Introduction to Functional Programming in...

26
1 Introduction to Functional Programming in Racket CS 550 Programming Languages Jeremy Johnson

Transcript of Introduction to Functional Programming in...

1

Introduction to Functional Programming in Racket

CS 550 Programming LanguagesJeremy Johnson

2

Objective To introduce functional programming in racket

Programs are functions and their semantics involve function application. Programs may also produce functions by returning functions as values. In pure functional programming, this is it, there are no variables, side effects, nor loops. This simplifies semantics but does not reduce computational power.

We will investigate the style of programming this implies and how to model the semantics of such programs.

3

Outline

1. Syntax and semantics2. Functional programming

1. Programs are functions – for every input there is a unique output (referential transparency)

2. No variables ⇒ no assignment and no loops3. Use recursion for iteration4. Functions are first class objects

1. Pass as arguments and return as values

3. Racket language and Dr. Racket IDE

A Pure Functional Language

x1 = y1,…,xn=yn ⇒ f(x1,…,xn) = f(y1,…,yn)

No side-effects, no assignments, no state, no loops

Use recursion instead of iteration Still Turing completeMakes reasoning about programs easier

4

C++ Function with Side-Effects#include <iostream>

using namespace std;

int cc()

{

static int x = 0;

return ++x;

}

int main()

{

cout << "cc() = " << cc() << endl;

cout << "cc() = " << cc() << endl;

cout << "cc() = " << cc() << endl;

} 5

% g++ count.c

% ./a.out

cc() = 1cc() = 2cc() = 3

6

Syntax

Programs and data are lists – delimited by ( and ) or [ and ] and separated by space

S expressions (E1 … En) Special forms Self evaluating: numbers, Booleans, strings, … (quote expr) (if test-expr then-expr else-expr) (cond ([P1 E1] … [Pt Et])) (lambda (p1 … pn) E1 … Et) (define name E) (let ([b1 v1] … [bt vt] E)

7

Semantics

To evaluate (E1 E2 ... En), recursively evaluate E1, E2,...,En - E1 should evaluate to a function -and then apply the function value of E1 to the arguments given by the values of E2,...,En.

In the base case, there are self evaluating expressions (e.g. numbers and symbols). In addition, various special forms such as quote and if must be handled separately.

8

Read-Eval-Print-Loop (REPL)

Dr. Racket IDE (racket-lang.org)

Definition Window

Click Run to load andrun definitions

Interaction Window

Enter expressions atthe prompt (REPL)

Example Evaluation> 2 => 2

> (/ 4 6) => 23

> + => #<procedure:+>> (+ 2 (* 3 4)) => (+ 2 12) => 14> (max 1 2 3) => 3> (1 2 3) => error> (list 1 2 3) => ‘(1 2 3)> (list 1 (2 3) 4) => error> (list 1 (list 2 3) 4) => ‘(1 (2 3) 4)

Booleans and Predicates

• Boolean constants: #t and #f > (= 2 3) => #f> (or (= 2 3) (not (= 2 3))) => #t> (and #t #t #t) => #t

• Predicates are Boolean functions• Convention is name?> (equal? 2 3) => #f> (eq? 2 3) => #f> (number? 2) => #t> (boolean? (and #t #f)) => #t

Conditional

(if test-expr then-expr else-expr) Evaluate test-expr if not #f evaluate and

return then-expr else evaluate and return else-expr

> (if (< 2 3) 0 1) => 0> (if (< 3 2) 0 1) => 1> (if (= 3 (+ 2 1)) 0 1) => 0> (if (or (= 2 3) (= 3 3))

(+2 3) (+ 3 3)) => 5

Conditional

(cond [test-expr1 then-body1][test-exprn then-bodyn][else then-body])

Evaluate test-expr1 if #f then goto next case otherwise return then-body1. The else case always returns then-body

> (cond [(= 2 3) 2][(= 3 4) 3][else 4]) => 4

List Processing Functions

> (null? ‘()) => #t> (null? ‘(1 2 3)) => #f> (car ‘(1 2 3)) => 1 ;same as (first ‘(1 2 3))> (cdr ‘(1 2 3)) => ‘(2 3) ;same as (rest ‘(1 2

3))> (cons 1 ‘()) => ‘(1)> (cons 1 ‘(2 3)) => ‘(1 2 3)> (cons 1 (cons 2 (cons 3 '()))) => ‘(1 2 3)> (cons (cons 1 ‘()) ‘(2 3)) => ‘((1) 2 3)

Lambda Expressions

(lambda (parameters) body) Evaluates to a function When applied the actual arguments are

substituted for the formal parameters into the body which is then evaluated and returned

> (lambda (x) (* x x)) => #<procedure>> ((lambda (x) (* x x)) 2) => 4> (define sqr (lambda (x) (* x x)))> (define (sqr x) (* x x)) ;shorthand for above> (sqr 2) => 4

Recursion

In a functional language there are no side effects, hence no assignment and no loops.

All control must be done through recursion> (define (fact n)

(if (= n 0) 1 (* n (fact (- n 1)))))> (fact 3) => 6> (define (ones n)

(if (= n 0) '() (cons 1 (ones (- n 1)))))> (ones 3) => ‘(1 1 1)

Trace Recursion

> (define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))

(fact 0) = 1 (fact 3) = (* 3 (fact 2)) = (* 3 (* 2 (fact 1))) = (* 3 (* 2 (* 1 (fact 0))))= (* 3 (* 2 (* 1 1))) = 6When n=0 [base case] no recursion When n>0 [recursive case] recursion occurs

Recursion

> (define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))

Similar to mathematical definition – define what to compute

𝑛𝑛! = � 1 𝑤𝑤𝑤𝑤𝑤𝑛𝑛 𝑛𝑛 = 0𝑛𝑛 � 𝑛𝑛 − 1 !𝑤𝑤𝑤𝑤𝑤𝑛𝑛 𝑛𝑛 > 0

Declarative programming states what to compute rather than how to compute it

Tail Recursion

A tail recursive function is a function where the recursive call is the last operation. Such procedures can easily be converted to loops.

> (define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))

> (define (factt n sofar)> (if (= n 0) sofar

(factt (- n 1) (* n sofar)))))(fact n) = (factt n 1)

Tail Recursion

An equivalent loop can be constructed, which updates the arguments each iteration of the loop.

for (;;){

if (n == 0)

return sofar;

else {

t1 = n - 1;

t2 = sofar * n;

n = t1;

sofar = t2; } }

Testing

Test cases give examples of what a function should compute if implemented properly. They can be used for debugging. (fact 3) = 6 (fact 2) = 2 (fact 1) = 1 (fact 0) = 1

Unit Testing in Racket(require rackunit)

(require rackunit/text-ui)

(define-test-suite fact-suite

(check-equal? (fact 0) 1)

(check-equal? (fact 1) 1)

(check-equal? (fact 2) 2)

(check-equal? (fact 3) 6)

)

(run-tests fact-suite 'verbose)

4 success(es) 0 failure(s) 0 error(s) 4 test(s) run

0

22

Higher Order Functions

sort:

> (sort '(4 3 2 1) <) => (1 2 3 4)> (sort '("one" "two" "three" "four") string<?) => '("four" "one" "three" "two")

map: > (map sqr '(1 2 3 4)) => ‘(1 4 9 16)

23

Higher Order Functionsfilter: > (filter odd? '(1 2 3 4 5)) => ‘(1 3 5)> (filter even? ‘(1 2 3 4 5)) => ‘(2 4)

fold: > (foldr cons '() '(1 2 3 4)) => ‘(1 2 3 4)> (foldr list '() '(1 2 3 4)) => '(1 (2 (3 (4 ()))))> (foldr + 0 '(1 2 3 4)) => 10> (foldl cons ‘() ‘(1 2 3 4)) => ‘(4 3 2 1)> (foldl list '() '(1 2 3 4)) => '(4 (3 (2 (1 ()))))> (foldl * 1 ‘(1 2 3 4)) => 24

24

Functions that Return Functions• Make-adder> (define (make-adder x) (lambda (y) (+ x y)))> (define add1 (make-adder 1))> (add1 3) => 4

> (define (make-multiplier x) (lambda (y) (* x y)))> (define double (make-multiplier 2))> (double 3) => 6

25

Function Composition> (define (compose f g) (lambda (x) (f (g x))))

> (define add2 (compose add1 add1))> (add2 3) => 5

> (define getsecond (compose first rest))> (getsecond ‘(1 2 3 4 5)) => 2

26

Currying

> (define (curry f a) (lambda (b) (f a b)))

> (define add1 (curry + 1))> (add1 3) => 4

> (define double (curry * 2))> (doulble 3) => 6