Introduction Feature - Microchip...

442
8-bit AVR Microcontrollers ATmega328/P DATASHEET COMPLETE Introduction The Atmel ® picoPower ® ATmega328/P is a low-power CMOS 8-bit microcontroller based on the AVR ® enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328/P achieves throughputs close to 1MIPS per MHz. This empowers system designer to optimize the device for power consumption versus processing speed. Feature High Performance, Low Power Atmel ® AVR ® 8-Bit Microcontroller Family Advanced RISC Architecture 131 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static Operation Up to 20 MIPS Throughput at 20MHz On-chip 2-cycle Multiplier High Endurance Non-volatile Memory Segments 32KBytes of In-System Self-Programmable Flash program Memory 1KBytes EEPROM 2KBytes Internal SRAM Write/Erase Cycles: 10,000 Flash/100,000 EEPROM Data Retention: 20 years at 85°C/100 years at 25°C (1) Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation Programming Lock for Software Security Atmel ® QTouch ® Library Support Capacitive Touch Buttons, Sliders and Wheels QTouch and QMatrix ® Acquisition Up to 64 sense channels Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

Transcript of Introduction Feature - Microchip...

  • 8-bit AVR Microcontrollers

    ATmega328/P

    DATASHEET COMPLETE

    Introduction

    The Atmel picoPower ATmega328/P is a low-power CMOS 8-bitmicrocontroller based on the AVR enhanced RISC architecture. Byexecuting powerful instructions in a single clock cycle, the ATmega328/Pachieves throughputs close to 1MIPS per MHz. This empowers systemdesigner to optimize the device for power consumption versus processingspeed.

    Feature

    High Performance, Low Power AtmelAVR 8-Bit Microcontroller Family Advanced RISC Architecture

    131 Powerful Instructions Most Single Clock Cycle Execution 32 x 8 General Purpose Working Registers Fully Static Operation Up to 20 MIPS Throughput at 20MHz On-chip 2-cycle Multiplier

    High Endurance Non-volatile Memory Segments 32KBytes of In-System Self-Programmable Flash program

    Memory 1KBytes EEPROM 2KBytes Internal SRAM Write/Erase Cycles: 10,000 Flash/100,000 EEPROM Data Retention: 20 years at 85C/100 years at 25C(1)

    Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation

    Programming Lock for Software Security Atmel QTouch Library Support

    Capacitive Touch Buttons, Sliders and Wheels QTouch and QMatrix Acquisition Up to 64 sense channels

    Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

  • Peripheral Features Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode Real Time Counter with Separate Oscillator Six PWM Channels 8-channel 10-bit ADC in TQFP and QFN/MLF package

    Temperature Measurement 6-channel 10-bit ADC in PDIP Package

    Temperature Measurement Two Master/Slave SPI Serial Interface One Programmable Serial USART One Byte-oriented 2-wire Serial Interface (Philips I2C compatible) Programmable Watchdog Timer with Separate On-chip Oscillator One On-chip Analog Comparator Interrupt and Wake-up on Pin Change

    Special Microcontroller Features Power-on Reset and Programmable Brown-out Detection Internal Calibrated Oscillator External and Internal Interrupt Sources Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and

    Extended Standby I/O and Packages

    23 Programmable I/O Lines 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

    Operating Voltage: 1.8 - 5.5V

    Temperature Range: -40C to 105C

    Speed Grade: 0 - 4MHz @ 1.8 - 5.5V 0 - 10MHz @ 2.7 - 5.5V 0 - 20MHz @ 4.5 - 5.5V

    Power Consumption at 1MHz, 1.8V, 25C Active Mode: 0.2mA Power-down Mode: 0.1A Power-save Mode: 0.75A (Including 32kHz RTC)

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    2

  • Table of Contents

    Introduction......................................................................................................................1

    Feature............................................................................................................................ 1

    1. Description.................................................................................................................9

    2. Configuration Summary...........................................................................................10

    3. Ordering Information ............................................................................................... 113.1. ATmega328 ............................................................................................................................... 113.2. ATmega328P .............................................................................................................................12

    4. Block Diagram......................................................................................................... 13

    5. Pin Configurations................................................................................................... 145.1. Pin-out........................................................................................................................................ 145.2. Pin Descriptions..........................................................................................................................17

    6. I/O Multiplexing........................................................................................................19

    7. Resources................................................................................................................21

    8. Data Retention.........................................................................................................22

    9. About Code Examples.............................................................................................23

    10. Capacitive Touch Sensing....................................................................................... 2410.1. QTouch Library........................................................................................................................... 24

    11. AVR CPU Core........................................................................................................ 2511.1. Overview.....................................................................................................................................2511.2. ALU Arithmetic Logic Unit........................................................................................................2611.3. Status Register...........................................................................................................................2611.4. General Purpose Register File................................................................................................... 2811.5. Stack Pointer.............................................................................................................................. 2911.6. Instruction Execution Timing...................................................................................................... 3111.7. Reset and Interrupt Handling..................................................................................................... 32

    12. AVR Memories.........................................................................................................3412.1. Overview.....................................................................................................................................3412.2. In-System Reprogrammable Flash Program Memory................................................................3412.3. SRAM Data Memory...................................................................................................................3512.4. EEPROM Data Memory............................................................................................................. 3612.5. I/O Memory.................................................................................................................................3712.6. Register Description................................................................................................................... 38

    13. System Clock and Clock Options............................................................................ 48

  • 13.1. Clock Systems and Their Distribution.........................................................................................4813.2. Clock Sources............................................................................................................................ 4913.3. Low Power Crystal Oscillator......................................................................................................5113.4. Full Swing Crystal Oscillator.......................................................................................................5213.5. Low Frequency Crystal Oscillator...............................................................................................5313.6. Calibrated Internal RC Oscillator................................................................................................5413.7. 128kHz Internal Oscillator.......................................................................................................... 5513.8. External Clock............................................................................................................................ 5613.9. Timer/Counter Oscillator.............................................................................................................5713.10. Clock Output Buffer....................................................................................................................5713.11. System Clock Prescaler............................................................................................................. 5713.12. Register Description...................................................................................................................58

    14. PM - Power Management and Sleep Modes...........................................................6214.1. Overview.....................................................................................................................................6214.2. Sleep Modes...............................................................................................................................6214.3. BOD Disable...............................................................................................................................6314.4. Idle Mode....................................................................................................................................6314.5. ADC Noise Reduction Mode.......................................................................................................6314.6. Power-Down Mode.....................................................................................................................6414.7. Power-save Mode.......................................................................................................................6414.8. Standby Mode............................................................................................................................ 6514.9. Extended Standby Mode............................................................................................................ 6514.10. Power Reduction Register......................................................................................................... 6514.11. Minimizing Power Consumption................................................................................................. 6514.12. Register Description...................................................................................................................67

    15. SCRST - System Control and Reset....................................................................... 7215.1. Resetting the AVR...................................................................................................................... 7215.2. Reset Sources............................................................................................................................7215.3. Power-on Reset..........................................................................................................................7315.4. External Reset............................................................................................................................7415.5. Brown-out Detection...................................................................................................................7415.6. Watchdog System Reset............................................................................................................ 7515.7. Internal Voltage Reference.........................................................................................................7515.8. Watchdog Timer......................................................................................................................... 7615.9. Register Description................................................................................................................... 78

    16. Interrupts................................................................................................................. 8216.1. Interrupt Vectors in ATmega328/P..............................................................................................8216.2. Register Description................................................................................................................... 84

    17. EXINT - External Interrupts..................................................................................... 8717.1. Pin Change Interrupt Timing.......................................................................................................8717.2. Register Description................................................................................................................... 88

    18. I/O-Ports.................................................................................................................. 9718.1. Overview.....................................................................................................................................9718.2. Ports as General Digital I/O........................................................................................................98

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    4

  • 18.3. Alternate Port Functions...........................................................................................................10118.4. Register Description................................................................................................................. 113

    19. TC0 - 8-bit Timer/Counter0 with PWM...................................................................12519.1. Features................................................................................................................................... 12519.2. Overview...................................................................................................................................12519.3. Timer/Counter Clock Sources.................................................................................................. 12719.4. Counter Unit............................................................................................................................. 12719.5. Output Compare Unit................................................................................................................12819.6. Compare Match Output Unit.....................................................................................................13019.7. Modes of Operation..................................................................................................................13119.8. Timer/Counter Timing Diagrams...............................................................................................13519.9. Register Description................................................................................................................. 137

    20. TC1 - 16-bit Timer/Counter1 with PWM.................................................................14920.1. Overview...................................................................................................................................14920.2. Features................................................................................................................................... 14920.3. Block Diagram.......................................................................................................................... 14920.4. Definitions.................................................................................................................................15020.5. Registers.................................................................................................................................. 15120.6. Accessing 16-bit Registers.......................................................................................................15120.7. Timer/Counter Clock Sources.................................................................................................. 15420.8. Counter Unit............................................................................................................................. 15420.9. Input Capture Unit.................................................................................................................... 15520.10. Output Compare Units............................................................................................................. 15720.11. Compare Match Output Unit.....................................................................................................15920.12. Modes of Operation..................................................................................................................16020.13. Timer/Counter Timing Diagrams.............................................................................................. 16820.14. Register Description.................................................................................................................169

    21. Timer/Counter 0, 1 Prescalers...............................................................................18621.1. Internal Clock Source............................................................................................................... 18621.2. Prescaler Reset........................................................................................................................18621.3. External Clock Source..............................................................................................................18621.4. Register Description................................................................................................................. 187

    22. TC2 - 8-bit Timer/Counter2 with PWM and Asynchronous Operation................... 18922.1. Features................................................................................................................................... 18922.2. Overview...................................................................................................................................18922.3. Timer/Counter Clock Sources.................................................................................................. 19122.4. Counter Unit............................................................................................................................. 19122.5. Output Compare Unit................................................................................................................19222.6. Compare Match Output Unit.....................................................................................................19422.7. Modes of Operation..................................................................................................................19522.8. Timer/Counter Timing Diagrams...............................................................................................19922.9. Asynchronous Operation of Timer/Counter2............................................................................ 20022.10. Timer/Counter Prescaler.......................................................................................................... 20222.11. Register Description................................................................................................................. 202

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    5

  • 23. SPI Serial Peripheral Interface........................................................................... 21523.1. Features................................................................................................................................... 21523.2. Overview...................................................................................................................................21523.3. SS Pin Functionality................................................................................................................. 21923.4. Data Modes.............................................................................................................................. 21923.5. Register Description................................................................................................................. 220

    24. USART - Universal Synchronous Asynchronous Receiver Transceiver................22524.1. Features................................................................................................................................... 22524.2. Overview...................................................................................................................................22524.3. Block Diagram.......................................................................................................................... 22524.4. Clock Generation......................................................................................................................22624.5. Frame Formats.........................................................................................................................22924.6. USART Initialization..................................................................................................................23024.7. Data Transmission The USART Transmitter......................................................................... 23124.8. Data Reception The USART Receiver.................................................................................. 23324.9. Asynchronous Data Reception.................................................................................................23724.10. Multi-Processor Communication Mode.................................................................................... 23924.11. Examples of Baud Rate Setting............................................................................................... 24024.12. Register Description.................................................................................................................243

    25. USARTSPI - USART in SPI Mode.........................................................................25425.1. Features................................................................................................................................... 25425.2. Overview...................................................................................................................................25425.3. Clock Generation......................................................................................................................25425.4. SPI Data Modes and Timing.....................................................................................................25525.5. Frame Formats.........................................................................................................................25525.6. Data Transfer............................................................................................................................25725.7. AVR USART MSPIM vs. AVR SPI............................................................................................25825.8. Register Description................................................................................................................. 259

    26. TWI - 2-wire Serial Interface..................................................................................26026.1. Features................................................................................................................................... 26026.2. Two-Wire Serial Interface Bus Definition..................................................................................26026.3. Data Transfer and Frame Format.............................................................................................26126.4. Multi-master Bus Systems, Arbitration and Synchronization....................................................26426.5. Overview of the TWI Module.................................................................................................... 26626.6. Using the TWI...........................................................................................................................26826.7. Transmission Modes................................................................................................................ 27126.8. Multi-master Systems and Arbitration.......................................................................................28926.9. Register Description................................................................................................................. 291

    27. AC - Analog Comparator....................................................................................... 29927.1. Overview...................................................................................................................................29927.2. Analog Comparator Multiplexed Input...................................................................................... 29927.3. Register Description................................................................................................................. 300

    28. ADC - Analog to Digital Converter.........................................................................305

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    6

  • 28.1. Features................................................................................................................................... 30528.2. Overview...................................................................................................................................30528.3. Starting a Conversion...............................................................................................................30728.4. Prescaling and Conversion Timing...........................................................................................30828.5. Changing Channel or Reference Selection.............................................................................. 31028.6. ADC Noise Canceler................................................................................................................ 31228.7. ADC Conversion Result............................................................................................................31528.8. Temperature Measurement...................................................................................................... 31628.9. Register Description................................................................................................................. 316

    29. DBG - debugWIRE On-chip Debug System.......................................................... 32729.1. Features................................................................................................................................... 32729.2. Overview...................................................................................................................................32729.3. Physical Interface..................................................................................................................... 32729.4. Software Break Points..............................................................................................................32829.5. Limitations of debugWIRE........................................................................................................32829.6. Register Description................................................................................................................. 328

    30. BTLDR - Boot Loader Support Read-While-Write Self-Programming................ 33030.1. Features................................................................................................................................... 33030.2. Overview...................................................................................................................................33030.3. Application and Boot Loader Flash Sections............................................................................33030.4. Read-While-Write and No Read-While-Write Flash Sections...................................................33130.5. Boot Loader Lock Bits.............................................................................................................. 33330.6. Entering the Boot Loader Program...........................................................................................33430.7. Addressing the Flash During Self-Programming...................................................................... 33530.8. Self-Programming the Flash.....................................................................................................33630.9. Register Description................................................................................................................. 344

    31. MEMPROG- Memory Programming......................................................................34731.1. Program And Data Memory Lock Bits...................................................................................... 34731.2. Fuse Bits...................................................................................................................................34831.3. Signature Bytes........................................................................................................................ 35031.4. Calibration Byte........................................................................................................................ 35131.5. Page Size................................................................................................................................. 35131.6. Parallel Programming Parameters, Pin Mapping, and Commands..........................................35131.7. Parallel Programming...............................................................................................................35331.8. Serial Downloading...................................................................................................................360

    32. Electrical Characteristics....................................................................................... 36532.1. Absolute Maximum Ratings......................................................................................................36532.2. Common DC Characteristics....................................................................................................36532.3. Speed Grades.......................................................................................................................... 36832.4. Clock Characteristics................................................................................................................36932.5. System and Reset Characteristics........................................................................................... 37032.6. SPI Timing Characteristics....................................................................................................... 37132.7. Two-wire Serial Interface Characteristics................................................................................. 37232.8. ADC Characteristics................................................................................................................. 37432.9. Parallel Programming Characteristics...................................................................................... 375

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    7

  • 33. Typical Characteristics (TA = -40C to 85C).........................................................37833.1. ATmega328 Typical Characteristics......................................................................................... 378

    34. Typical Characteristics (TA = -40C to 105C).......................................................40334.1. ATmega328P Typical Characteristics.......................................................................................403

    35. Register Summary.................................................................................................42835.1. Note..........................................................................................................................................430

    36. Instruction Set Summary....................................................................................... 432

    37. Packaging Information...........................................................................................43637.1. 32-pin 32A................................................................................................................................ 43637.2. 32-pin 32M1-A..........................................................................................................................43737.3. 28-pin 28M1..............................................................................................................................43837.4. 28-pin 28P3.............................................................................................................................. 439

    38. Errata.....................................................................................................................44038.1. Errata ATmega328/P................................................................................................................440

    39. Datasheet Revision History................................................................................... 44139.1. Rev. B 11/2016...................................................................................................................... 44139.2. Rev. A 06/2016......................................................................................................................441

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    8

  • 1. DescriptionThe Atmel AVR core combines a rich instruction set with 32 general purpose working registers. All the32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registersto be accessed in a single instruction executed in one clock cycle. The resulting architecture is more codeefficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

    The ATmega328/P provides the following features: 32Kbytes of In-System Programmable Flash withRead-While-Write capabilities, 1Kbytes EEPROM, 2Kbytes SRAM, 23 general purpose I/O lines, 32general purpose working registers, Real Time Counter (RTC), three flexible Timer/Counters with comparemodes and PWM, 1 serial programmable USARTs , 1 byte-oriented 2-wire Serial Interface (I2C), a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages) , a programmable Watchdog Timerwith internal Oscillator, an SPI serial port, and six software selectable power saving modes. The Idlemode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system tocontinue functioning. The Power-down mode saves the register contents but freezes the Oscillator,disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, theasynchronous timer continues to run, allowing the user to maintain a timer base while the rest of thedevice is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules exceptasynchronous timer and ADC to minimize switching noise during ADC conversions. In Standby mode, thecrystal/resonator oscillator is running while the rest of the device is sleeping. This allows very fast start-upcombined with low power consumption. In Extended Standby mode, both the main oscillator and theasynchronous timer continue to run.

    Atmel offers the QTouch library for embedding capacitive touch buttons, sliders and wheels functionalityinto AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing andincludes fully debounced reporting of touch keys and includes Adjacent Key Suppression (AKS)technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows youto explore, develop and debug your own touch applications.

    The device is manufactured using Atmels high density non-volatile memory technology. The On-chip ISPFlash allows the program memory to be reprogrammed In-System through an SPI serial interface, by aconventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core.The Boot program can use any interface to download the application program in the Application Flashmemory. Software in the Boot Flash section will continue to run while the Application Flash section isupdated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-SystemSelf-Programmable Flash on a monolithic chip, the Atmel ATmega328/P is a powerful microcontroller thatprovides a highly flexible and cost effective solution to many embedded control applications.

    The ATmega328/P is supported with a full suite of program and system development tools including: CCompilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    9

  • 2. Configuration SummaryFeatures ATmega328/P

    Pin Count 28/32

    Flash (Bytes) 32K

    SRAM (Bytes) 2K

    EEPROM (Bytes) 1K

    General Purpose I/O Lines 23

    SPI 2

    TWI (I2C) 1

    USART 1

    ADC 10-bit 15kSPS

    ADC Channels 8

    8-bit Timer/Counters 2

    16-bit Timer/Counters 1

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    10

  • 3. Ordering Information

    3.1. ATmega328

    Speed [MHz](3) Power Supply [V] Ordering Code(2) Package(1) Operational Range

    20 1.8 - 5.5 ATmega328-AUATmega328-AUR(5)ATmega328-MMH(4)ATmega328-MMHR(4)(5)ATmega328-MUATmega328-MUR(5)ATmega328-PU

    32A32A28M128M132M1-A32M1-A28P3

    Industrial(-40C to 85C)

    Note:1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for

    detailed ordering information and minimum quantities.2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances

    (RoHS directive). Also Halide free and fully Green.3. Please refer to Speed Grades for Speed vs. VCC4. Tape & Reel.5. NiPdAu Lead Finish.

    Package Type

    28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

    28P3 28-lead, 0.300 Wide, Plastic Dual Inline Package (PDIP)

    32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

    32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    11

  • 3.2. ATmega328P

    Speed [MHz](3) Power Supply [V] Ordering Code(2) Package(1) Operational Range

    20 1.8 - 5.5 ATmega328P-AUATmega328P-AUR(5)ATmega328P-MMH(4)ATmega328P-MMHR(4)(5)ATmega328P-MUATmega328P-MUR(5)ATmega328P-PU

    32A32A28M128M132M1-A32M1-A28P3

    Industrial(-40C to 85C)

    ATmega328P-ANATmega328P-ANR(5)ATmega328P-MNATmega328P-MNR(5)ATmega328P-PN

    32A32A32M1-A32M1-A28P3

    Industrial(-40C to 105C)

    Note:1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for

    detailed ordering information and minimum quantities.2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances

    (RoHS directive). Also Halide free and fully Green.3. Please refer to Speed Grades for Speed vs. VCC4. Tape & Reel.5. NiPdAu Lead Finish.

    Package Type

    28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

    28P3 28-lead, 0.300 Wide, Plastic Dual Inline Package (PDIP)

    32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

    32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP)

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    12

  • 4. Block DiagramFigure 4-1.Block Diagram

    CPU

    USART 0

    ADCADC[7:0]AREF

    RxD0TxD0XCK0

    I/OPORTS

    DATABUS

    GPIOR[2:0]

    SRAM

    OCD

    EXTINT

    FLASHNVM

    programming

    debugWire

    IN/OUT

    DATABUS

    TC 0(8-bit)

    SPI 0

    ACAIN0AIN1

    ADCMUX

    EEPROM

    EEPROMIF

    TC 1(16-bit)

    OC1A/BT1

    ICP1

    TC 2(8-bit async)

    TWI 0 SDA0SCL0

    InternalReference

    Watchdog Timer

    Power management

    and clock control

    VCC

    GND

    Clock generation8MHz

    Calib RC

    128kHz int osc

    32.768kHz XOSC

    External clock

    Power SupervisionPOR/BOD &

    RESET

    XTAL2 / TOSC2

    RESET

    XTAL1 /TOSC1

    16MHz LP XOSC

    PCINT[23:0]INT[1:0]

    T0OC0AOC0B

    MISO0MOSI0SCK0SS0

    OC2AOC2B

    PB[7:0]PC[6:0]PD[7:0]

    ADC6,ADC7,PC[5:0]AREF

    PD[7:0], PC[6:0], PB[7:0]PD3, PD2

    PB1, PB2PD5PB0

    PB3PD3

    PD4PD6PD5

    PB4PB3PB5PB2

    PD6PD7

    ADC6, ADC7PC[5:0]

    PD0PD1PD4

    PC4PC5

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    13

  • 5. Pin Configurations

    5.1. Pin-outFigure 5-1.28-pin PDIP

    Power

    Ground

    Programming/debug

    Digital

    Analog

    Crystal/Osc

    (PCINT14/RESET) PC6

    (PCINT16/RXD) PD0

    (PCINT17/TXD) PD1

    (PCINT18/INT0) PD2

    (PCINT19/OC2B/INT1) PD3

    (PCINT20/XCK/T0) PD4

    VCC

    GND

    (PCINT6/XTAL1/TOSC1) PB6

    (PCINT7/XTAL2/TOSC2) PB7

    (PCINT21/OC0B/T1) PD5

    (PCINT22/OC0A/AIN0) PD6

    (PCINT23/AIN1) PD7

    (PCINT0/CLKO/ICP1) PB0

    PC5 (ADC5/SCL/PCINT13)

    PC4 (ADC4/SDA/PCINT12)

    PC3 (ADC3/PCINT11)

    PC2 (ADC2/PCINT10)

    PC1 (ADC1/PCINT9)

    PC0 (ADC0/PCINT8)

    GND

    AREF

    AVCC

    PB5 (SCK/PCINT5)

    PB4 (MISO/PCINT4)

    PB3 (MOSI/OC2A/PCINT3)

    PB2 (SS/OC1B/PCINT2)

    PB1 (OC1A/PCINT1)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    28

    27

    26

    25

    24

    23

    22

    21

    20

    19

    18

    17

    16

    15

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    14

  • Figure 5-2.28-pin MLF Top View

    1

    2

    3

    4

    5

    6

    7

    8 9 10 11 12 13 14

    PD2

    (INT0

    /PC

    INT1

    8)

    PD1

    (TXD

    /PC

    INT1

    7)

    PD0

    (RXD

    /PC

    INT1

    6)

    PC6

    (RES

    ET/P

    CIN

    T14)

    PC5

    (AD

    C5/

    SCL/

    PCIN

    T13)

    PC4

    (AD

    C4/

    SDA/

    PCIN

    T12)

    PC3

    (AD

    C3/

    PCIN

    T11)

    PC2 (ADC2/PCINT10)

    PC1 (ADC1/PCINT9)

    PC0 (ADC0/PCINT8)

    GND

    AREF

    AVCC

    PB5 (SCK/PCINT5)

    (PCI

    NT2

    2/O

    C0A

    /AIN

    0) P

    D6

    (PCI

    NT2

    3/A

    IN1)

    PD

    7

    (PCI

    NT0

    /CLK

    O/IC

    P1) P

    B0

    (PCI

    NT1

    /OC1

    A) P

    B1

    (PCI

    NT2

    /SS/

    OC1

    B) P

    B2

    (PCI

    NT3

    /OC2

    A/M

    OSI

    ) PB3

    (PCI

    NT4

    /MIS

    O) P

    B4

    (PCINT19/OC2B/INT1) PD3

    (PCINT20/XCK/T0) PD4

    VCC

    GND

    (PCINT6/XTAL1/TOSC1) PB6

    (PCINT7/XTAL2/TOSC2) PB7

    (PCINT21/OC0B/T1) PD5

    Bottom pad should be soldered to ground

    Power

    Ground

    Programming/debug

    Digital

    Analog

    Crystal/CLK

    21

    20

    19

    18

    17

    16

    15

    28 27 26 25 24 23 22

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    15

  • Figure 5-3.32-pin TQFP Top View

    1

    2

    3

    432 31 30 29 28 27 26

    5

    6

    7

    8

    24

    23

    22

    21

    20

    19

    18

    17

    25

    9 10 11 12 13 14 15 16

    Power

    Ground

    Programming/debug

    Digital

    Analog

    Crystal/CLK

    (PCINT19/OC2B/INT1) PD3

    (PCINT20/XCK/T0) PD4

    GND

    VCC

    GND

    VCC

    (PCINT6/XTAL1/TOSC1) PB6

    (PCINT7/XTAL2/TOSC2) PB7

    PD2

    (INT0

    /PCI

    NT18

    )

    PD1

    (TXD

    /PCI

    NT17

    )

    PD0

    (RXD

    /PCI

    NT16

    )

    PC6

    (RES

    ET/P

    CINT

    14)

    PC5

    (ADC

    5/SC

    L/PC

    INT1

    3)

    PC4

    (ADC

    4/SD

    A/PC

    INT1

    2)

    PC3

    (ADC

    3/PC

    INT1

    1)

    PC2

    (ADC

    2/PC

    INT1

    0)

    PC1 (ADC1/PCINT9)

    PC0 (ADC0/PCINT8)

    ADC7

    GND

    AREF

    ADC6

    AVCC

    PB5 (SCK/PCINT5)

    (PC

    INT2

    1/O

    C0B

    /T1)

    PD

    5

    (PC

    INT2

    2/O

    C0A

    /AIN

    0) P

    D6

    (PC

    INT2

    3/AI

    N1)

    PD

    7

    (PC

    INT0

    /CLK

    O/IC

    P1) P

    B0

    (PC

    INT1

    /OC

    1A) P

    B1

    (PC

    INT2

    /SS/

    OC

    1B) P

    B2

    (PC

    INT3

    /OC

    2A/M

    OSI

    ) PB3

    (PC

    INT4

    /MIS

    O) P

    B4

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    16

  • Figure 5-4.32-pin MLF Top View

    1

    2

    3

    432 31 30 29 28 27 26

    5

    6

    7

    8

    24

    23

    22

    21

    20

    19

    18

    17

    25

    9 10 11 12 13 14 15 16

    PD2

    (INT0

    /PC

    INT1

    8)

    PD1

    (TXD

    /PC

    INT1

    7)

    PD0

    (RXD

    /PC

    INT1

    6)

    PC6

    (RES

    ET/P

    CIN

    T14)

    PC5

    (AD

    C5/

    SCL/

    PCIN

    T13)

    PC4

    (AD

    C4/

    SDA/

    PCIN

    T12)

    PC3

    (AD

    C3/

    PCIN

    T11)

    PC2

    (AD

    C2/

    PCIN

    T10)

    PC1 (ADC1/PCINT9)

    PC0 (ADC0/PCINT8)

    ADC7

    GND

    AREF

    ADC6

    AVCC

    PB5 (SCK/PCINT5)

    (PCI

    NT2

    1/O

    C0B/

    T1) P

    D5

    (PCI

    NT2

    2/O

    C0A

    /AIN

    0) P

    D6

    (PCI

    NT2

    3/A

    IN1)

    PD

    7

    (PCI

    NT0

    /CLK

    O/IC

    P1) P

    B0

    (PCI

    NT1

    /OC1

    A) P

    B1

    (PCI

    NT2

    /SS/

    OC1

    B) P

    B2

    (PCI

    NT3

    /OC2

    A/M

    OSI

    ) PB3

    (PCI

    NT4

    /MIS

    O) P

    B4

    (PCINT19/OC2B/INT1) PD3

    (PCINT20/XCK/T0) PD4

    GND

    VCC

    GND

    VCC

    (PCINT6/XTAL1/TOSC1) PB6

    (PCINT7/XTAL2/TOSC2) PB7

    Bottom pad should be soldered to ground

    Power

    Ground

    Programming/debug

    Digital

    Analog

    Crystal/CLK

    5.2. Pin Descriptions

    5.2.1. VCCDigital supply voltage.

    5.2.2. GNDGround.

    5.2.3. Port B (PB[7:0]) XTAL1/XTAL2/TOSC1/TOSC2Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port Boutput buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The PortB pins are tri-stated when a reset condition becomes active, even if the clock is not running.

    Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillatoramplifier and input to the internal clock operating circuit.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    17

  • Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillatoramplifier.

    If the Internal Calibrated RC Oscillator is used as chip clock source, PB[7:6] is used as TOSC[2:1] inputfor the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

    5.2.4. Port C (PC[5:0])Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC[5:0]output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The PortC pins are tri-stated when a reset condition becomes active, even if the clock is not running.

    5.2.5. PC6/RESETIf the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristicsof PC6 differ from those of the other pins of Port C.

    If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longerthan the minimum pulse length will generate a Reset, even if the clock is not running. Shorter pulses arenot guaranteed to generate a Reset.

    The various special features of Port C are elaborated in the Alternate Functions of Port C section.

    5.2.6. Port D (PD[7:0])Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port Doutput buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The PortD pins are tri-stated when a reset condition becomes active, even if the clock is not running.

    5.2.7. AVCCAVCC is the supply voltage pin for the A/D Converter, PC[3:0], and PE[3:2]. It should be externallyconnected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC througha low-pass filter. Note that PC[6:4] use digital supply voltage, VCC.

    5.2.8. AREFAREF is the analog reference pin for the A/D Converter.

    5.2.9. ADC[7:6] (TQFP and VFQFN Package Only)In the TQFP and VFQFN package, ADC[7:6] serve as analog inputs to the A/D converter. These pins arepowered from the analog supply and serve as 10-bit ADC channels.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    18

  • 6. I/O MultiplexingEach pin is by default controlled by the PORT as a general purpose I/O and alternatively it can beassigned to one of the peripheral functions.

    The following table describes the peripheral signals multiplexed to the PORT I/O pins.

    Table 6-1.PORT Function Multiplexing

    (32-pinMLF/TQFP)Pin#

    (28-pinMLF) Pin#

    (28-pinPIPD) Pin#

    PAD EXTINT PCINT ADC/AC OSC T/C #0 T/C#1

    USART 0 I2C 0 SPI 0

    1 1 5 PD[3] INT1 PCINT19 OC2B

    2 2 6 PD[4] PCINT20 T0 XCK0

    4 3 7 VCC

    3 4 8 GND

    6 - - VCC

    5 - - GND

    7 5 9 PB[6] PCINT6 XTAL1/TOSC1

    8 6 10 PB[7] PCINT7 XTAL2/TOSC2

    9 7 11 PD[5] PCINT21 OC0B T1

    10 8 12 PD[6] PCINT22 AIN0 OC0A

    11 9 13 PD[7] PCINT23 AIN1

    12 10 14 PB[0] PCINT0 CLKO ICP1

    13 11 15 PB[1] PCINT1 OC1A

    14 12 16 PB[2] PCINT2 OC1B SS0

    15 13 17 PB[3] PCINT3 OC2A MOSI0

    16 14 18 PB[4] PCINT4 MISO0

    17 15 19 PB[5] PCINT5 SCK0

    18 16 20 AVCC

    19 - - ADC6 ADC6

    20 17 21 AREF

    21 18 22 GND

    22 - - ADC7 ADC7

    23 19 13 PC[0] PCINT8 ADC0

    24 20 24 PC[1] PCINT9 ADC1

    25 21 25 PC[2] PCINT10 ADC2

    26 22 26 PC[3] PCINT11 ADC3

    27 23 27 PC[4] PCINT12 ADC4 SDA0

    28 24 28 PC[5] PCINT13 ADC5 SCL0

    29 25 1 PC[6]/RESET

    PCINT14

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    19

  • (32-pinMLF/TQFP)Pin#

    (28-pinMLF) Pin#

    (28-pinPIPD) Pin#

    PAD EXTINT PCINT ADC/AC OSC T/C #0 T/C#1

    USART 0 I2C 0 SPI 0

    30 26 2 PD[0] PCINT16 RXD0

    31 27 3 PD[1] PCINT17 TXD0

    32 28 4 PD[2] INT0 PCINT18

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    20

  • 7. ResourcesA comprehensive set of development tools, application notes, and datasheets are available for downloadon http://www.atmel.com/avr.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    21

    http://www.atmel.com/avr

  • 8. Data RetentionReliability Qualification results show that the projected data retention failure rate is much less than 1 PPMover 20 years at 85C or 100 years at 25C.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    22

  • 9. About Code ExamplesThis documentation contains simple code examples that briefly show how to use various parts of thedevice. These code examples assume that the part specific header file is included before compilation. Beaware that not all C compiler vendors include bit definitions in the header files and interrupt handling in Cis compiler dependent. Confirm with the C compiler documentation for more details.

    For I/O Registers located in extended I/O map, IN, OUT, SBIS, SBIC, CBI, and SBI instructionsmust be replaced with instructions that allow access to extended I/O. Typically LDS and STScombined with SBRS, SBRC, SBR, and CBR.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    23

  • 10. Capacitive Touch Sensing

    10.1. QTouch LibraryThe Atmel QTouch Library provides a simple to use solution to realize touch sensitive interfaces onmost Atmel AVR microcontrollers. The QTouch Library includes support for the Atmel QTouch and AtmelQMatrix acquisition methods.

    Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for theAVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors,and then calling the touch sensing APIs to retrieve the channel information and determine the touchsensor states.

    The QTouch Library is FREE and downloadable from the Atmel website at the following location: http://www.atmel.com/technologies/touch/. For implementation details and other information, refer to the AtmelQTouch Library User Guide - also available for download from the Atmel website.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    24

    http://www.atmel.com/technologies/touch/http://www.atmel.com/technologies/touch/http://www.atmel.com/dyn/resources/prod_documents/doc8207.pdfhttp://www.atmel.com/dyn/resources/prod_documents/doc8207.pdf

  • 11. AVR CPU Core

    11.1. OverviewThis section discusses the AVR core architecture in general. The main function of the CPU core is toensure correct program execution. The CPU must therefore be able to access memories, performcalculations, control peripherals, and handle interrupts.

    Figure 11-1.Block Diagram of the AVR Architecture

    Register file

    Flash program memory

    Program counter

    Instruction register

    Instruction decode

    Data memory

    ALUStatus register

    R0R1R2R3R4R5R6R7R8R9

    R10R11R12R13R14R15R16R17R18R19R20R21R22R23R24R25

    R26 (XL)R27 (XH)R28 (YL)R29 (YH)R30 (ZL)R31 (ZH)

    Stack pointer

    In order to maximize performance and parallelism, the AVR uses a Harvard architecture with separatememories and buses for program and data. Instructions in the program memory are executed with asingle level pipelining. While one instruction is being executed, the next instruction is pre-fetched from theprogram memory. This concept enables instructions to be executed in every clock cycle. The programmemory is In-System Reprogrammable Flash memory.

    The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clockcycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALUoperation, two operands are output from the Register File, the operation is executed, and the result isstored back in the Register File in one clock cycle.

    Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Spaceaddressing enabling efficient address calculations. One of the these address pointers can also be usedas an address pointer for look up tables in Flash program memory. These added function registers arethe 16-bit X-, Y-, and Z-register, described later in this section.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    25

  • The ALU supports arithmetic and logic operations between registers or between a constant and aregister. Single register operations can also be executed in the ALU. After an arithmetic operation, theStatus Register is updated to reflect information about the result of the operation.

    Program flow is provided by conditional and unconditional jump and call instructions, able to directlyaddress the whole address space. Most AVR instructions have a single 16-bit word format. Everyprogram memory address contains a 16- or 32-bit instruction.

    Program Flash memory space is divided in two sections, the Boot Program section and the ApplicationProgram section. Both sections have dedicated Lock bits for write and read/write protection. The SPMinstruction that writes into the Application Flash memory section must reside in the Boot Program section.

    During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack.The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is onlylimited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in theReset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/writeaccessible in the I/O space. The data SRAM can easily be accessed through the five different addressingmodes supported in the AVR architecture.

    The memory spaces in the AVR architecture are all linear and regular memory maps.

    A flexible interrupt module has its control registers in the I/O space with an additional Global InterruptEnable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vectortable. The interrupts have priority in accordance with their Interrupt Vector position. The lower theInterrupt Vector address, the higher the priority.

    The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI,and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locationsfollowing those of the Register File, 0x20 - 0x5F. In addition, this device has Extended I/O space from0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.

    11.2. ALU Arithmetic Logic UnitThe high-performance AVR ALU operates in direct connection with all the 32 general purpose workingregisters. Within a single clock cycle, arithmetic operations between general purpose registers or betweena register and an immediate are executed. The ALU operations are divided into three main categories arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerfulmultiplier supporting both signed/unsigned multiplication and fractional format. See Instruction SetSummary section for a detailed description.

    Related LinksInstruction Set Summary on page 432

    11.3. Status RegisterThe Status Register contains information about the result of the most recently executed arithmeticinstruction. This information can be used for altering program flow in order to perform conditionaloperations. The Status Register is updated after all ALU operations, as specified in the Instruction SetReference. This will in many cases remove the need for using the dedicated compare instructions,resulting in faster and more compact code.

    The Status Register is not automatically stored when entering an interrupt routine and restored whenreturning from an interrupt. This must be handled by software.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    26

  • 11.3.1. Status RegisterWhen addressing I/O Registers as data space using LD and ST instructions, the provided offset must beused. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in anI/O address offset within 0x00 - 0x3F.

    Name: SREGOffset: 0x5FReset: 0x00Property:

    When addressing as I/O Register: address offset is 0x3F

    Bit 7 6 5 4 3 2 1 0 I T H S V N Z C

    Access R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0

    Bit 7 I:Global Interrupt EnableThe Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interruptenable control is then performed in separate control registers. If the Global Interrupt Enable Register iscleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enablesubsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLIinstructions, as described in the instruction set reference.

    Bit 6 T:Copy StorageThe Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination forthe operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, anda bit in T can be copied into a bit in a register in the Register File by the BLD instruction.

    Bit 5 H:Half Carry FlagThe Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Flag is useful inBCD arithmetic. See the Instruction Set Description for detailed information.

    Bit 4 S:Sign Flag, S = N V

    The S-bit is always an exclusive or between the Negative Flag N and the Twos Complement OverflowFlag V. See the Instruction Set Description for detailed information.

    Bit 3 V:Twos Complement Overflow FlagThe Twos Complement Overflow Flag V supports twos complement arithmetic. See the Instruction SetDescription for detailed information.

    Bit 2 N:Negative FlagThe Negative Flag N indicates a negative result in an arithmetic or logic operation. See the Instruction SetDescription for detailed information.

    Bit 1 Z:Zero FlagThe Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the Instruction SetDescription for detailed information.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    27

  • Bit 0 C:Carry FlagThe Carry Flag C indicates a carry in an arithmetic or logic operation. See the Instruction Set Descriptionfor detailed information.

    11.4. General Purpose Register FileThe Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve therequired performance and flexibility, the following input/output schemes are supported by the RegisterFile:

    One 8-bit output operand and one 8-bit result input Two 8-bit output operands and one 8-bit result input Two 8-bit output operands and one 16-bit result input One 16-bit output operand and one 16-bit result input

    Figure 11-2.AVR CPU General Purpose Working Registers7 0 Addr.

    R0 0x00

    R1 0x01

    R2 0x02

    R13 0x0D

    Genera l R14 0x0E

    Purpose R15 0x0F

    Working R16 0x10

    Regis ters R17 0x11

    R26 0x1A X-regis te r Low Byte

    R27 0x1B X-regis te r High Byte

    R28 0x1C Y-regis te r Low Byte

    R29 0x1D Y-regis te r High Byte

    R30 0x1E Z-regis te r Low Byte

    R31 0x1F Z-regis te r High Byte

    Most of the instructions operating on the Register File have direct access to all registers, and most ofthem are single cycle instructions. As shown in the figure, each register is also assigned a data memoryaddress, mapping them directly into the first 32 locations of the user Data Space. Although not beingphysically implemented as SRAM locations, this memory organization provides great flexibility in accessof the registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file.

    11.4.1. The X-register, Y-register, and Z-registerThe registers R26...R31 have some added functions to their general purpose usage. These registers are16-bit address pointers for indirect addressing of the data space. The three indirect address registers X,Y, and Z are defined as described in the figure.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    28

  • Figure 11-3.The X-, Y-, and Z-registers15 XH XL 0

    X-register 7 0 7 0

    R27 R26

    15 YH YL 0

    Y-register 7 0 7 0

    R29 R28

    15 ZH ZL 0

    Z-register 7 0 7 0

    R31 R30

    In the different addressing modes these address registers have functions as fixed displacement,automatic increment, and automatic decrement (see the instruction set reference for details).

    Related LinksInstruction Set Summary on page 432

    11.5. Stack PointerThe Stack is mainly used for storing temporary data, for storing local variables and for storing returnaddresses after interrupts and subroutine calls. The Stack is implemented as growing from higher tolower memory locations. The Stack Pointer Register always points to the top of the Stack.

    The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks arelocated. A Stack PUSH command will decrease the Stack Pointer. The Stack in the data SRAM must bedefined by the program before any subroutine calls are executed or interrupts are enabled. Initial StackPointer value equals the last address of the internal SRAM and the Stack Pointer must be set to pointabove start of the SRAM. See the table for Stack Pointer details.

    Table 11-1.Stack Pointer Instructions

    Instruction Stack pointer Description

    PUSH Decremented by 1 Data is pushed onto the stack

    CALL

    ICALL

    RCALL

    Decremented by 2 Return address is pushed onto the stack with a subroutine call orinterrupt

    POP Incremented by 1 Data is popped from the stack

    RET

    RETI

    Incremented by 2 Return address is popped from the stack with return from subroutine orreturn from interrupt

    The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actuallyused is implementation dependent. Note that the data space in some implementations of the AVRarchitecture is so small that only SPL is needed. In this case, the SPH Register will not be present.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    29

  • 11.5.1. Stack Pointer Register High byteWhen using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. Whenaddressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offsetaddresses.

    Name: SPHOffset: 0x5EReset: RAMENDProperty:

    When addressing I/O Registers as data space the offset address is 0x3E

    Bit 7 6 5 4 3 2 1 0 (SP[10:8]) SPH

    Access RW RW RW Reset 0 0 0

    Bits 2:0 (SP[10:8]) SPH:Stack Pointer RegisterSPH and SPL are combined into SP. It means SPH[2:0] is SP[10:8].

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    30

  • 11.5.2. Stack Pointer Register Low byteWhen using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. Whenaddressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these offsetaddresses.

    Name: SPLOffset: 0x5DReset: 0x11111111Property:

    When addressing I/O Registers as data space the offset address is 0x3D

    Bit 7 6 5 4 3 2 1 0 (SP[7:0]) SPL

    Access RW RW RW RW RW RW RW RW Reset 0 0 0 0 0 0 0 1

    Bits 7:0 (SP[7:0]) SPL:Stack Pointer RegisterSPH and SPL are combined into SP. It means SPL[7:0] is SP[7:0].

    11.6. Instruction Execution TimingThis section describes the general access timing concepts for instruction execution. The AVR CPU isdriven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internalclock division is used. The Figure below shows the parallel instruction fetches and instruction executionsenabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipeliningconcept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,functions per clocks, and functions per power-unit.

    Figure 11-4.The Parallel Instruction Fetches and Instruction Executions

    clk

    1st Instruction Fetch1st Instruction Execute

    2nd Instruction Fetch2nd Instruction Execute

    3rd Instruction Fetch3rd Instruction Execute

    4th Instruction Fetch

    T1 T2 T3 T4

    CPU

    The following Figure shows the internal timing concept for the Register File. In a single clock cycle anALU operation using two register operands is executed, and the result is stored back to the destinationregister.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    31

  • Figure 11-5.Single Cycle ALU Operation

    Total Execution Time

    Register Operands Fetch

    ALU Operation Execute

    Result Write Back

    T1 T2 T3 T4

    clkCPU

    11.7. Reset and Interrupt HandlingThe AVR provides several different interrupt sources. These interrupts and the separate Reset Vectoreach have a separate program vector in the program memory space. All interrupts are assigned individualenable bits which must be written logic one together with the Global Interrupt Enable bit in the StatusRegister in order to enable the interrupt. Depending on the Program Counter value, interrupts may beautomatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improvessoftware security.

    The lowest addresses in the program memory space are by default defined as the Reset and InterruptVectors. They have determined priority levels: The lower the address the higher is the priority level.RESET has the highest priority, and next is INT0 the External Interrupt Request 0. The Interrupt Vectorscan be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register(MCUCR). The Reset Vector can also be moved to the start of the Boot Flash section by programmingthe BOOTRST Fuse.

    When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. Theuser software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can theninterrupt the current interrupt routine. The I-bit is automatically set when a Return from Interruptinstruction RETI is executed.

    There are basically two types of interrupts:

    The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the ProgramCounter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, andhardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logicone to the flag bit position(s) to be cleared. If an interrupt condition occurs while the correspondinginterrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled,or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the GlobalInterrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until theGlobal Interrupt Enable bit is set, and will then be executed by order of priority.

    The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts donot necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled,the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the mainprogram and execute one more instruction before any pending interrupt is served.

    The Status Register is not automatically stored when entering an interrupt routine, nor restored whenreturning from an interrupt routine. This must be handled by software.

    When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. Nointerrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    32

  • The following example shows how this can be used to avoid interrupts during the timed EEPROM writesequence.

    Assembly Code Example

    in r16, SREG ; store SREG valuecli ; disable interrupts during timed sequencesbi EECR, EEMPE ; start EEPROM writesbi EECR, EEPEout SREG, r16 ; restore SREG value (I-bit)

    C Code Example

    char cSREG;cSREG = SREG; /* store SREG value *//* disable interrupts during timed sequence */_CLI();EECR |= (1

  • 12. AVR Memories

    12.1. OverviewThis section describes the different memory types in the device. The AVR architecture has two mainmemory spaces, the Data Memory and the Program Memory space. In addition, the device features anEEPROM Memory for data storage. All memory spaces are linear and regular.

    12.2. In-System Reprogrammable Flash Program MemoryThe ATmega328/P contains 32Kbytes On-chip In-System Reprogrammable Flash memory for programstorage. Since all AVR instructions are 16 or 32 bits wide, the Flash is organized as 16K x 16. Forsoftware security, the Flash Program memory space is divided into two sections - Boot Loader Sectionand Application Program Section in the device .

    The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega328/P ProgramCounter (PC) is 14 bits wide, thus addressing the 16K program memory locations. The operation of BootProgram section and associated Boot Lock bits for software protection are described in detail in BootLoader Support Read-While-Write Self-Programming. Refer to Memory Programming for the descriptionon Flash data serial downloading using the SPI pins.

    Constant tables can be allocated within the entire program memory address space, using the LoadProgram Memory (LPM) instruction.

    Timing diagrams for instruction fetch and execution are presented in Instruction Exectution Timing.

    Figure 12-1.Program Memory Map ATmega328/P

    0x0000

    0x3FFF

    Program Memory

    Application Flash Section

    Boot Flash Section

    Related LinksBTLDR - Boot Loader Support Read-While-Write Self-Programming on page 330MEMPROG- Memory Programming on page 347Instruction Execution Timing on page 31

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    34

  • 12.3. SRAM Data MemoryThe following figure shows how the device SRAM Memory is organized.

    The device is a complex microcontroller with more peripheral units than can be supported within the 64locations reserved in the Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60- 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

    The lower 2303 data memory locations address both the Register File, the I/O memory, Extended I/Omemory, and the internal data SRAM. The first 32 locations address the Register File, the next 64location the standard I/O memory, then 160 locations of Extended I/O memory, and the next 2K locationsaddress the internal data SRAM.

    The five different addressing modes for the data memory cover: Direct

    The direct addressing reaches the entire data space. Indirect with Displacement

    The Indirect with Displacement mode reaches 63 address locations from the base addressgiven by the Y- or Z-register.

    Indirect In the Register File, registers R26 to R31 feature the indirect addressing pointer registers.

    Indirect with Pre-decrement The address registers X, Y, and Z are decremented.

    Indirect with Post-increment The address registers X, Y, and Z are incremented.

    The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and the 2Kbytes of internal data SRAM in the device are all accessible through all these addressing modes.

    Figure 12-2.Data Memory Map with 2048 byte internal data SRAM

    (2048x8)

    0x08FF12.3.1. Data Memory Access Times

    The internal data SRAM access is performed in two clkCPU cycles as described in the following Figure.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    35

  • Figure 12-3.On-chip Data SRAM Access Cycles

    clk

    WR

    RD

    Data

    Data

    Address Address valid

    T1 T2 T3

    Compute Address

    Rea

    dW

    rite

    CPU

    Memory Access Instruction Next Instruction

    12.4. EEPROM Data MemoryThe ATmega328/P contains 1K bytes of data EEPROM memory. It is organized as a separate dataspace, in which single bytes can be read and written. The EEPROM has an endurance of at least100,000 write/erase cycles. The access between the EEPROM and the CPU is described in the following,specifying the EEPROM Address Registers, the EEPROM Data Register, and the EEPROM ControlRegister.

    See the related links for a detailed description on EEPROM Programming in SPI or Parallel Programmingmode.

    Related LinksMEMPROG- Memory Programming on page 347

    12.4.1. EEPROM Read/Write AccessThe EEPROM Access Registers are accessible in the I/O space.

    The write access time for the EEPROM is given in Table 12-2. A self-timing function, however, lets theuser software detect when the next byte can be written. If the user code contains instructions that writethe EEPROM, some precautions must be taken. In heavily filtered power supplies, VCC is likely to rise orfall slowly on power-up/down. This causes the device for some period of time to run at a voltage lowerthan specified as minimum for the clock frequency used. Please refer to Preventing EEPROM Corruptionfor details on how to avoid problems in these situations.

    In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. Refer tothe description of the EEPROM Control Register for details on this.

    When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction isexecuted. When the EEPROM is written, the CPU is halted for two clock cycles before the next instructionis executed.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    36

  • 12.4.2. Preventing EEPROM CorruptionDuring periods of low VCC, the EEPROM data can be corrupted because the supply voltage is too low forthe CPU and the EEPROM to operate properly. These issues are the same as for board level systemsusing EEPROM, and the same design solutions should be applied.

    An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regularwrite sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itselfcan execute instructions incorrectly, if the supply voltage is too low.

    EEPROM data corruption can easily be avoided by following this design recommendation:

    Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be doneby enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does notmatch the needed detection level, an external low VCC reset Protection circuit can be used. If a resetoccurs while a write operation is in progress, the write operation will be completed provided that thepower supply voltage is sufficient.

    12.5. I/O MemoryThe I/O space definition of the device is shown in the Register Summary.

    All device I/Os and peripherals are placed in the I/O space. All I/O locations may be accessed by theLD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose workingregisters and the I/O space. I/O Registers within the address range 0x00-0x1F are directly bit-accessibleusing the SBI and CBI instructions. In these registers, the value of single bits can be checked by usingthe SBIS and SBIC instructions.

    When using the I/O specific commands IN and OUT, the I/O addresses 0x00-0x3F must be used. Whenaddressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to theseaddresses. The device is a complex microcontroller with more peripheral units than can be supportedwithin the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O spacefrom 0x60..0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

    For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/Omemory addresses should never be written.

    Some of the Status Flags are cleared by writing a '1' to them; this is described in the flag descriptions.Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, andcan therefore be used on registers containing such Status Flags. The CBI and SBI instructions work withregisters 0x00-0x1F only.

    The I/O and Peripherals Control Registers are explained in later sections.

    Related LinksMEMPROG- Memory Programming on page 347Register Summary on page 428Instruction Set Summary on page 432

    12.5.1. General Purpose I/O RegistersThe device contains three General Purpose I/O Registers, General Purpose I/O Register 0/1/2 (GPIOR0/1/2). These registers can be used for storing any information, and they are particularly useful for storingglobal variables and Status Flags. General Purpose I/O Registers within the address range 0x00 - 0x1Fare directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    37

  • 12.6. Register Description

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    38

  • 12.6.1. EEPROM Address Register HighWhen addressing I/O Registers as data space using LD and ST instructions, the provided offset must beused. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in anI/O address offset within 0x00 - 0x3F.

    Name: EEARHOffset: 0x42Reset: 0x0XProperty:

    When addressing as I/O Register: address offset is 0x22

    Bit 7 6 5 4 3 2 1 0 EEAR9 EEAR8

    Access R/W R/W Reset x x

    Bit 1 EEAR9:EEPROM Address 9Refer to EEARL.

    Bit 0 EEAR8:EEPROM Address 8Refer to EEARL.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    39

  • 12.6.2. EEPROM Address Register LowWhen addressing I/O Registers as data space using LD and ST instructions, the provided offset must beused. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in anI/O address offset within 0x00 - 0x3F.

    Name: EEARLOffset: 0x41Reset: 0xXXProperty:

    When addressing as I/O Register: address offset is 0x21

    Bit 7 6 5 4 3 2 1 0 EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0

    Access R/W R/W R/W R/W R/W R/W R/W R/W Reset x x x x x x x x

    Bits 7:0 EEARn:EEPROM AddressThe EEPROM Address Registers EEARH and EEARL specify the EEPROM address in the 1K BytesEEPROM space. The EEPROM data bytes are addressed linearly between 0 and 255/511/511. The initialvalue of EEAR is undefined. A proper value must be written before the EEPROM may be accessed.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    40

  • 12.6.3. EEPROM Data RegisterWhen addressing I/O Registers as data space using LD and ST instructions, the provided offset must beused. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in anI/O address offset within 0x00 - 0x3F.

    Name: EEDROffset: 0x40Reset: 0x00Property:

    When addressing as I/O Register: address offset is 0x20

    Bit 7 6 5 4 3 2 1 0 EEDR[7:0]

    Access R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0

    Bits 7:0 EEDR[7:0]:EEPROM DataFor the EEPROM write operation, the EEDR Register contains the data to be written to the EEPROM inthe address given by the EEAR Register. For the EEPROM read operation, the EEDR contains the dataread out from the EEPROM at the address given by EEAR.

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    41

  • 12.6.4. EEPROM Control RegisterWhen addressing I/O Registers as data space using LD and ST instructions, the provided offset must beused. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in anI/O address offset within 0x00 - 0x3F.

    Name: EECROffset: 0x3FReset: 0x00Property:

    When addressing as I/O Register: address offset is 0x1F

    Bit 7 6 5 4 3 2 1 0 EEPM1 EEPM0 EERIE EEMPE EEPE EERE

    Access R/W R/W R/W R/W R/W R/W Reset x x 0 0 x 0

    Bits 5:4 EEPMn:EEPROM Programming Mode Bits [n = 1:0]The EEPROM Programming mode bit setting defines which programming action that will be triggeredwhen writing EEPE. It is possible to program data in one atomic operation (erase the old value andprogram the new value) or to split the Erase and Write operations in two different operations. TheProgramming times for the different modes are shown in the table below. While EEPE is set, any write toEEPMn will be ignored. During reset, the EEPMn bits will be reset to 0b00 unless the EEPROM is busyprogramming.

    Table 12-1.EEPROM Mode Bits

    EEPM[1:0] Programming Time Operation

    00 3.4ms Erase and Write in one operation (Atomic Operation)

    01 1.8ms Erase Only

    10 1.8ms Write Only

    11 - Reserved for future use

    Bit 3 EERIE:EEPROM Ready Interrupt EnableWriting EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing EERIE tozero disables the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEPE iscleared. The interrupt will not be generated during EEPROM write or SPM.

    Bit 2 EEMPE:EEPROM Master Write EnableThe EEMPE bit determines whether writing EEPE to '1' causes the EEPROM to be written.When EEMPE is '1', setting EEPE within four clock cycles will write data to the EEPROM at the selectedaddress.

    If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been written to '1' by software,hardware clears the bit to zero after four clock cycles. See the description of the EEPE bit for anEEPROM write procedure.

    Bit 1 EEPE:EEPROM Write EnableThe EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address and data arecorrectly set up, the EEPE bit must be written to '1' to write the value into the EEPROM. The EEMPE bit

    Atmel ATmega328/P [DATASHEET]Atmel-42735B-ATmega328/P_Datasheet_Complete-11/2016

    42

  • must be written to '1' before EEPE is written to '1', otherwise no EEPROM write takes place. The followingprocedure should be followed when writing the EEPROM (the order of steps 3 and 4 is not essential):

    1. Wait until EEPE becomes zero.2. Wait until SPMEN in SPMCSR becomes zero.3. Write new EEPROM address to EEAR (optional).4. Write new EEPROM data to EEDR (optional).5. Write a '1' to the EEMPE bit while writing a zero to EEPE in EECR.6. Within four clock cycles after setting EEMPE, write a '1' to EEPE.

    The EEPROM can not be programmed during a CPU write to the Flash memory. The software mustcheck that the Flash programming is completed before initiating a new EEPROM write. Step 2 is onlyrelevant if the software contains a Boot Loader allowing the CPU to program the Flash. If the Flash isnever being updated by the CPU, step 2 can be omitted.

    Caution:An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM MasterWrite Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting anotherEEPROM access, the EEAR or EEDR Register will be modified, causing the interruptedEEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared during allthe steps to avoid these problems.

    When the write access time has elapsed, the EEPE bit is cleared by hardware. The usersoftware can poll this bit and wait for a zero before writing the next byte. When EEPE has beenset, the CPU is halted for two cycles before the next instruction i