Homozygous genotypeHomozygous genotype: organism that

carries two identical alleles• Homozygous dominant: TT, GG, YY• Homozygous recessive: tt, gg, yy

– Heterozygous genotypeHeterozygous genotype: organism that carries unlike alleles

• Tt, Gg, Yy

Page 54: Introduction to Genetics
Page 55: Introduction to Genetics

Probability and Segregation• Look again at the Punnet Square• One fourth (1/4) of the F2 plants

have two alleles for tallness (TT); 2/4, or 1/2, of the F2 plants have one allele for tallness and one allele for shortness (Tt)

• Because the allele for tallness is dominant over the allele for shortness, 3/4 of the F2 plants should be tall

• Overall, there are 3 tall plants for every 1 short plant in the F2 generation:

– Thus, the Phenotype ratio of tall Thus, the Phenotype ratio of tall plants to short plants is 3 : 1plants to short plants is 3 : 1

• This assumes, of course, that Mendel's model of segregation is correct

Page 56: Introduction to Genetics
Page 57: Introduction to Genetics

GENETICS

• Law of Segregation:– Mendel concluded that the factors governing

dominant and recessive traits were distinct units• These factors were separate, or segregated, from each other• Some factors were dominant or recessive

– Data showed that the recessive trait not reappeared in the F2 generation but reappeared in a constant proportion: 3 to 1, or 3:1

• ¾ of the plants showed the dominant trait• ¼ of the plants showed the recessive trait

Page 58: Introduction to Genetics

Probability and Segregation• Did the data from Mendel's experiments fit his

model?• Yes• The predicted ratio—3 dominant to 1 recessive—showed

up consistently, indicating that Mendel's assumptions about segregation had been correct

• For each of his seven crosses, about 3/4 of the plants showed the trait controlled by the dominant allele

• About 1/4 showed the trait controlled by the recessive allele

• Segregation did indeed occur according to Mendel's Segregation did indeed occur according to Mendel's modelmodel

Page 59: Introduction to Genetics

Probabilities Predict Averages

• Probabilities predict the average outcome of a large number of events– However, probability cannot predict the precise probability cannot predict the precise

outcome of an individual eventoutcome of an individual event• If you flip a coin twice, you are likely to get one

head and one tail– However, you might also get two heads or two tails

• To be more likely to get the expected 50 : 50 To be more likely to get the expected 50 : 50 ratio, you would have to flip the coin many ratio, you would have to flip the coin many timestimes

Page 60: Introduction to Genetics

Probabilities Predict Averages• The same is true of genetics

– The larger the number of The larger the number of offspring, the closer the offspring, the closer the resulting numbers will get resulting numbers will get to expected valuesto expected values

• If an F1 generation contains just three or four offspring, it may not match Mendelian predicted ratios– When an F1 generation

contains hundreds or thousands of individuals, however, the ratios usually come very close to matching expectations

Page 61: Introduction to Genetics

Exploring Mendelian Genetics • After showing that alleles segregate during the

formation of gametes, Mendel wondered if they did so independently– In other words, does the segregation of one pair of does the segregation of one pair of

alleles affect the segregation of another pair of alleles affect the segregation of another pair of alleles?alleles?

• For example, does the gene that determines whether a seed is round or wrinkled in shape have anything to do with the gene for seed color?– Must a round seed also be yellow?Must a round seed also be yellow?

Page 62: Introduction to Genetics

GENETICS

• Law of Independent Assortment– States that the inheritance of alleles for one

characteristic does not affect the inheritance of alleles for another characteristic. Whether a plant is short or tall, for example, has no effect upon whether its seeds are smooth or wrinkled. All of the genes separate independently.

– Monohybrid Cross: cross involving only one pair of alleles

– Dihybrid Cross: cross involving two genes

Page 63: Introduction to Genetics

Independent Assortment• To answer these questions, Mendel

performed an experiment to follow two different genes as they passed from one generation to the next

• Mendel's experiment is known as a two-two-factor cross factor cross

Page 64: Introduction to Genetics

DIHYBRID CROSSHOMOZYGOUS X HOMOZYGOUS

• Pea plant with round, yellow seeds cross pollinated with one that has wrinkled, green seeds

• RRYY X rryy

Page 65: Introduction to Genetics

DIHYBRID CROSSHOMOZYGOUS X HOMOZYGOUS

Page 66: Introduction to Genetics

Independent AssortmentTwo-Factor Cross: F1

• First, Mendel crossed true-breeding plants that produced only round yellow peas (genotype RRYY) with plants that produced wrinkled green peas (genotype rryy)

• All of the F1 offspring All of the F1 offspring produced round yellow peasproduced round yellow peas

• This shows that the alleles for yellow and round peas are dominant over the alleles for green and wrinkled peas

• A Punnett square for this cross shows that the genotype of each of these F1 plants is RrYyRrYy

Page 67: Introduction to Genetics

Independent AssortmentTwo-Factor Cross: F1

Page 68: Introduction to Genetics

Independent AssortmentTwo-Factor Cross: F1

• Mendel crossed plants that were homozygous dominant for round yellow peas with plants that were homozygous recessive for wrinkled green peas

• All of the F1 offspring were heterozygous heterozygous dominant for round dominant for round yellow peasyellow peas

Page 69: Introduction to Genetics

DIHYBRID CROSSHETEROZYGOUS X HETEROZYGOUS

• Pea plant that is tall with green pods cross pollinated with one that is short with yellow pods

• TTGG X ttgg

Page 70: Introduction to Genetics

DIHYBRID CROSSHETEROZYGOUS X HETEROZYGOUS

Page 71: Introduction to Genetics

Independent AssortmentTwo-Factor Cross

• This cross does not indicate whether genes assort, or segregate, independently

• However, it provides the hybrid plants needed for the next cross—the cross of F1 plants to produce the F2 generation

Page 72: Introduction to Genetics

Independent AssortmentThe Two-Factor Cross: F2 

• Mendel knew that the F1 plants had genotypes of RrYy• In other words, the F1 plants were all heterozygous for

both the seed shape and seed color genes• How would the alleles segregate when the F1 plants were

crossed to each other to produce an F2 generation?• Remember that each plant in the F1 generation was

formed by the fusion of a gamete carrying the dominant RY alleles with another gamete carrying the recessive ry alleles

• Did this mean that the two dominant alleles would Did this mean that the two dominant alleles would always stay together?always stay together?

• Or would they “segregate independently,” so that any Or would they “segregate independently,” so that any combination of alleles was possible? combination of alleles was possible?

Page 73: Introduction to Genetics

Independent AssortmentThe Two-Factor Cross: F2 

• In Mendel's experiment, the F2 plants produced 556 seeds

• Mendel compared the variation in the seeds

• He observed that 315 seeds were round and yellow and another 32 were wrinkled and green, the two parental phenotypes

• However, 209 of the seeds had combinations of phenotypes—and therefore combinations of alleles—not found in either parent

Page 74: Introduction to Genetics

Independent AssortmentThe Two-Factor Cross: F2 

• This clearly meant that the alleles for seed shape segregated independently of those for seed color—a principle known as principle known as independent assortmentindependent assortment

• Put another way, genes that genes that segregate independently—segregate independently—such as the genes for seed such as the genes for seed shape and seed color in pea shape and seed color in pea plants—do not influence plants—do not influence each other's inheritanceeach other's inheritance

Page 75: Introduction to Genetics

Independent AssortmentThe Two-Factor Cross: F2 

• Mendel's experimental results were very close to the 9 : 3 : 3 : 1 ratio that the Punnett square predicts

• Mendel had discovered the Mendel had discovered the principle of independent principle of independent assortmentassortment– The principle of independent

assortment states that genes states that genes for different traits can for different traits can segregate independently segregate independently during the formation of during the formation of gametesgametes

• Independent assortment helps Independent assortment helps account for the many genetic account for the many genetic variations observed in plants, variations observed in plants, animals, and other organismsanimals, and other organisms

Page 76: Introduction to Genetics

Independent AssortmentThe Two-Factor Cross: F2 

Page 77: Introduction to Genetics

Independent AssortmentThe Two-Factor Cross: F2 

• When Mendel crossed plants that were heterozygous dominant for round yellow peas, he found that the alleles segregated independently to produce the F2 generation

Page 78: Introduction to Genetics

DIHYBRID CROSSHETEROZYGOUS X HETEROZYGOUS

• Mate two guinea pigs that are heterozygous for short, black hair

• Allele for black hair (B) is dominant over the allele for brown hair (b)

• Allele for short hair (S) is dominant over the allele for long hair (s)

• Predictions and results support the principle of independent assortment

• Ratio of 9:3:3:1 results in the offspring

Page 79: Introduction to Genetics

DIHYBRID CROSSHETEROZYGOUS X HETEROZYGOUS

Page 80: Introduction to Genetics

Summary of Mendel's Principles • Mendel's principles form the basis of the modern science

of genetics• These principles can be summarized as follows:

– The inheritance of biological characteristics is determined by individual units known as genes

• Genes are passed from parents to their offspring.– In cases in which two or more forms (alleles) of the gene for

a single trait exist, some forms of the gene may be dominant and others may be recessive

– In most sexually reproducing organisms, each adult has two copies of each gene—one from each parent

• These genes are segregated from each other when gametes are formed

– The alleles for different genes usually segregate The alleles for different genes usually segregate independently of one anotherindependently of one another

Page 81: Introduction to Genetics

Beyond Dominant and Recessive Alleles

• Despite the importance of Mendel's work, there are important exceptions to most of his principles– For example, not all genes show simple patterns of

dominant and recessive alleles• In most organisms, genetics is more complicated,

because the majority of genes have more than two alleles

• In addition, many important traits are controlled by more than one gene

• Some alleles are neither dominant nor recessive, Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles or and many traits are controlled by multiple alleles or multiple genesmultiple genes

Page 82: Introduction to Genetics

Incomplete Dominance  • A cross between two four o'clock

(Mirabilis) plants shows one of these complications

• The F1 generation produced by a cross between red-flowered (RR) and white-flowered (WW) plants consists of pink-colored flowers (RW), as shown in the Punnett square

• Which allele is dominant in this case?

• Neither oneNeither one• Cases in which one allele is not

completely dominant over another are called incomplete dominanceincomplete dominance

• In incomplete dominance, the In incomplete dominance, the heterozygous phenotype is heterozygous phenotype is somewhere in between the two somewhere in between the two homozygous phenotypeshomozygous phenotypes

Page 83: Introduction to Genetics

Incomplete Dominance

Page 84: Introduction to Genetics

Codominance • A similar situation is codominancecodominance, in which both allelesboth alleles

contribute to the phenotype• For example, in certain varieties of chicken, the allele for black

feathers is codominant with the allele for white feathers– Heterozygous chickens have a color described as “erminette,”

speckled with black and white feathers• Unlike the blending of red and white colors in heterozygous four

o'clocks, black and white colors appear separately• Many human genes show codominance, too, including one for a

protein that controls cholesterol levels in the blood– People with the heterozygous form of the gene produce two

different forms of the protein, each with a different effect on cholesterol levels

Page 85: Introduction to Genetics

Multiple Alleles  • Many genes have more than two

alleles and are therefore said to have multiple allelesmultiple alleles

– This does not mean that an individual can have more than two alleles

– It only means that more than two It only means that more than two possible alleles exist in a populationpossible alleles exist in a population

• One of the best-known examples is coat color in rabbits

– A rabbit's coat color is determined by a single gene that has at least four different alleles

– The four known alleles display a pattern of simple dominance that can produce four possible coat colors

• Many other genes have multiple alleles, including the human genes for blood type (A, B, O)

Page 86: Introduction to Genetics

Multiple Alleles 

Page 87: Introduction to Genetics

GENETICS• Multiple Alleles:

– A gene with more than two alleles– Remember that each gene has a particular position

on the chromosome. All of the alleles will occur in the same position. Thus in traits governed by multiple alleles, each individual can carry only two of the possible alleles, one on each homologous chromosome

– Example:• Human blood type: three alleles (A,B,O)

– A and B alleles are both dominant over O– A and B are not dominant over each other each showing its

effect completely in the phenotype– Thus, there are 4 possible blood types A, B, AB, 0 Thus, there are 4 possible blood types A, B, AB, 0

Page 88: Introduction to Genetics

MULTIPLE ALLELES

Page 89: Introduction to Genetics

MULTIPLE ALLELES

Page 90: Introduction to Genetics

MULTIPLE ALLELES

Page 91: Introduction to Genetics

Polygenic Traits  • Many traits are produced by the interaction of

several genes• Traits controlled by two or more genes are said to be

polygenic traitspolygenic traits, which means “having many genes”• For example, at least three genes are involved in

making the reddish-brown pigment in the eyes of fruit flies– Different combinations of alleles for these genes produce very

different eye colors• Polygenic traits often show a wide range of phenotypes

– For example, the wide range of skin color in humans comes the wide range of skin color in humans comes about partly because more than four different genes about partly because more than four different genes probably control this traitprobably control this trait

Page 92: Introduction to Genetics

GENETICS• Polygenic traits: polygenic inheritance

– Characteristic controlled by several genes: multiple genes– Trait controlled by two or more genes many with multiple alleles

• Each of these genes has a different location on the chromosomes each coding for different amounts of substance

– Tend to show a wide range of variation– Examples:

• Eye color: range from light blue to green to brown to almost black– Color determined by the amount of pigment melanin in the iris

• Skin color: many possible shades between the lightest and darkest colors– Different skin-color genes work together to produce the phenotype

» Each gene directs the heavy or light production of melanin» If most of the alleles are for heavy melanin production, their effects will

combine to produce dark skin» If most of the alleles are for light production of melanin, their effects will

combine to produce light skin• Height• Facial features

Page 93: Introduction to Genetics

EYE COLOR

Page 94: Introduction to Genetics

Applying Mendel's Principles• Mendel's principles don't apply only to plants• At the beginning of the 1900s, the American geneticist

Thomas Hunt Morgan decided to look for a model organism to advance the study of genetics

• He wanted an animal that was small, easy to keep in the laboratory, and able to produce large numbers of offspring in a short period of time

• He decided to work on a tiny insect that kept showing up, uninvited, in his laboratory

• The insect was the common fruit fly, Drosophila melanogaster

Page 95: Introduction to Genetics

Applying Mendel's Principles• Morgan grew the flies in small milk bottles

stoppered with cotton gauze• Drosophila was an ideal organism for genetics

because it could produce plenty of offspring, and it did so quickly

• A single pair of flies could produce as many A single pair of flies could produce as many as 100 offspringas 100 offspring

• Before long, Morgan and other biologists had Morgan and other biologists had tested every one of Mendel's principles and tested every one of Mendel's principles and learned that they applied not just to pea learned that they applied not just to pea plants but to other organisms as well plants but to other organisms as well

Page 96: Introduction to Genetics

Applying Mendel's Principles• Mendel's principles also apply to

humans• The basic principles of Mendelian genetics

can be used to study the inheritance of study the inheritance of human traits and to calculate the human traits and to calculate the probability of certain traits appearing in probability of certain traits appearing in the next generationthe next generation

Page 97: Introduction to Genetics

GENETICS• Human Genetic Traits

– Traits controlled by a single allele of a gene are called single-allele traits

– There are about 200 single, dominant alleles most normal• Tongue rolling, free earlobe, widow’s peak, straight thumb,

bent little finger, left-over-right thumb crossing, chin cleft, mid-digital hair, short big toe

• Huntington disease (HD):– Autosomal disorder caused by a dominant gene– Gene produces a substance that interferes with the

normal functioning of the brain– Symptoms first appear in your 30’s to 40’s– Loss of muscle control, uncontrolllable physical spasms,

severe mental illness, eventually death

Page 98: Introduction to Genetics

SINGLE DOMINANT TRAITS

Page 99: Introduction to Genetics

SINGLE DOMINANT TRAITS

Page 100: Introduction to Genetics

HUNTINGTON’S DISEASE

Page 101: Introduction to Genetics

GENETICS• There are about 250 single-allele traits coded by homozygous recessive alleles

– Some single-allele traits are controlled by a codominant allele: Example:• Sickle cell disease: point mutation

– In the normal gene’s code for glutamic acid is replaced by the code for valine resulting in a structural change of the hemoglobin molecule

• Dominant allele A: produces normal hemoglobin that results in round erythrocytes (RBC)

• The codominant allele A’ codes for abnormal hemoglobin and results in sickle-shaped erythrocytes

• AA individual have normal hemoglobin and normal RBC• AA’ heterozygous individual have both normal and abnormal hemoglobin

and intermediate shaped RBC• A’A’ individuals have abnormal hemoglobin and sickle shaped RBC

– Sickle cells clump together clogging the capillaries causing great pain and impairing the flow of oxygen to the body

– The inadequate supply of erythrocytes produces severe anemia, which in turn leads to fatigue, headaches, cramps, and eventually to the failure of vital organs

Page 102: Introduction to Genetics

Genetics and the Environment• The characteristics of any organism, whether bacterium,

fruit fly, or human being, are not determined solely by the genes it inherits

• Rather, characteristics are determined by interaction characteristics are determined by interaction between genes and the environmentbetween genes and the environment

• For example, genes may affect a sunflower plant's height and the color of its flowers– However, these same characteristics are also influenced by

climate, soil conditions, and the availability of water• Genes provide a plan for development, but how that Genes provide a plan for development, but how that

plan unfolds also depends on the environmentplan unfolds also depends on the environment

Page 103: Introduction to Genetics

GENETICS

• Genes and the Environment– Genes provide the program for what an

individual may become ( provide the potential for development)

• But a particular gene will not produce the same features under all conditions

– Development of the human phenotype is influenced by the environment

• Phenotype is the result of a wide range of factors• Factors such as diet, climate, and accidents all

affect development

Page 104: Introduction to Genetics

GENETICS AND ENVIRONMENT

Page 105: Introduction to Genetics

Meiosis

• Gregor Mendel did not know where the genes he had discovered were located in the cell

• Fortunately, his predictions of how genes should behave were so specific that it was not long before biologists were certain they had found them

• Genes are located on chromosomes in Genes are located on chromosomes in the cell nucleusthe cell nucleus

Page 106: Introduction to Genetics

Meiosis • Mendel's principles of genetics require at least two

things:– First, each organism must inherit a single copy of every

gene from both each of its “parents”– Second, when an organism produces its own gametes,

those two sets of genes must be separated from each other so that each gamete contains just one set of genes

• This means that when gametes are formed, there must there must be a process that separates the two sets of genes so be a process that separates the two sets of genes so that each gamete ends up with just one setthat each gamete ends up with just one set– Although Mendel didn't know it, gametes are formed through

exactly such a process

Page 107: Introduction to Genetics

MEIOSIS

• Process by which a diploid cell produces haploid (monoploid) gametes

• Occurs in all sexually reproducing organisms

• Chromosomes of the diploid cell replicate once followed by two divisions forming four haploid (monoploid) cells

• Sometimes called reduction division

Page 108: Introduction to Genetics

Chromosome Number• As an example of how this

process works, let's consider the fruit fly, Drosophila

• A body cell in an adult fruit fly has 8 chromosomes

• Four of the chromosomes came from the fruit fly's male parent, and 4 came from its female parent

• These two sets of chromosomes are homologous,homologous, meaning that each of the 4 chromosomes that came from the male parent has a corresponding corresponding chromosome from the chromosome from the female parentfemale parent

Page 109: Introduction to Genetics

Chromosome Number

Page 110: Introduction to Genetics

Chromosome Number• Fruit-Fly

Chromosomes:– These chromosomes

are from a fruit fly (Drosophila)

– Each of the fruit fly's body cells has 8 chromosomes

Page 111: Introduction to Genetics

Chromosome Number• A cell that contains both sets of homologous

chromosomes is said to be diploid diploid, which means “two sets”– The number of chromosomes in a diploid cell is

sometimes represented by the symbol 2Nsymbol 2N• Thus for Drosophila, the diploid number is 8,

which can be written 2N = 8• Diploid cells contain two complete sets of

chromosomes and two complete sets of genes– This agrees with Mendel's idea that the cells of an

adult organism contain two copies of each gene

Page 112: Introduction to Genetics

Chromosome Number• By contrast, the gametes of sexually

reproducing organisms, including fruit flies and peas, contain only a single set of chromosomes, and therefore only a single set of genes

• Such cells are said to be haploid haploid (monoploid),(monoploid), which means “one set”– For Drosophila, this can be written as N = 4,

meaning that the haploid haploid (monoploid)number is 4(monoploid)number is 4

Page 113: Introduction to Genetics
Page 114: Introduction to Genetics

Phases of Meiosis• How are haploid (N) gamete cells

produced from diploid (2N) cells?• That's where meiosis comes in• MeiosisMeiosis is a process of reduction

division in which the number of chromosomes per cell is cut in half through the separation of homologous separation of homologous chromosomes in a diploid cellchromosomes in a diploid cell

Page 115: Introduction to Genetics

Phases of Meiosis• Meiosis usually involves two distinct divisions, called

meiosis I and meiosis II• By the end of meiosis II, the diploid cell that entered

meiosis has become 4 haploid (monoploid) cells• The figure below shows meiosis in an organism that has

a diploid number of 4 (2N = 4).

Page 116: Introduction to Genetics

Phases of Meiosis• During meiosis, the number of chromosomes per cell is

cut in half through the separation of the homologous chromosomes

• The result of meiosis is 4 haploid (monoploid) cells that are genetically different from one another and from the original cell (creating variations in the next generation)

Page 117: Introduction to Genetics

Phases of MeiosisMeiosis I

Page 118: Introduction to Genetics

Phases of Meiosis Meiosis I

• Prior to meiosis I, each chromosome is replicated

• The cells then begin to divide in a way that looks similar to mitosis

• In mitosismitosis, the 4 chromosomes line up individuallyindividually in the center of the cell– The 2 chromatids that make up each

chromosome then separate from each other

Page 119: Introduction to Genetics

Phases of Meiosis Meiosis I

• In prophase of meiosis Imeiosis I, however, each each chromosome pairschromosome pairs with its corresponding homologous homologous chromosomechromosome to form a structure called a tetradtetrad– There are 4 chromatids in a tetrad4 chromatids in a tetrad– This pairing of homologous chromosomes pairing of homologous chromosomes

is the key to understanding meiosisis the key to understanding meiosis

Page 120: Introduction to Genetics

INTERPHASE I• Chromosomes at this

time are uncoiled and not visible

• Chromosomes replicate

• Nucleus has a 4n set chromosome number

• Nuclear membrane disappears

Page 121: Introduction to Genetics

INTERPHASE I

Page 122: Introduction to Genetics

PROPHASE I• Chromosomes shorten,

thicken, and become visible

• Chromosomes are now double, consisting of two chromatids attached by a kinetochore

• The pairs of homologous chromosomes line up next to each other– This pairing of chromosomes

is called SYNAPSIS– Four chromatids (TETRAD)

Page 123: Introduction to Genetics

PROPHASE I

Page 124: Introduction to Genetics

METAPHASE I

• Tetrads align at the equator of the spindle fibers

Page 125: Introduction to Genetics

METAPHASE I

Page 126: Introduction to Genetics

Phases of Meiosis Meiosis I

• As homologous chromosomes pair up and form tetrads in meiosis I, they can exchange portions of their chromatids in a process called crossing-crossing-overover

• Crossing-over, shown in the figure at right, results in the exchange of alleles between homologous chromosomes and produces new produces new combinations of allelescombinations of alleles (creates variations in the offsprings)

Page 127: Introduction to Genetics

Phases of Meiosis Meiosis I

Page 128: Introduction to Genetics

GENETICS• Crossing over:

– Linkage groups are an important exception to the law of independent assortment of genes

– Genes that are located on the same chromosome, or in linkage groups, do not assort independently

– Genes located on the same chromosome tend to be transmitted to the offspring as a group following the Mendelian ratio for a monohybrid cross

• In most cases the genes in a linkage group are inherited as a unit– Occasionally there are exceptions, sometimes the linkage groups break

apart, or have incomplete linkage– The cause of incomplete linkage is found in meiosis– During Prophase I the homologous replicated chromosomes line up

next to each other in synapsis (tetrad)– Two homologous chromatids might twist around each other often

breaking and switching segments– This exchange of genetic material is called crossing over

Page 129: Introduction to Genetics

CROSSING OVER

Page 130: Introduction to Genetics

CROSSING OVER• Is a very precise process• Genes on homologous chromosomes are lined up in the same order• Homologous chromatids cross over, they break and fuse at

exactly the same points:– Crossing over is an equal trade– Each chromatid ends up with a complete set of genes but each new

chromosome has a combination of alleles not found in either parent• Occurs during meiosis• Can happens numerous times in the same homologous

chromatids:– Genes that are far apart on a chromosome will cross over more

frequently than genes that are close together• Genes that are close together are unlikely to end up on separate

chromosomes– This knowledge helps in chromosome mapping

Page 131: Introduction to Genetics

CROSSING OVER

Page 132: Introduction to Genetics

ANAPHASE I• One pair of chromatids

from each tetrad moves along the spindle to opposite poles

• The paired chromatids are stilled attached by their kinetochores

• Homologous chromosomes segregate

• 2n chromosome number results

Page 133: Introduction to Genetics

ANAPHASE I

Page 134: Introduction to Genetics

Phases of Meiosis Meiosis I

• What happens next?• The homologous chromosomes separate, and two new cells

are formed– Although each cell now has 4 chromatids (as it would after Although each cell now has 4 chromatids (as it would after

mitosis), something is differentmitosis), something is different• Because each pair of homologous chromosomes was separated,

neither of the daughter cells has the two complete sets of chromosomes that it would have in a diploid cell

• Those two sets have been shuffled and sorted almost like a deck of cards

• The two cells produced by meiosis I have sets of chromosomes The two cells produced by meiosis I have sets of chromosomes and alleles that are different from each other and from the and alleles that are different from each other and from the diploid cell that entered meiosis Idiploid cell that entered meiosis I

Page 135: Introduction to Genetics

TELOPHASE I• Cell divides into two

smaller cells (which are NOT identical)

• Each new cell contains one of each pair of homologous chromosomes– Each chromosome

consists of two chromatids, still attached by kinetochores

Page 136: Introduction to Genetics

TEOLPHASE I

Page 137: Introduction to Genetics

Phases of MeiosisMeiosis II 

• The two cells produced by meiosis I now enter a second meiotic division– Unlike the first division, neither cell goes through a round of

chromosome replication before entering meiosis II• Each of the cell's chromosomes has 2 chromatids• During metaphase II of meiosis, chromosomes line up

in the center of each cell• In anaphase II, the paired chromatids separate• In this example, each of the four daughter cells

produced in meiosis II receives 2 chromatids• Those four daughter cells now contain the haploid Those four daughter cells now contain the haploid

(monoploid) number (N)—just 2 chromosomes each(monoploid) number (N)—just 2 chromosomes each

Page 138: Introduction to Genetics

INTERPHASE II

• The chromatids uncoil and become invisible

• Chromatids DO NOT replicate

Page 139: Introduction to Genetics

INTERPHASE II

Page 140: Introduction to Genetics

PROPHASE II

• The chromatids condense and become visible

Page 141: Introduction to Genetics

PROPHASE II

Page 142: Introduction to Genetics

METAPHASE II

• The paired chromatids still attached by kinetochores line up at the equator of the spindle fibers

Page 143: Introduction to Genetics

METAPHASE II

Page 144: Introduction to Genetics

ANAPHASE II

• The kinetochores divide

• The separate chromatids are now called chromosomes

• The chromosomes move along the spindle fibers to opposite poles

Page 145: Introduction to Genetics

ANAPHASE II

Page 146: Introduction to Genetics

TELOPHASE II

• The chromosomes reach their destinations forming a total of four new haploid (monoploid) nuclei

• Four new cells form

Page 147: Introduction to Genetics

TELOPHASE II

Page 148: Introduction to Genetics

Gamete Formation• In male animals, the haploid gametes

produced by meiosis are called sperm• In some plants, pollen grains contain

haploid sperm cells• In female animals, generally only one of

the cells produced by meiosis is involved in reproduction– This female gamete is called an egg in

animals and an egg cell in some plants

Page 149: Introduction to Genetics

Gamete Formation• In many female animals, the cell the cell

divisions at the end of meiosis I and divisions at the end of meiosis I and meiosis II are uneven, so that a single meiosis II are uneven, so that a single cell, which becomes an egg, receives cell, which becomes an egg, receives most of the cytoplasmmost of the cytoplasm

• The other three cells produced in the female during meiosis are known as polar bodies and usually do not participate in reproduction

Page 150: Introduction to Genetics

Gamete Formation

Page 151: Introduction to Genetics

Gamete Formation• Meiosis produces four Meiosis produces four

genetically different genetically different haploid (monoploid) haploid (monoploid) cellscells

• In human males, meiosis results in four equal-sized gametes called sperm

• In human females, only one large egg cell results from meiosis– The other three cells,

called polar bodies, usually are not involved in reproduction

Page 152: Introduction to Genetics

Comparing Mitosis and Meiosis

• In a way, it's too bad that the words mitosis and meiosis sound so much like each other, because the two processes are very different

• Mitosis results in the production of two genetically identical diploid cells, whereas meiosis produces four genetically different haploid (monoploid) cells

Page 153: Introduction to Genetics

Comparing Mitosis and Meiosis

• A diploid cell that divides by mitosis gives rise to two diploid (2N) daughter cells– The daughter cells have sets of chromosomes

and alleles that are identical to each other and to the original parent cell

• Mitosis allows an organism's body to grow and replace cells

• In asexual reproduction, a new organism is produced by mitosis of the cell or cells of the parent organism

Page 154: Introduction to Genetics

Comparing Mitosis and Meiosis

• Meiosis, on the other hand, begins with a diploid cell but produces four haploid (monoploid) (N) cells– These cells are genetically different from

the diploid cell and from one another• Meiosis is how sexually reproducing sexually reproducing

organisms produce gametesorganisms produce gametes– In contrast, asexual reproduction involves asexual reproduction involves

only mitosisonly mitosis

Page 155: Introduction to Genetics

Linkage and Gene Maps • If you thought carefully about Mendel's principle

of independent assortment as you analyzed meiosis, one question might have been bothering you

• It's easy to see how genes located on different chromosomes assort independently, but what about genes located on the same chromosome?

• Wouldn't they generally be inherited Wouldn't they generally be inherited together?together?

Page 156: Introduction to Genetics

Gene Linkage• The answer to these questions, as Thomas Hunt Morgan

first realized in 1910, is yes• Morgan's research on fruit flies led him to the principle of

linkage• After identifying more than 50 Drosophila genes, Morgan

discovered that many of them appeared to be “linked” together in ways that, at first glance, seemed to violate the principle of independent assortment

• For example, a fly with reddish-orange eyes and miniature wings was used in a series of crosses– The results showed that the genes for those traits were

almost always inherited together and only rarely became separated from each other

Page 157: Introduction to Genetics

Gene Linkage• Morgan and his associates observed so many genes

that were inherited together that before long they could group all of the fly's genes into four linkage groups

• The linkage groups assorted independently, but all of the genes in one group were inherited together

• Drosophila has four linkage groups• It also has four pairs of chromosomes, which led to

two remarkable conclusions:– First, each chromosome is actually a group of linked genes– Second, Mendel's principle of independent assortment still

holds true• It is the chromosomes, however, that assort independently, not It is the chromosomes, however, that assort independently, not

individual genesindividual genes

Page 158: Introduction to Genetics

Gene Linkage• How did Mendel manage to miss gene

linkage?• By luck, or by design, six of the seven

genes he studied are on different chromosomes

• The two genes that are found on the same chromosome are so far apart that they also assort independently

Page 159: Introduction to Genetics

Gene Maps• If two genes are found on the same

chromosome, does this mean that they are linked forever?

• Not at allNot at all– Crossing-over during meiosis sometimes

separates genes that had been on the same chromosome onto homologous chromosomes

– Crossover events occasionally separate and exchange linked genes and produce new combinations of alleles

• This is important because it helps to This is important because it helps to generate genetic diversitygenerate genetic diversity

Page 160: Introduction to Genetics

Gene Maps• In 1911, a Columbia University student was working part

time in Morgan's lab• This student, Alfred Sturtevant, hypothesized that the

rate at which crossing-over separated linked genes could be the key to an important discovery

• Sturtevant reasoned that the farther apart two genes were, the more likely they were to be separated by a crossover in meiosis

• The rate at which linked genes were separated and recombined could then be used to produce a “map” of distances between genes

Page 161: Introduction to Genetics

Gene Maps• Sturtevant gathered up several

notebooks of lab data and took them back to his room

• The next morning, he presented Morgan with a gene map showing the relative locations of each known gene on one of the Drosophila chromosomes

• Sturtevant's method of using recombination rates, which measure the frequencies of crossing-over between genes, has been used to construct genetic maps, including maps of the human genome, ever since

Page 162: Introduction to Genetics

Gene Maps

Page 163: Introduction to Genetics

Gene Maps• This gene map shows

the location of a variety of genes on chromosome 2 of the fruit fly

• The genes are named after the problems abnormal alleles cause, not the normal structure

Page 164: Introduction to Genetics

CHROMOSOME MAPPING

Page 165: Introduction to Genetics

CHROMOSOME MAPPING