Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig...

12
Chapter 6A Notes Page 1 of 12 Introduction and Review Derivatives = () = β€² () Evaluate derivative at =: | = = β€² () = lim β„Žβ†’0 (+β„Ž)βˆ’() β„Ž Geometric Interpretation: see figure slope of the line tangent to at =. Differentiation formulas = βˆ’1 ln|| = 1 = sin() = cos() cos() = βˆ’sin() tan() = sec 2 () sec() = sec() tan() sin βˆ’1 () = 1 √1 βˆ’ 2

Transcript of Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig...

Page 1: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 1 of 12

Introduction and Review

Derivatives 𝑦 = 𝑓(π‘₯)

𝑑𝑦

𝑑π‘₯= 𝑓′(π‘₯)

Evaluate derivative at π‘₯ = π‘Ž:

𝑑𝑦

𝑑π‘₯|

π‘₯=π‘Ž= 𝑓′(π‘Ž) = lim

β„Žβ†’0

𝑓(π‘Ž+β„Ž)βˆ’π‘“(π‘Ž)

β„Ž

Geometric Interpretation: see figure

slope of the line tangent to 𝑓 at π‘₯ = π‘Ž.

Differentiation formulas 𝑑

𝑑π‘₯π‘₯𝑛 = 𝑛π‘₯π‘›βˆ’1

𝑑

𝑑π‘₯ln|π‘₯| =

1

π‘₯

𝑑

𝑑π‘₯𝑒π‘₯ = 𝑒π‘₯

𝑑

𝑑π‘₯sin(π‘₯) = cos(π‘₯)

𝑑

𝑑π‘₯cos(π‘₯) = βˆ’sin(π‘₯)

𝑑

𝑑π‘₯tan(π‘₯) = sec2(π‘₯)

𝑑

𝑑π‘₯sec(π‘₯) = sec(π‘₯) tan(π‘₯)

𝑑

𝑑π‘₯sinβˆ’1(π‘₯) =

1

√1 βˆ’ π‘₯2

Page 2: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 2 of 12

𝑑

𝑑π‘₯tanβˆ’1(π‘₯) =

1

1 + π‘₯2

Review the sum, difference, product and quotient rules!

The chain rule

Let 𝐹(π‘₯) = 𝑓(𝑔(π‘₯)), then 𝐹′(π‘₯) = 𝑓′(𝑔(π‘₯))𝑔′(π‘₯)

Or let 𝑦 = 𝑓(𝑒), 𝑒 = 𝑔(π‘₯), then 𝑑𝑦

𝑑π‘₯=

𝑑𝑦

𝑑𝑒

𝑑𝑒

𝑑π‘₯

Example:

𝑑

𝑑π‘₯sin(π‘₯2) = cos(π‘₯2)2π‘₯

Indefinite Integrals Indefinite integrals are also known as antiderivatives.

If 𝐹′ is the derivative of 𝐹 then we write

∫ 𝐹′(π‘₯)𝑑π‘₯ = 𝐹(π‘₯) + 𝐢

Example:

∫ cos(π‘₯2) 2π‘₯ 𝑑π‘₯ = sin(π‘₯2) + 𝐢

Indefinite integral formulas

∫ π‘₯𝑛𝑑π‘₯ =1

𝑛 + 1π‘₯𝑛+1 + 𝐢

∫1

π‘₯ 𝑑π‘₯ = ln|π‘₯| + 𝐢

∫ 𝑒π‘₯𝑑π‘₯ = 𝑒π‘₯ + 𝐢

∫ cos(π‘₯) 𝑑π‘₯ = sin(π‘₯) + 𝐢

∫ sin(π‘₯) 𝑑π‘₯ = βˆ’ cos(π‘₯) + 𝐢

∫ sec2(π‘₯)𝑑π‘₯ = tan(π‘₯) + 𝐢

∫ sec(π‘₯) tan(π‘₯) 𝑑π‘₯ = sec(π‘₯) + 𝐢

Page 3: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 3 of 12

Definite Integrals

Example: ∫1

π‘₯ 𝑑π‘₯

𝑒

1

Geometric Interpretation: see figure

Evaluation theorem

∫ 𝐹′(π‘₯)𝑑π‘₯ = 𝐹(π‘₯)|π‘Žπ‘ = 𝐹(𝑏) βˆ’ 𝐹(π‘Ž)

𝑏

π‘Ž

Examples:

∫1

π‘₯ 𝑑π‘₯ = ln(x)|1

e𝑒

1

= ln(𝑒) βˆ’ ln(1) = 1 βˆ’ 0 = 1

∫ cos(π‘₯2) 2π‘₯ 𝑑π‘₯ = sin(π‘₯2)|01 = sin(1) βˆ’ sin (0)

1

0

Integration by substitution Suppose an integral has the form: 𝐼 = ∫ 𝑓′(𝑔(π‘₯))𝑔′(π‘₯)𝑑π‘₯,

let 𝑒 = 𝑔(π‘₯), then 𝑑𝑒 = 𝑔′(π‘₯)𝑑π‘₯ (this is differential notation)

Substitute to obtain

𝐼 = ∫ 𝑓′(𝑒)𝑑𝑒 = 𝑓(𝑒) + 𝐢 = 𝑓(𝑔(π‘₯)) + 𝐢

This is equivalent to taking the chain rule of differentiation backwards!

Example. 𝐼 = ∫ cos(π‘₯2) π‘₯ 𝑑π‘₯

Let 𝑒 = π‘₯2, 𝑑𝑒 = 2π‘₯ 𝑑π‘₯

𝐼 = ∫ cos(𝑒) 1

2 𝑑𝑒 =

1

2 ∫ cos(𝑒) 𝑑𝑒 =

1

2sin(𝑒) + 𝐢 =

1

2sin(π‘₯2) + 𝐢.

Example. 𝐽 = ∫ cos(π‘₯2) π‘₯ 𝑑π‘₯3

2

Page 4: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 4 of 12

Let 𝑒 = π‘₯2. If π‘₯ = 2 then 𝑒 = 4. If π‘₯ = 3 then 𝑒 = 9.

𝐽 = ∫ cos(𝑒)1

2𝑑𝑒

9

4

=1

2sin (𝑒)|4

9

6.1 Integration by parts

Chain rule for differentiation: 𝑑

𝑑π‘₯𝑠𝑖𝑛(π‘₯2) = (cos(π‘₯2))2π‘₯

Integration by substitution: let = π‘₯2 , 𝑑𝑒 = 2π‘₯ 𝑑π‘₯

∫ (cos π‘₯2)2π‘₯ 𝑑π‘₯ = ∫ cos(𝑒) 𝑑𝑒 = sin(𝑒) + 𝐢 = sin(π‘₯2) + 𝐢

Product rule for differentiation

𝑑

𝑑π‘₯[𝑓(π‘₯)𝑔(π‘₯)] = 𝑓′(π‘₯)𝑔(π‘₯) + 𝑓(π‘₯)𝑔′(π‘₯)

Solve for𝑓(π‘₯)𝑔′(π‘₯):

𝑓(π‘₯)𝑔′(π‘₯) =𝑑

𝑑π‘₯[𝑓(π‘₯)𝑔(π‘₯)] βˆ’ 𝑓′(π‘₯)𝑔(π‘₯)

Take antiderivatives

(∫ 𝑓(π‘₯)𝑔′(π‘₯)𝑑π‘₯ = 𝑓(π‘₯)𝑔(π‘₯) βˆ’ ∫ 𝑓′(π‘₯)𝑔(π‘₯)𝑑π‘₯ (A)

This is the rule for integration of indefinite integrals by parts.

Shorthand formula: recall differential notation

Box: 𝑒 = 𝑓(π‘₯) 𝑑𝑣 = 𝑔′(π‘₯) 𝑑π‘₯

𝑑𝑒 = 𝑓′(π‘₯)𝑑π‘₯ 𝑣 = 𝑔(π‘₯)

Substitute into (A) above to get

∫ 𝑒 𝑑𝑣 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒 (B)

An easy-to-remember form of the integration by parts formula!

Page 5: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 5 of 12

Example 1. Evaluate 𝐼 = ∫ π‘₯ cos(π‘₯) 𝑑π‘₯.

Box: 𝑒 = π‘₯ 𝑑𝑣 = cos(π‘₯) 𝑑π‘₯

𝑑𝑒 = 𝑑π‘₯ 𝑣 = sin (π‘₯)

𝐼 = ∫ 𝑒 𝑑𝑣 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒

= π‘₯ sin(π‘₯) βˆ’ ∫ sin (π‘₯)𝑑π‘₯

= π‘₯ sin(π‘₯) + cos(π‘₯) + 𝐢

Check:

𝑑

𝑑π‘₯(π‘₯ sin(π‘₯) + cos(π‘₯) + 𝐢) = sin(π‘₯) + π‘₯ cos(π‘₯) βˆ’ sin(π‘₯) = π‘₯ cos (π‘₯) √√

In principle, pick 𝑒 so that 𝑑𝑒 is simpler and pick 𝑑𝑣 so that it is possible to integrate. The following

LIPET scheme for choosing 𝑒 and 𝑣 is often useful:

(L)ogarithm

(I)nverse Trig

(P)olynomials or powers of π‘₯

(E)xponential functions

(T)rig functions

Whichever piece of the integrand is higher on the list is 𝑒 and the other piece is 𝑑𝑣.

Example 2. Integration by parts twice

Evaluate 𝐼 = ∫ π‘₯2 sin(π‘₯) 𝑑π‘₯.

Box: 𝑒 = π‘₯2 𝑑𝑣 = sin(π‘₯) 𝑑π‘₯

𝑑𝑒 = 2π‘₯ 𝑑π‘₯ 𝑣 = βˆ’cos (π‘₯)

𝐼 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒

= βˆ’π‘₯2 cos(π‘₯) + ∫ cos(π‘₯) 2π‘₯ 𝑑π‘₯

= βˆ’π‘₯2 cos(π‘₯) + 2(π‘₯ sin(π‘₯) + cos(π‘₯)) + 𝐢

Page 6: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 6 of 12

We used the result of example 1.

Example 3. Recurrence of the original integral

Evaluate 𝐼 = ∫ π‘’βˆ’π‘₯ cos(π‘₯) 𝑑π‘₯

Box: 𝑒 = π‘’βˆ’π‘₯ 𝑑𝑣 = cos(π‘₯) 𝑑π‘₯

𝑑𝑒 = βˆ’π‘’βˆ’π‘₯ 𝑑π‘₯ 𝑣 = sin (π‘₯)

𝐼 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒 = π‘’βˆ’π‘₯ sin(π‘₯) + ∫ π‘’βˆ’π‘₯ sin(π‘₯) 𝑑π‘₯ (C)

Evaluate 𝐽 = ∫ π‘’βˆ’π‘₯ sin(π‘₯) 𝑑π‘₯

Box: 𝑒 = π‘’βˆ’π‘₯ 𝑑𝑣 = sin(π‘₯) 𝑑π‘₯

𝑑𝑒 = βˆ’π‘’βˆ’π‘₯𝑑π‘₯ 𝑣 = βˆ’cos (π‘₯)

𝐽 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒 = βˆ’π‘’βˆ’π‘₯ cos(π‘₯) βˆ’ ∫ π‘’βˆ’π‘₯ cos(π‘₯) 𝑑π‘₯ = βˆ’π‘’βˆ’π‘₯ cos(π‘₯) βˆ’ 𝐼 (D)

Combine (C) and (D)

𝐼 = π‘’βˆ’π‘₯ sin(π‘₯) + (βˆ’π‘’βˆ’π‘₯ cos(π‘₯) βˆ’ 𝐼)

2𝐼 = π‘’βˆ’π‘₯(sin(π‘₯) βˆ’ cos(π‘₯)) + 2𝐢

𝐼 =1

2π‘’βˆ’π‘₯(sin(π‘₯) βˆ’ cos(π‘₯)) + 𝐢

We added an explicit constant of integration when we put 𝐼 on only one side of the equation. Since 𝐼

represents an indefinite integral, it has an implicit constant of integration.

Example 4: combine parts and substitution

Evaluate 𝐼 = ∫ sinβˆ’1(π‘₯) 𝑑π‘₯

𝑑

𝑑π‘₯sinβˆ’1(π‘₯) =

1

√1βˆ’π‘₯2

Box: 𝑒 = sinβˆ’1(π‘₯) 𝑑𝑣 = 𝑑π‘₯

𝑑𝑒 =1

√1βˆ’π‘₯2𝑑π‘₯ 𝑣 = π‘₯

𝐼 = ∫ 𝑒 𝑑𝑣 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒

= π‘₯ sinβˆ’1(π‘₯) βˆ’ ∫π‘₯

√1βˆ’π‘₯2𝑑π‘₯

Page 7: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 7 of 12

Evaluate 𝐽 = ∫π‘₯

√1βˆ’π‘₯2𝑑π‘₯

Let 𝑑 = 1 βˆ’ π‘₯2, 𝑑𝑑 = βˆ’2π‘₯ 𝑑π‘₯, βˆ’1

2𝑑𝑑 = π‘₯ 𝑑π‘₯

Then 𝐽 = βˆ’1

2 ∫ π‘‘βˆ’

1

2 𝑑𝑑 = βˆ’1

2 (2 𝑑

1

2) + 𝐢 = βˆ’π‘‘1

2 + 𝐢

Combine to get

𝐼 = π‘₯ sinβˆ’1(π‘₯) + (1 βˆ’ π‘₯2)1

2 + 𝐢

Definite Integrals Evaluation Theorem

∫ 𝐹′(π‘₯)𝑑π‘₯ = 𝐹(π‘₯)|π‘Žπ‘ = 𝐹(𝑏) βˆ’ 𝐹(π‘Ž)

𝑏

π‘Ž

Product Rule

𝑑

𝑑π‘₯𝑓(π‘₯)𝑔(π‘₯) = 𝑓′(π‘₯)𝑔(π‘₯) + 𝑓(π‘₯)𝑔′(π‘₯)

𝑓(π‘₯)𝑔′(π‘₯) =𝑑

𝑑π‘₯[𝑓(π‘₯)𝑔(π‘₯)] βˆ’ 𝑓′(π‘₯)𝑔(π‘₯)

integrate from π‘₯ = π‘Ž to π‘₯ = 𝑏:

∫ 𝑓(π‘₯)𝑔′(π‘₯)𝑑π‘₯ = βˆ«π‘‘

𝑑π‘₯[𝑓(π‘₯)𝑔(π‘₯)]𝑑π‘₯ = ∫ 𝑓′(π‘₯)𝑔(π‘₯)𝑑π‘₯

𝑏

π‘Ž

𝑏

π‘Ž

𝑏

π‘Ž

∫ 𝑓(π‘₯)𝑔′(π‘₯)𝑑π‘₯𝑏

π‘Ž= 𝑓(π‘₯)𝑔(π‘₯)|π‘Ž

𝑏 βˆ’ ∫ 𝑓′(π‘₯)𝑔(π‘₯)𝑑π‘₯𝑏

π‘Ž (E)

Shorthand using differential notation

Box: 𝑒 = 𝑓(π‘₯) 𝑑𝑣 = 𝑔′(π‘₯) 𝑑π‘₯

𝑑𝑒 = 𝑓′(π‘₯)𝑑π‘₯ 𝑣 = 𝑔(π‘₯)

Write as for an indefinite integral:

∫ 𝑒 𝑑𝑣 = 𝑒 𝑣 βˆ’ ∫ 𝑣 𝑑𝑒

Replace 𝑒, 𝑑𝑒, 𝑣 and 𝑑𝑣 with appropriate expressions in π‘₯ and add limits of integration to get (E)

Page 8: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 8 of 12

Example 1: 𝐼 = ∫ ln(π‘₯) 𝑑π‘₯𝑒

1

Box: 𝑒 = ln (π‘₯) 𝑑𝑣 = 𝑑π‘₯

𝑑𝑒 =1

π‘₯𝑑π‘₯ 𝑣 = π‘₯

∫ 𝑒 𝑑𝑣 = 𝑒 𝑣 βˆ’ ∫ 𝑣 𝑑𝑒

∫ ln(π‘₯) 𝑑π‘₯ = π‘₯ ln(x)|1e βˆ’ ∫ dx

e

1

𝑒

1

= (𝑒 ln(𝑒) βˆ’ 1 ln(1)) βˆ’ (𝑒 βˆ’ 1)

= (𝑒 βˆ’ 0) βˆ’ (𝑒 βˆ’ 1)

= 1

Example 2: Combine substitution with parts

𝐼 = ∫ π‘’βˆšπ‘₯4

1𝑑π‘₯

Let 𝑑 = √π‘₯ = π‘₯1

2

𝑑𝑑 =1

2π‘₯βˆ’

1

2 𝑑π‘₯

2 π‘₯1

2 𝑑𝑑 = 𝑑π‘₯

2𝑑 𝑑𝑑 = 𝑑π‘₯

If π‘₯ = 1 then 𝑑 = 1. If π‘₯ = 4 then 𝑑 = 2.

𝐼 = ∫ 𝑒𝑑2𝑑 𝑑𝑑 = 2 ∫ 𝑒𝑑2

1𝑑

2

1 𝑑𝑑

Now use integration by parts

Box: 𝑒 = 𝑑 𝑑𝑣 = 𝑒𝑑𝑑𝑑

𝑑𝑒 = 𝑑𝑑 𝑣 = 𝑒𝑑

∫ 𝑒 𝑑𝑣 = 𝑒𝑣 βˆ’ ∫ 𝑣 𝑑𝑒

∫ 𝑑𝑒𝑑𝑑𝑑 = 𝑑 𝑒𝑑|12 βˆ’ ∫ 𝑒𝑑𝑑𝑑

2

1

2

1

= (2𝑒2 βˆ’ 𝑒) βˆ’ 𝑒𝑑|12

= (2𝑒2 βˆ’ 𝑒) βˆ’ (𝑒2 βˆ’ 𝑒)

Page 9: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 9 of 12

= 𝑒2

Then 𝐼 = 2𝑒2 is the answer.

6.2A Trigonometric Integrals

Combine trig identities and substitution to evaluate some useful integrals.

Recall the identities:

sin2(π‘₯) + cos2(π‘₯) = 1 (1)

𝑑

𝑑π‘₯sin(π‘₯) = cos (π‘₯)

𝑑

𝑑π‘₯cos(π‘₯) = βˆ’sin (π‘₯)

We will consider two cases of integrals. The first is

∫ sinπ‘š(π‘₯) cos𝑛(π‘₯)𝑑π‘₯, (A)

where π‘š and 𝑛 are integers.

If π‘š or 𝑛 are odd, substitute 𝑒 = sin (π‘₯) or 𝑒 = cos (π‘₯).

Example. Evaluate 𝐼 = ∫ sin4(π‘₯) cos3(π‘₯)𝑑π‘₯

Cosine is raised to an odd power. Factor out one power of cosine.

𝐼 = ∫ sin4(π‘₯) cos2(π‘₯) cos(π‘₯) 𝑑π‘₯

Use (1) to express the rest of the integrand as powers of sine.

𝐼 = ∫ sin4(π‘₯)(1 βˆ’ sin2(π‘₯)) cos (π‘₯) 𝑑π‘₯

Substitute 𝑒 = sin (π‘₯), 𝑑𝑒 = cos(π‘₯) 𝑑π‘₯

𝐼 = ∫ 𝑒4(1 βˆ’ 𝑒2)𝑑𝑒 = ∫ 𝑒4 βˆ’ 𝑒6 𝑑𝑒 =1

5𝑒5 βˆ’

1

7𝑒7 + 𝐢

𝐼 =1

5sin5(π‘₯) βˆ’

1

7sin7(π‘₯) + 𝐢 β– 

Page 10: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 10 of 12

Example. Evaluate 𝐼 = ∫ tan(π‘₯) 𝑑π‘₯

Recognize 𝐼 = ∫sin (π‘₯)

cos (π‘₯) dx

Sine is raised to an odd power. Let 𝑒 = cos(π‘₯), 𝑑𝑒 = βˆ’ sin(π‘₯) 𝑑π‘₯

𝐼 = ∫ βˆ’π‘‘π‘’

𝑒= βˆ’ ln|𝑒| + 𝐢 = βˆ’ ln |cos (π‘₯)| + 𝐢 β– 

If both π‘š and 𝑛 are even in case (A), use the following half angle identities

cos2(π‘₯) =1

2(1 + cos(2π‘₯)) (2)

sin2(π‘₯) =1

2(1 βˆ’ cos(2π‘₯)) (3)

sin(π‘₯) cos(π‘₯) =1

2sin (2π‘₯) (4)

Example. Evaluate 𝐼 = ∫ sin2(π‘₯) cos2(π‘₯)𝑑π‘₯πœ‹

20

By (4): sin2(π‘₯) cos2(π‘₯) =1

4sin2(2π‘₯)

By (3): sin2(2π‘₯) =1

2(1 βˆ’ cos(4π‘₯))

Thus sin2(π‘₯) cos2(π‘₯) =1

8(1 βˆ’ cos(4π‘₯))

𝐼 =1

8∫ (1 βˆ’ cos(4x)) dx

πœ‹

20

=1

8∫ 𝑑π‘₯

πœ‹

20

βˆ’1

8∫ cos(4π‘₯) 𝑑π‘₯

πœ‹

20

Let 𝑒 = 4π‘₯, 𝑑𝑒 = 4 𝑑π‘₯

If π‘₯ = 0 then 𝑒 = 0,

If π‘₯ =πœ‹

2 then 𝑒 = 2πœ‹.

𝐼 =1

8(

πœ‹

2) βˆ’

1

8∫ cos(𝑒)

2πœ‹

0

1

4𝑑𝑒

where ∫ cos(𝑒)𝑑𝑒 = sin(u)|02Ο€ = 0

2πœ‹

0

𝐼 =πœ‹

16 β– 

Page 11: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 11 of 12

Recall the identities

tan2(π‘₯) + 1 = sec2(π‘₯) (5)

𝑑

𝑑π‘₯tan(π‘₯) = sec2(π‘₯)

𝑑

𝑑π‘₯sec(π‘₯) = tan(π‘₯) sec(π‘₯)

The second case of integrals we consider is

∫ tanπ‘š(π‘₯) sec𝑛(π‘₯) 𝑑π‘₯ (B)

If 𝑛 is even use the substitution 𝑒 = tan (π‘₯)

Example. Evaluate 𝐼 = ∫ tan4(π‘₯) sec4(π‘₯) 𝑑π‘₯

By (5): 𝐼 = ∫ tan4(π‘₯)(tan2(π‘₯) + 1) sec2(π‘₯) 𝑑π‘₯

Let 𝑒 = tan (π‘₯), 𝑑𝑒 = sec2(π‘₯) 𝑑π‘₯

𝐼 = ∫ 𝑒4(𝑒2 + 1)𝑑𝑒 = ∫ 𝑒6 + 𝑒4 𝑑𝑒 =1

7𝑒7 +

1

5𝑒5 + 𝐢 =

1

7tan7(π‘₯) +

1

5tan5(π‘₯) + 𝐢 β– 

If π‘š is odd use the substitution 𝑒 = sec (π‘₯)

Example. Evaluate 𝐼 = ∫ tan3(π‘₯) sec3(π‘₯) 𝑑π‘₯

𝐼 = ∫ tan2(π‘₯) sec2(π‘₯) tan(π‘₯) sec(π‘₯) 𝑑π‘₯ = ∫ (sec2(π‘₯) βˆ’ 1) sec2(π‘₯) tan (π‘₯) sec(π‘₯) 𝑑π‘₯

Let 𝑒 = sec(π‘₯), 𝑑𝑒 = tan(π‘₯) sec(π‘₯) 𝑑π‘₯

𝐼 = ∫ (𝑒2 βˆ’ 1)𝑒2 𝑑𝑒 = ∫ 𝑒4 βˆ’ 𝑒2 𝑑𝑒 =1

5𝑒5 βˆ’

1

3𝑒3 + 𝐢 =

1

5sec5(π‘₯) βˆ’

1

3sec3(π‘₯) + 𝐢 β– 

If both π‘š is even and 𝑛 is odd, express the integrand entirely in terms of sec (π‘₯). This is the hardest case.

Example. Evaluate 𝐼 = ∫ tan2(π‘₯) sec(π‘₯) 𝑑π‘₯

From (5): tan2(π‘₯) = sec2(π‘₯) βˆ’ 1

𝐼 = ∫ sec3(π‘₯)𝑑π‘₯ βˆ’ ∫ sec(π‘₯) 𝑑π‘₯

Page 12: Introduction and RevieΒ Β· LIPET scheme for choosing and is often useful: (L)ogarithm (I)nverse Trig (P)olynomials or powers of (E)xponential functions (T)rig functions Whichever piece

Chapter 6A Notes Page 12 of 12

∫ sec(π‘₯) 𝑑π‘₯ = ∫ 𝑠𝑒𝑐(π‘₯) sec(π‘₯)+tan (π‘₯)

sec(π‘₯)+tan (π‘₯) dx

= ∫sec2(π‘₯)+sec(π‘₯)tan (π‘₯)

sec(π‘₯)+tan (π‘₯) dx

Let 𝑒 = sec(π‘₯) + tan(π‘₯)

then 𝑑𝑒

𝑑π‘₯= tan(π‘₯) sec(π‘₯) + sec2(π‘₯) and 𝑑𝑒 = (tan(π‘₯) sec(π‘₯) + sec2(π‘₯)) 𝑑π‘₯

Then ∫ sec(π‘₯) 𝑑π‘₯ = βˆ«π‘‘π‘’

𝑒= ln|𝑒| + 𝐢 = ln | sec(π‘₯) + tan (π‘₯)| + 𝐢

(6)

The other integral required to evaluate 𝐼 is treated by example 8 in section 6.2 of our text. The result is:

∫ sec3(π‘₯) 𝑑π‘₯ =1

2(sec(π‘₯) tan(π‘₯) + ln | sec(π‘₯) + tan(π‘₯) | ) + 𝐷 (7)

Results (6) and (7) can be combined to obtain an expression for 𝐼. β–