Introduction

48

description

Introduction. What is radiation therapy (RT)?. Cancer treatment Tumor versus normal tissues External photon beam RT. Intensity-modulated RT (IMRT). Brahme et al. 1982 Fluence-modulated beams Homogeneous, concave dose distributions - PowerPoint PPT Presentation

Transcript of Introduction

Page 1: Introduction
Page 2: Introduction
Page 3: Introduction

What is radiation therapy (RT)?

• Cancer treatment

• Tumor versus normal tissues

• External photon beam RT

Page 4: Introduction

Intensity-modulated RT (IMRT)

• Brahme et al. 1982– Fluence-modulated beams– Homogeneous, concave

dose distributions

• Better target dose conformity and/or better sparing of organs at risk (OARs)

Page 5: Introduction

Imaging for RT

Page 6: Introduction

Anatomical imaging

• CT• MRI

Page 7: Introduction

Biological imaging

• PET• SPECT• fMRI• MRSI

Brain

Tumor

Page 8: Introduction

Tumor biology characterization

Radiotracer Characterization

18F-FDG Glucose metabolism

18F-FLT DNA synthesis

11C-MET Protein synthesis

60Cu-ATSM, 18F-FMISO Hypoxia

Radiolabeled Annexin V Apoptosis

Radiolabeled V3 integrin antagonists

Angiogenesis

Apisarnthanarax and Chao 2005

Page 9: Introduction

Biological imaging for RT

• Improvement of diagnostic and staging accuracy

• Guidance of target volume definition and dose prescription

• Evaluation of therapeutic response

Page 10: Introduction

Target volume definition

• Gross tumor volume (GTV)

• Clinical target volume (CTV)

• Planning target volume (PTV)

Page 11: Introduction

Biological target volume (BTV)

Ling et al. 2000

Page 12: Introduction

Dose painting

Page 13: Introduction

Dose painting by contours

Page 14: Introduction

Dose painting by numbers

Page 15: Introduction

Dose painting by numbers

Biologically Conformal Radiation Therapy

Page 16: Introduction

Dose calculation algorithms

• Speed versus accuracy:– Broad beam– Pencil beam (PB)– Convolution/superposition (CS)– Monte Carlo (MC)

• Monte Carlo dose engine MCDE Reynaert et al. 2004

Accuracy Accuracy ↑↑

Speed ↓Speed ↓

Page 17: Introduction

MC dose calculation accuracy

• Cross section data

• Treatment beam modeling

• Patient modeling– CT conversion – Electron disequilibrium– Conversion of dose to medium

to dose to water

• Statistical uncertainties

Page 18: Introduction
Page 19: Introduction
Page 20: Introduction

Implementation of BCRT:Relationship between signal intensity

and radiation dose

Dose

Ilow Ihigh

Dlow

Dhigh

Signal intensity

highlow

lowhighlowhigh

lowlow

IIIfor

)D(DII

IIDD

Page 21: Introduction

Implementation of BCRT: Treatment planning strategy

Page 22: Introduction

Implementation of BCRT:Biology-based segmentation tool

• 2D segmentation grid in template beam’s eye view– Projection of targets (+)– Integration of signal intensities

along rayline (+)– Projection of organs at risk (-)– Distance

• Segment contours from iso-value lines of segmentation grid

Page 23: Introduction

Implementation of BCRT:Objective function

• Optimization of segment weights and shapes (leaf positions)

• Expression of planning goals

• Biological:– Tumor control probability (TCP)– Normal tissue complication probability (NTCP)

• Physical:– Dose prescription

1

D

D

2

1

D

DF

imean

dev

imean

dev

ii

Page 24: Introduction

Implementation of BCRT:Treatment plan evaluation

0

20

40

60

80

100

0 0.5 1 1.5

Q

Re

lativ

e v

olu

me

(%

)

p

p 1Qn

1QF

presc

pp D

DQ

QVH

Page 25: Introduction

Implementation of BCRT:Example

• [18F]FDG-PET guided BCRT for oropharyngeal cancer

• PTV dose prescription:

Dlow = 2.16 Gy/fx Dhigh= 2.5 and 3 Gy/fx

Ilow = 0.25*I95% Ihigh = I95%

Page 26: Introduction

Implementation of BCRT:Example

Page 27: Introduction

Implementation of BCRT:Example

0

20

40

60

80

100

0.85 0.9 0.95 1 1.05 1.1 1.15Q

Vo

lum

e (

%)

2.5 Gy/fx

3 Gy/fx

Page 28: Introduction

Implementation of BCRT:Conclusions

• Technical solution– Biology-based segmentation tool– Objective function

• Feasibility– Planning constraints OK– Best biological conformity for the lowest level

of dose escalation

Page 29: Introduction
Page 30: Introduction

BCRT planning study:Set-up

• BCRT or dose painting-by-numbers (“voxel intensity-based IMRT”) versus dose painting (“contour-based IMRT”)

• 15 head and neck cancer patients

• Comparison of clinically relevant dose-volume characteristics– Between “cb250” and “vib216-250”

– Between “vib216-250” and “vib216-300”

Page 31: Introduction

BCRT planning study:Target dose prescription

“cb250”

(cGy/fx)

“vib216-250”

(cGy/fx)

“vib216-300”

(cGy/fx)

PTVPET 250

PTV69+PET 216 - 250 216 - 300

PTV69 216

PTV66 206 206 206

PTV62 194 194 194

PTV56 175 175 175

Page 32: Introduction

BCRT planning study:“cb250” (blue) versus “vib216-250” (green)

0 30 60 90 120 150 180 210 240 270 300 3300

20

40

60

80

100

Fraction dose (cGy)

Vo

lum

e(%

)

Surr

PTV56

Spared parotid

PTV69+PET

Spinal cordPTV

PET

PTV66

PTV69

MandiblePTV

62

Page 33: Introduction

BCRT planning study:“vib216-250” (green) versus “vib216-300” (orange)

0 30 60 90 120 150 180 210 240 270 300 3300

20

40

60

80

100

Fraction dose (cGy)

Vo

lum

e (%

)

MandiblePTV

62

PTVPET

PTV69+PET

PTV66

PTV69

PTV56

Spinalcord

Sparedparotid

Surr

Page 34: Introduction

BCRT planning study:Example

2.11.2

2.5

2.16

2.22.4

1.6 1.4

2.3

2.11.2

2.5

2.16

2.22.4

1.6 1.4

2.3

2.1

2.5

2.162.2

2.4

1.61.4

2.32.1

2.5

2.162.2

2.4

1.61.4

2.3

2.1

2.5

2.2

2.4

1.62.3

2.1

2.5

2.2

2.4

1.62.3

Page 35: Introduction

BCRT planning study:QF

"cb250"

PTV69

"cb250"

PTVPET

"vib216-250"

PTV69+PET

"vib216-300"

PTV69+PET

0

0.5

1

1.5

2

2.5

3

3.5

QF (%)

Page 36: Introduction

BCRT planning study:Conclusions

• BCRT did not compromise the planning constraints for the OARs

• Best biological conformity was obtained for the lowest level of dose escalation

• Compared to dose painting by contours, improved target dose coverage was achieved using BCRT

Page 37: Introduction

MC dose calculations in the clinic

• Comparison of PB, CS and MCDE for lung IMRT

• Comparison of 6 MV and 18 MV photons for lung IMRT

• Conversion of CT numbers into tissue parameters: a multi-centre study

• Evaluation of uncertainty-based stopping criteria

• Feasibility of MC-based IMRT optimization

Page 38: Introduction

CT conversion: multi-centre study

• Stoichiometric calibration

• Dosimetrically equivalent tissue subsets

• Gammex RMI 465 tissue calibration phantom

• Patient dose calculations

• Conversion of dose to medium to dose to water

Page 39: Introduction

CT conversion: example

Page 40: Introduction

CT conversion: conclusions

• Accuracy of MC patient dose calculations

• Proposed CT conversion scheme:

Air, lung, adipose, muscle, 10 bone bins

• Validated on phantoms

• Patient study:

Multiple bone bins necessary if dose is converted to dose to water

Page 41: Introduction
Page 42: Introduction

Biologically conformal RT

• Technical solution– Bound-constrained linear model– Treatment plan optimization

• Biology-based segmentation tool• Objective function

– Treatment plan evaluation

• Feasibility of FDG-PET guided BCRT for head and neck cancer

Page 43: Introduction

MC dose calculations

• Individual patients may benefit from highly accurate MC dose calculations

• Improvement of MCDE– CT conversion– Uncertainty-based stopping criteria

• Feasibility of MC-based IMRT optimization

• MCDE is unsuitable for routine clinical use, but represents an excellent benchmarking tool

Page 44: Introduction
Page 45: Introduction

Adaptive RT:Inter-fraction tumor tracking

• Anatomical & biological changes during RT

• Re-imaging and re-planning

• Ghent University Hospital: phase I trial on adaptive FDG-PET guided BCRT in head and neck cancer

Page 46: Introduction

Summation of DVHs

CT 1 Dose 1 CT 2 Dose 2

Registration

Structure 1

Points

P Doses

TPoints

TP Doses

Total dosesTotalDVH

Structure 2

Page 47: Introduction

Summation of QVHs

CT 1 Dose 1 CT 2 Dose 2

RegistrationStructure 1

Points

P Q-values

TPoints

TP Q-values

Total Q-valuesTotalQVH

PET 1 PET 2

Registration Registration

Disregard TPointsoutside structure 2

Structure 2

Page 48: Introduction

Treatment planning and delivery

•Biological optimisation

•Adaptive RT

Biological imaging

•Tracers

•Acquisition, reconstruction, quantification

Clinical investigations

Fundamental research in vitro, animal studies

Treatment outcome