INTRODUCTION TO CONDUCTION

24
INTRODUCTION TO CONDUCTION Thermal Transport Properties Heat Diffusion (Conduction) Equation Boundary and Initial Conditions

description

INTRODUCTION TO CONDUCTION. Thermal Transport Properties Heat Diffusion (Conduction) Equation Boundary and Initial Conditions. Thermal Properties of Matter. transport properties: physical structure of matter, atomic and molecular. thermal conductivity:. - PowerPoint PPT Presentation

Transcript of INTRODUCTION TO CONDUCTION

Page 1: INTRODUCTION TO CONDUCTION

INTRODUCTION TO CONDUCTION

• Thermal Transport Properties

• Heat Diffusion (Conduction) Equation

• Boundary and Initial Conditions

Page 2: INTRODUCTION TO CONDUCTION

Thermal Properties of Matter

/x

x

qk

T x

transport properties: physical

structure of matter, atomic and molecular• thermal conductivity:

isotropic medium: kx = ky = kz = k

• thermal diffusivity:

p

k

c

ability to conduct thermal energyability to store thermal energy

[m2/s]

Page 3: INTRODUCTION TO CONDUCTION

Kinetic theory

Fourier law of heat conduction

First term : lattice (phonon) contributionSecond term : electron contribution

1

3x

dTq Cv

dx

3

Cvk

x

dTq k

dx

1

3l ek Cv Cv

C : volumetric specific heat [J/m3K] : mean free path [m]v : characteristic velocity of particles [m/s]

Page 4: INTRODUCTION TO CONDUCTION

Fluids

k = Cv/3 → n : number of particles per unit volume

k nv

Solids

k = ke + kl

Pure metal: ke >> kl

Alloys: ke ~ kl

Non-metallic solids : kl > ke

weak dependence on pressureAs p goes up,

n increasesbut becomes shorten → k = k

(T)

Page 5: INTRODUCTION TO CONDUCTION

Range of thermal conductivity for various of states of matter at normal temperature

and pressure

Page 6: INTRODUCTION TO CONDUCTION

Solids

k = ke + kl

Pure metal: ke >> kl

Alloys: ke ~ kl

Non-metal : kl > ke

Temperature dependence of thermal conductivity of soilds

In general, k ↓as T ↑

Page 7: INTRODUCTION TO CONDUCTION

Gases

k = Cv/3

Temperature dependence of thermal conductivity of gases

In general, k ↑as T ↑

Page 8: INTRODUCTION TO CONDUCTION

Temperature dependence of thermal conductivity of nonmetallic liquids under saturated conditions

Page 9: INTRODUCTION TO CONDUCTION

Phonon-Boundary Scattering

Si@300K = 300 nm

d phonon

phonon

d >> d ~ or less

Nanoscale Structure

Page 10: INTRODUCTION TO CONDUCTION

100

120

140

160

102 103

Silicon layer thickness (nm)

40

60

80

Ther

mal

con

duct

ivity

(W/m

K)

40

Phonon boundary scattering predictions

Asheghi et al. (1998)Ju & Goodsen (1999)Escobar & Amon (2004)

T = 300 KBulk silicon

104

Thermal Conductivity of Silicon

Page 11: INTRODUCTION TO CONDUCTION

Heat Diffusion (Conduction) Equation

control volume Vsurface area A

differential volume dV

differential area dA

n

: internal heat generation rate per unit volume [W/m3]

q

ˆ ,Aq ndA

q

VqdV

in g out stE E E E

in outE E gE

stE pV

TdVc

t

q net out-

going heat flux

ˆq n

p

TdVc

t

density

pV

Tc dV

t

specific heat cp

dA

Page 12: INTRODUCTION TO CONDUCTION

Divergence theorem:

Since V can be chosen arbitrary, the integrand should be zero.

ˆpV A V

Tc dV q ndA qdV

t

Vq dV

Thus, 0pV

Tc q q dV

t

0p

Tc q q

t

or p

Tc q q

t

ˆAq ndA

cond radq q q , cond radp

Tc q q q

t

Page 13: INTRODUCTION TO CONDUCTION

Steady-state :

Constant k :

No heat generation :

p

Tc k T q

t

0k T q

2 0q

Tk

2 0T

For constant k : 2

p

T qT

t c

cond radp

Tc q q q

t

Fourier law : condq k T

Without radiation,

Page 14: INTRODUCTION TO CONDUCTION

Cartesian coordinates (x, y, z)

T T Tq k i j k

x y zˆ ˆ ˆ

p

T T T Tc k k k q

t x x y y z z

Steady-state, constant k, no heat generation2 2 2

2 2 20

T T T

x y z

x

y

zj i

k

Page 15: INTRODUCTION TO CONDUCTION

Cylindrical coordinates (r, , z)

p

T Tc kr

t r r r

1

r z

T T Tq k e e e

r r z

1ˆ ˆ ˆ

Steady-state, constant k, no heat generation2 2

2 2 2

1 10

T T Tr

r r r r z

T Tk k q

r z z2

1

r

z

ree

ze

Page 16: INTRODUCTION TO CONDUCTION

Spherical coordinates (r, ,)

p

T Tc kr

t r r r2

2

1

Steady-state, constant k, no heat generation2

2

2 2 2 2 2

1 1 1sin 0

sin sin

T T Tr

r r r r r

r

T T Tq k e e e

r r r

1 1ˆ ˆ ˆ

sin

T Tk k q

r r2 2 2

1 1sin

sin sin

r

reee

Page 17: INTRODUCTION TO CONDUCTION

Equations: Elliptic, Parabolic, Hyperbolic eq.

elliptic in space and parabolic in time

Boundary and Initial Conditions

condition in the medium at t = 0 :

1. Initial condition

p

Tc k T q

t

or constant

( , )T r t

rbr

( ,0) ( )T r f r

Page 18: INTRODUCTION TO CONDUCTION

1) Dirichlet (first kind) variable value specified at the boundaries

3) Cauchy (third kind) mixed boundary condition

2. Boundary conditions

( , ) ( )bT r t t or constant

or constant( , ) ( )b

Tr t t

n

when (t) = 0 : adiabatic condition

( , ) ( , ) ( )b b

Ta r t bT r t t

n

or constant

( , )T r t

rbr

2) Neumann (second kind) gradient specified at the boundaries

Page 19: INTRODUCTION TO CONDUCTION

T∞, h

convection boundary condition

( , ) ( , )b b

Tk r t h T r t T

n

( , )bT r t

( , )b

Tk r t

n

( , )bh T r t T

( , )T r t

Page 20: INTRODUCTION TO CONDUCTION

inq

x

outqstE

Example 2.2

210 mA2( )T x a bx cx

3

3

1000 W/m

40 W/m K

kg/m

4 kJ/kg Kp

q

k

c

1mL

2

900 C

300 C/m

50 C/m

a

b

c

(at an instant time)

Find 1) Heat rates entering, , and leaving, , the wall2) Rate of change of energy storage in the wall,3) Time rate of temperature change at x = 0, 0.25, and 0.5 m

in ( 0)q x out ( 1)q x

stET

t

Assumptions : 1) 1-D conduction in the x-direction2) Homogeneous medium with constant properties3) Uniform internal heat generation

Page 21: INTRODUCTION TO CONDUCTION

1) in (0)xqq 0

,x

TkA

x

out ( )xx L

Tq L kAq

x

2

Tb cx

x

inq kAb 240 W/m K 10 m 300 C/m 120 kW

out 2k cq A b L

2 240 W/m K 10 m 300 C/m 2 50 C/m 1 m 160 kW

2( )T x a bx cx 2 2900 C 300 C/m 50 C/mx x

2 21173 K 300 K/m 50 K/mx x

inq

x

outqstE

210 mA2( )T x a bx cx

3

3

1000 W/m

40 W/m K

kg/m

4 kJ/kg Kp

q

k

c

1mL

2

900 C

300 C/m

50 C/m

a

b

c

(at an instant time)

Page 22: INTRODUCTION TO CONDUCTION

2)

3)

n gst i outE EE E in outq qAL q

30 kW

2

2p p

k T q

C xt C

T

44.69 10 C

2

22

Tc

x

3 2120 kW 1000 W/m 10 m 1 m 160 kW

inq

x

outqstE

210 mA2( )T x a bx cx

3

3

1000 W/m

40 W/m K

kg/m

4 kJ/kg Kp

q

k

c

1mL

2

900 C

300 C/m

50 C/m

a

b

c

(at an instant time)

Page 23: INTRODUCTION TO CONDUCTION

Air,T h

wL

z

I

xy

Heat sink

0T

copper bar

( ,k ( , , , ) ( , )T x y z t T x t

Find : Differential equation and B.C. and I.C. needed to

determine T as a function of position and time within the bar

Example 2.3

Assumptions : 1) Since w >> L, side effects are negligible and heat

transfer within the bar is 1-D in the x-direction2) Uniform volumetric heat generation3) Constant properties

q Lx

Air,T h

initially at T0

(uniform)

0 (0, )T T t

Page 24: INTRODUCTION TO CONDUCTION

B.C. at the bottom surface :

B.C. at the top surface : convection boundary condition

I.C.

q Lx

Air,T h

0 (0, )T T t

( , )T L t

condq

convq

cond convq q ( , )x L

Tk h T L t T

x

0( ,0)T x T

0(0, )T t T

2

2p

T Tc k q

t x

governing equation

1-D unsteady with heat generation