Introduction

33
Introduction Air is a primary essential element for all living organisms; without air there is no life. Many recent policy inventions have been undertaken to improve ambient air quality. But very little is known about indoor air quality (IAQ). People spend majority of their time indoor mostly in domestic environment, where their health may be affected mostly by indoor air pollution. Air pollutants measured in the living rooms include Carbon monoxide, Carbon dioxide, Nitrogen dioxide, Sulphur dioxide, velocity of air, humidity etc. Air quality refers to the nature of conditioned air that circulates throughout the area where we work and live, that is the air we breathe during most of our lives. IAQ refers not only to comfort, which is affected by temperature and humidity but also to harmful biological contaminants and chemicals present in the conditioned space. Indoor air quality may be broadly defined as the nature of air that affects the health and well – being of occupants. It refers to the physical, chemical, and biological characteristics of air in the indoor environment within a home, building, or an institution or commercial facility. Indoor air pollution is a concern in the developed countries, where energy efficiency improvements sometimes make houses relatively airtight, reducing ventilation and raising pollutant levels. 1

description

 

Transcript of Introduction

Page 1: Introduction

Introduction

Air is a primary essential element for all living organisms; without air there is no life.

Many recent policy inventions have been undertaken to improve ambient air quality. But very

little is known about indoor air quality (IAQ). People spend majority of their time indoor mostly

in domestic environment, where their health may be affected mostly by indoor air pollution.

Air pollutants measured in the living rooms include Carbon monoxide, Carbon dioxide,

Nitrogen dioxide, Sulphur dioxide, velocity of air, humidity etc. Air quality refers to the nature

of conditioned air that circulates throughout the area where we work and live, that is the air we

breathe during most of our lives. IAQ refers not only to comfort, which is affected by

temperature and humidity but also to harmful biological contaminants and chemicals present in

the conditioned space. Indoor air quality may be broadly defined as the nature of air that affects

the health and well – being of occupants.

It refers to the physical, chemical, and biological characteristics of air in the indoor

environment within a home, building, or an institution or commercial facility. Indoor air

pollution is a concern in the developed countries, where energy efficiency improvements

sometimes make houses relatively airtight, reducing ventilation and raising pollutant levels.

Indoor air problems can be subtle and do not always produce easily recognized impacts on

health. Different conditions are responsible for indoor air pollution in the rural areas and the

urban areas.

In the developing countries, it is the rural areas that face the greatest threat from indoor

pollution, where some 3.5 billion people continue to rely on traditional fuels such as firewood,

charcoal, and cowdung for cooking and heating. Concentration of indoor pollutants in

households that burn traditional fuels are alarming. Burning such fuels produces large amount of

smoke and other air pollutants in the confined space of the home, resulting in high exposure.

Women and children are the groups most vulnerable as they spend more time indoors and are

exposed to the smoke. In 1992, the World Bank designated indoor air pollution in the developing

countries as one of the four most critical global environmental problems. Daily average of

1

Page 2: Introduction

pollutant level emitted indoors often exceed current WHO guidelines and acceptable levels.

Although hundreds of separate chemical agents have been identified in the smoke from biofuels,

the four most serious pollutants are particulates, carbon monoxide, polycyclic organic matter and

formaldehyde. Unfortunately, little monitoring has been done in rural and poor urban indoor

environment in a manner that is statistically rigorous.

In urban areas, exposure to indoor air pollution has increased due to a variety of reasons,

including the construction of more tightly sealed buildings, reduced ventilation, the use of

synthetic materials for building and furnishing and the use of chemical products, pesticides, and

household care products. Indoor air pollution can begin within the building or be drawn in from

outdoors. Other than nitrogen dioxide, carbon monoxide and lead, there are a number of other

pollutants that affect the air quality in an enclosed space.

Polyaromatic hydrocarbons

Polyaromatic hydrocarbons are potent atmospheric pollutants that consist of fused

aromatic rings and do not contain hetero atoms Napthelene is the simples example of a

PAH.They occurs due to incomplete combustion of fuels.eg:coal,tar and biomass.

They are also found in cooked foods.

List of Polyaromatic hydrocarbons

Acenapthalene

Acenapthene

Anthracene

Benzo(a) anthracene

Benzo(a) fluoranthene

Benzo(a) pyrene

Benzo(ghi) pyrene

Benzo(k) fluoranthene

Chrysene

Dibenzo(a,h) anthracene

Fluoranthene

Fluorene

Indeno(123-cd) pyrene

Napthalene

Phenanthrene

Pyrene

2

Page 3: Introduction

Factors affecting Indoor Air Quality (IAQ)

The factors affecting the IAQ mainly are the air conditioning system, indoor pollutants and

deterioration of outdoor air. Temperature, relative humidity, air velocity, amount of fresh air,

carbon dioxide, carbon monoxide, ozone, formaldehyde, benzene, respirable particles, volatile

organic compounds (VOC’s) and Radon are the particles affecting indoor air quality The

outdoor air usually enters through doors, windows and fresh air system. At present in the air

conditioning system, air filters trap the dust but it can’t purge harmful gas and germs.

Air pollution is a major environmental health problem affecting the developing and developed

countries. The concentration and duration of air contamination causes observable effects on

human health, animals, plants & materials. The greatest health impacts from air pollution

worldwide occur among the poorest and most vulnerable populations. It is a significant cause of

morbidity and mortality (Smith, 1993). In addition, they may be natural or man-made.

Pollutants can be classified as primary or secondary pollutants. The primary pollutants

are directly emitted from sources into the atmosphere, cause harm to people, monuments,

buildings etc. The following primary pollutants are also known to cause harm in high enough

concentrations:

Carbon compounds, such as carbon monoxide, carbon dioxide, methane , and volatile

organic compounds.

Nitrogen compounds, such as oxides of nitrogen, nitrous oxide, and ammonia.

Sulphur compounds, such as hydrogen sulphide and sulphur dioxide.

Halogen compounds, such as chlorides, fluoride and bromides

Particulate Matter

Secondary pollutants are not directly emitted from sources but instead form in the

atmosphere from primary pollutants.

Nitrous acid and nitric acid formed from oxides of nitrogen.

Ozone (O3) formed from Sulphur dioxide and nitric acid droplets formed from nitrous

oxide.

Sulphate and nitrate aerosols

3

Page 4: Introduction

Indoor Air Pollutants

The table shows some of the indoor air pollutants, there source and their potential health

effects.

Pollutant Indoor Sources Potential Health Effects

Polycyclic Aromatic

Hydrocarbons (PAHs)

Cooking, wood burning and other

combustion .

Cancer.

Benzene and other organic

air toxics

Solvents, glues, cleaners, building

materials, moth repellents, dry-

cleaned clothing, air fresheners.

Cancer, respiratory effects,

liver, kidney and brain

damage.

Particulate Matter Wood stoves, fireplaces, cooking,

candles, aerosol sprays.

Lung cancer, cardiovascular

effects, respiratory effects.

Sources of Indoor Air Pollution

Air pollutants are invisible and odorless. So detecting indoor air pollutants is difficult.

The four major sources of indoor air pollution are

• Combustion byproducts, such as smoke and carbon monoxide.

• Building materials, including carpets, wood products and paints.

• Household products and chemicals, such as cleaning solvents, adhesives and

Paint strippers.

• Biological contaminants such as molds, animal dander, germs, dust and mites.

Impact of Indoor Air Pollutants

4

Page 5: Introduction

The health effects caused by air pollution may include difficulty in breathing, wheezing,

coughing and aggravation of existing respiratory and cardiac conditions. These effects can result

in increased medication use, increased doctor or emergency room visits, more hospital

admissions and premature death. The human health effects of poor air quality are far reaching,

but principally affect the body's respiratory system and the cardiovascular system. Individual

reactions to air pollutants depend on the type of pollutant a person is exposed to, the degree of

exposure, the individual's health status and genetics.

STUDY AREA

5

Page 6: Introduction

Bhadravathi is an industrial town in Shivamogga District of Karnataka state, India. It is

situated at a distance of about 255 kilometres (158 mi) from the state capital, Bangalore and at

about 20 kilometres (12 mi) from the district headquarters, Shivamogga. Bhadravathi Taluk has

a total area of 675.08 square kilometres. Population of Bhadravathi according 2011 Census is

approximately 160,392. The latitude and longitude coordinates of Bhadravathi town are

13°50′24″N 75°42′07″E / 13.840°N 75.702°E / 13.840; 75.702. Bhadravathi is at an altitude of

597 mts (1,959 ft) above sea level.It derives the name from the Bhadra River which flows

through the city. It was earlier known as Benkipura.

The present study was conducted in different areas of Bhadhravathi. In several residences, the

residents still use the age old method of heating water by using firewood and coconut husk for

bathing which causes health problems in women and chidern.

Objectives of the Study

6

Gonibeedu

BHADRAVATHI

Page 7: Introduction

The main objective of the study is to assess the status of total suspended particulates and

Poly aromatic hydrocarbons in indoor environment of different houses in Bhadhravathi Industrial

Town.

Objectives

a) Assessment and evaluation of total suspended particulate matter in indoor environment of

different houses in Bhadhravathi Industrial Town.

b) Estimation of poly aromatic hydrocarbon level in the air borne particulates using High

power liquid chromatography.

c) To assess the health status of different families in Bhadhravathi Industrial Town.

7

Page 8: Introduction

Review of Literature

According to WHO report( 2002) indoor air is becoming more hazardous than outdoor air.

Indoor air pollution is responsible for 2.7% of the global burden of disease. Indoor smoke ranks

tenth as a risk factor of disease. But more than three billion people worldwide continue to depend

on solid fuels, including biomass fuels (wood, cow dung, crop waste, agricultural residues) and

coal for their energy needs (Bilkis et al., 2008).

In the World Health Report (2002) it was estimated that 1.6 million premature deaths are caused

annually by indoor air pollution. Certain population groups, like women and small children, are

vulnerable to the effects of indoor air pollution because their daily activities include exposure to

indoor air pollutants 90% of rural households in developing countries still rely on unprocessed

biomass fuels for most of the day. The amount of exposure in terms of the number of people,

exposure intensity and time is greater in developing world (Smith, 1993); approximately 76% of

all global particulate matter air pollution occurs indoors in the developing world.

Eye and respiratory symptoms have been attributed to indoor air pollutants in developing

countries (Ellegard, 1997; Ezzati and Kammen, 2001; Smith et al., 2000; Ellegard, 1996). Eye

irritation during cooking was studied in Lusaka, Maput and Hanoi in Zambia, Mozambique, and

Vietnam respectively; along with respiratory symptoms, it was found to be associated with

biomass use (Ellegard, 1997). The prevalence of respiratory symptoms was significantly

associated with the use of open fires in comparison to use of wood stoves with chimneys in

Guatemalan study (Bruce et al., 1998). A study from India observed the occurrence of

respiratory symptoms over six months and reported that a greater proportion of biomass users

suffered from respiratory symptoms with decreased pulmonary function compared to kerosene or

LPG users (Dutt et al., 1996).

Chronic bronchitis, an important public health problem of developing countries, has been shown

to be related to domestic biomass use in rural Bolivian villages (Albalak et al., 1999) and hill

region villages of Nepal (Pandey, 1989). The impact of such exposures is further aggravated by

poor ventilation combined with continuous and prolonged exposure to such sources, especially in

women and children (Bruce et al., 2002).

8

Page 9: Introduction

Household indoor air pollution concentration was measured during unvented burning (chimneys

blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China.

Concentration of particulate matter with an aerodynamic diameter of 10μm or less (PM10) and

of Benzo[a]pyrene(BaP) were measured in 43 homes during normal activities.

The use of chimneys led to a significant decrease in indoor air concentration of particulate matter

with an aerodynamic diameter of 10μm or less (PM10) by 66% and Benzo[a]pyrene(BaP) by

84% with the installation of the chimneys. The reduction of indoor pollution levels by the

installation of a chimney supports the epidemiology finding on the health benefits of stove

improvement. However, even in the presence of a chimney, the indoor air concentration for both

PM10 and BaP still exceeded the indoor air quality standards of China. (Linwei Tian et al.,

2009).

Polycyclic aromatic hydrocarbons (PAHs) belong to the group of persistent organic pollutants

(POPs). These are organic contaminants that are resistant to degradation, can remain in the

environment for long period and have the potential to cause adverse environmental effects.

Some of them are susceptible to dispersion on a global scale because, in addition to having

environmental persistence, they are "semi-volatile", i.e. under environmental conditions they

move between the atmosphere and the earth's surface in repeated, temperature-driven cycles of

deposition and volatilization (Wania and Mackay, 1996).

There are thousands of PAH compounds in the environment but in practice PAH analysis is

restricted to the determination of 6 to 16 compounds. Individual PAHs differ substantially in

their physical and chemical properties (Subramanium et al., 1994, Van Jaarsveld et al., 1997,

Maliszewska-Kordybach, 1998). PAHs are listed by the Unites States Environmental Protection

Agency (EPA) and the European Commission as priority pollutants.

PAHs emitted to the air can be transported over long distances before they are deposited with

atmospheric precipitation on soils, vegetation or sea and inland waters (Wild and Jones, 1995;

Van Jaarsveld et al., 1997). The presence of PAHs in all these elements of the environment may

create a risk not only to humans but also to all living organisms.

9

Page 10: Introduction

PAHs enter the atmosphere from the combustion and from volatilization. They are present in the

ambient air as vapours or adsorbed into airborne particulate matter (Subramanyam et al. 1994;

Van Jaarsveld et al., 1997; Wild and Jones, 1995).

10

Page 11: Introduction

Methodology

1. Measurement of total suspended particulate matter in air was done by gravimetric method

using Handy sampler (HDS-8).

2. Extraction of poly aromatic hydrocarbons by High performance liquid chromatography,

3. Assesment of health status of the residents through survey and questionnaires method.

Six areas comprising thirty residences were selected randomly for the study purpose

depending upon the use of biomass for heating and frequency of use.

Handy Sampler HDS-8

Handy sampler HDS-8 is a basic instrument used primarily for measuring concentration

of suspended time. These particulates usually range from 1 micron to 100 microns in size and

may be caused by a variety of process, such as incomplete combustion of solids, liquids or

gaseous fuels.

In the Handy sampler HDS-8, the air is passed through filter paper which is placed in

filter holder kept near sampling point. The flow rate capacity of air is 0-5 L.P.M per minute. It is

also used for the analysis of gases such as chloride, hydro chlorines, bromine, ammonia and

nitrous oxide. Impinger is used in which suitable solvent is filled. When the sampled air is passed

through, impinger the gases are dissolved in solvent. The solvent is then analyzed by appropriate

methods for respective gas.

Filter Paper

Collection of Airborne Suspended Particulate Matter:

The samples were collected in different houses of Bhadravathi industrial town. The

collected samples were transferred to clean polythene and analyzed in the laboratory as per

procedure.

Gravimetric method was used to determine the concentration of suspended particulate matter. A

known volume of air is drawn through a glass fiber filter of pore size 0.7 µm of known weight

and the filter paper is reweighed after sampling under controlled condition. This gives direct

11

Page 12: Introduction

measurement of particulate mass. During sampling, air flow rate is monitored through Rota

meter.

Glass fiber filter was exposed to the light source and inspected for pinhole and particles

of any other importation. Good and perfect filters are selected and weighed accurately in the

fourth decimal of a gram (in order to facilitate weighing it was necessary to hold the filter

loosely without producing any cramps over it) weight and serial number of the filter paper was

recorded on the field data sheet. The filter was unfolded after weighing and placed in plastic

folder for any man-handling. Before mounting the glass fibre filter paper on the sampler, the

sampler was carefully cleaned with a dust cloth. The sampler area of the equipment was properly

wiped out and kept clean before starting the sampler. The pre-weighed filter paper was placed in

the filter paper holder.

The glass fiber has two sides, rough surface and smooth surface, rough surface is the

reverse side of the filter. The sampler was switched on for its operation. The Rota meter level

(flow rate) was checked and recorded in the field data sheet. In the present study, samples were

collected over a 1-3 hours run. The rota meter reading and the corresponding flow rate and time

of closure data were recorded in the data sheet. The filter samples were dried in hot air oven

(1030-1050c) for an hour. After one hour the filter sample was cooled and to desiccated. The

filtered sample was weighed accurately by nearest to the fourth decimal of gram and recorded in

the data sheet. Replacing it back into the sample cover for further studies preserved the filter

paper.

Calculation:

Flow rate (v) = Flow rate in cubic meter per minute.

Period of sampling (T) = Total period of net running minutes

Volume of air sampled = Flow rate (V) x Sample period (T)

Weight of the dust (W) = Difference in final & initial weight of filter

Paper in grams

Concentration of dust = W x 106 microgram/Cu.m/V x T (mg/m3)

12

Page 13: Introduction

Extraction of PAH’s:

High Performance Liquid Chromatography.

Polyaromatic hydrocarbons were identified and evaluated in different residences. They

were extracted from the filter paper collected from the pollution source.

The Glass fiber filter was used to determine the amount of particulate collected. After

collection, filters were wrapped with aluminum foil and stored at 40C in refrigerator until they

were sent to the laboratory for analysis by HPLC.

Results and Discussion

13

Page 14: Introduction

Indoor air pollution caused by burning traditional fuels such as firewood, crop residue

and dung causes considerable damage to the health particularly,women and children. There is

evidence associating the use of biomass fuel with acute respiratory tract infection in children,

chronic obstructive lung disease and pneumoconiosis. The indoor air monitoring was carried out

in different residences in Bhadhravathi Industrialtal Town,Shimoga district using glass fiber

filter paper in Handy Sampler.

The Total Suspended Particulate Matter (TSPM) is collected and analyzed. The PAHs

were analyzed using High Pressure Liquid Chromatography (HPLC). The observation of Total

Suspended Particulate Matter (TSPM) is presented in Table 1. The average Total Suspended

Particulate Matter (TSPM) showed a wide variation ranging from 83 mg/m3to 9722 mg/m3 .

According to National Ambient Air Quality Standards (NAAQS) , it was found that the SPM

levels at all the monitored locations were higher than the prescribed limits in Indoors.

The high concentration of the suspended particulates in the residences may be due to the

use of mixed type of firewood and coconut husk. The incomplete combustion of firewood and

coconut husk emits suspended particulate matter, carbon monoxide, oxides of nitrogen, sulfur,

Polyorganicmaterial (POM), Polyaromatichydrocarbon (PAH), formaldehyde, etc (Bruce et al.,

2000).

The suspended particulate matter was analyzed for its concentration and identification of

various PAHs. The range of PAH concentration in different houses has been shown in table

Table.3.

It was found that PAHs concentration was maximum in house no-4 where 8 PAH were

detected. From the survey it was revealed that the economic condition of some houses is poor

and they use more quantity of bio fuels for heating purposes. The high concentration of PAH in

these houses as compared to others is due to insufficient ventilation in these houses.

Table 1- Sampling location, duration and total suspended particulate matter.

14

Page 15: Introduction

Sl no

House no Location Samling duration (minutes)

Flow rate LPM

Total volume of air LPM

Initial weight (g)

Final weight (g)

Difference in weight (g)

TSPM (µg/m3)

15

Page 16: Introduction

1 House no 1 Jannapura 60 2 120 0.05896 0.05906 0.0001 8332 House no 2 Jannapura 60 2 120 0.05872 0.05898 0.00026 21673 House no 3 Jannapura 60 2 120 0.05789 0.05797 8.00E-03 6674 House no 4 Jannapura 60 2 120 0.0585 0.05868 0.00018 15005 House no 5 Jannapura 60 2 120 0.0581 0.05828 0.00018 15006 House no 6 Hutha colony 60 2 120 0.05602 0.05607 5.00E-05 4177 House no 7 Hutha colony 60 2 120 0.05506 0.05508 2.00E-05 1678 House no 8 Hutha colony 60 2 120 0.05924 0.05925 1.00E-05 839 House no 9 Hutha colony 60 2 120 0.05796 0.05804 8.00E-05 66710 House no 10 Hutha colony 60 2 120 0.05838 0.05846 8.00E-05 66711 House no 11 Bandaralli 60 2 120 0.05935 0.05939 4.00E-05 33312 House no 12 Bandaralli 60 2 120 0.05852 0.0586 8.00E-05 66713 House no 13 Bandaralli 60 2 120 0.05876 0.0588 4.00E-05 33314 House no 14 Bandaralli 60 2 120 0.05958 0.06 0.00042 350015 House no 15 Bandaralli 60 2 120 0.05822 0.05858 0.00036 300016 House no 16 Upper Hutha 60 2 120 0.05844 0.05949 5.00E-05 41717 House no 17 Upper Hutha 60 2 120 0.05884 0.05891 7.00E-05 58318 House no 18 Upper Hutha 60 2 120 0.0584 0.05854 0.00014 116719 House no 19 Upper Hutha 60 2 120 0.05894 0.05899 5.00E-05 41720 House no 20 Upper Hutha 60 2 120 0.05758 0.05782 0.00024 200021 House no 21 Zincline 180 2 360 0.0588 0.0594 0.0006 166722 House no 22 Zincline 180 2 360 0.05832 0.0.5997 0.00165 458323 House no 23 Zincline 180 2 360 0.05828 0.05852 0.00024 66724 House no 24 Zincline 180 2 360 0.05875 0.05892 0.00017 47225 House no 25 Zincline 180 2 360 0.05888 0.06132 0.00244 677826 House no 26 Lower Hutha 180 2 360 0.05965 0.0601 0.00045 125027 House no 27 Lower Hutha 180 2 360 0.0579 0.05854 0.00064 177828 House no 28 Lower Hutha 180 2 360 0.0585 0.05956 0.00106 294429 House no 29 Lower Hutha 180 2 360 0.05946 0.06296 0.0035 972230 House no 30 Lower Hutha 180 2 360 0.059 0.05918 0.00018 500

N TSPM (µg/m3)

30Min Max Average Range 83 9722 1725 83-9722

16

Table-2. Minimum, maximum, average and range of TSPM.

TSPM= Total suspended particulate matter.

Page 17: Introduction

N = Number of houses

TSPM= Total suspended particulate matters.

Table 3: Minimum and Maximum concentration of PAHs Identified.

List of PAH Range in ng/m3

Acenapthalene BDL

Acenapthene 96-2031

Anthracene 6-171

Benzo(a) anthracene 2-56

Benzo(a) fluoranthene 56-6033

Benzo(a) pyrene 375-14913

Benzo(ghi) pyrene BDL

Benzo(k) fluoranthene 241-14898

Chrysene 1-15

Dibenzo(a,h) anthracene BDL

Fluoranthene 28-170

Fluorene BDL

Indeno(123-cd) pyrene BDL

Napthalene BDL

Phenanthrene 16-373

Pyrene 10-19

BDL=Below detection level

PAHs specific to biomass smoke emissions (as listed in Table 3 ) are analyzed. It included

volatile PAHs (acenaphthene), particle bound PAHs (chrysene, benzo(a)pyrene) plus PAHs

occurring in gas as well as in particle bound form (phenanthrene, anthracene, pyrene). The

observed PAHs exibit both carcinogenic and non-carcinogenic activity. Among the observed

17

Page 18: Introduction

PAH, Benzo[a]pyrene (BaP) is an important carcinogen (Miller et al., 1991). Anthracene is not a

carcinogen but methyl addition renders them to be a carcinogen.

The obtained values were much higher than the prescribed value of 1ng/m3 (0.001 µg/m3) set by

WHO for ambient air PAH (WHO-Euro1987).

Table 4: P A H compounds tested from the collected air samples

18

Page 19: Introduction

Chemical compound

Structural formula Chemical compound

Structural

formula

Acenapthene Benzo(a) anthracene

Anthracene Benzo[ a ]pyrene

Benzo(a)

fluoranthene

Benzo(k)

fluoranthene

ChrysenePhenanthrene

FluoranthenePyrene

Summary and Conclusion

19

Page 20: Introduction

The present study summarizes the health risk in the indoor environment of several

residences In Bhadhravathi Industrial Town,Shimoga district, Karnataka. Evaluation of the air

borne contaminant such as, total suspended particulate matter and poly aromatic hydrocarbon

(PAHs) of suspended particles was carried out.

The concentration of the particulates was found to be higher than the permissible limit

and the particulates contain various type of PAHs such as , Acenapthene, Anthracene, Benzo (a)

anthracene, Benzo(a)fluoranthene, Benzo(a)pyrene, Benzo(k)fluoranthene, Chrysene,

Fluoranthene, Phenanthrene & Pyrene . Among the observed PAHs Benzo[a]pyrene is

carcenogenic in nature.

Indoor air pollution in India is responsible for a high degree of morbidity warranting

immediate steps for intervention. The first and the most important step in the prevention of

illness resulting from the use of biomass fuels is to educate the public, administrators and

politicians to ensure their commitment for the improvement of public health.

Indoor air pollution can be minimized by reducing combustion products in homes. The

intervention programme should include (I) public awareness; (ii) change in pattern of fuel use;

(iii) Using Solar water heaters (iv) Improvement in the ventilation. (v)Use modern heating

equipment which are non-pollutants.

Control Measures

20

Page 21: Introduction

Improvement in ventilation

Discourage smoking in your homes.

Install and use exhaust fans that are vented to the outdoors in kitchens and bathrooms and

vent clothes dryers outdoors.

Ventilate the attic and crawl spaces to prevent moisture build-up.

If using cool mist or ultrasonic humidifiers, clean appliance according to manufacturer’s

instructions and refill with fresh water daily.

Thoroughly clean and dry water-damaged carpets and building materials (within 24 hours

if possible) or consider removal and replacement.

Keep the house clean. House dust mites, pollens, animal dander and other allergy-causing

agents can be reduced, although not eliminated, through regular cleaning.

Take steps to minimize biological pollutants in basements.

Take special precautions when operating fuel-burning unvented space heaters.

Keep woodstove emissions to a minimum. Choose properly sized new stoves that are

certified as meeting EPA emission standards.

Have central air handling systems, including furnaces, flues and chimneys, inspected

annually and promptly repair cracks or damaged parts.

Throw away partially, full containers of old or unneeded chemicals safely.

Exposure to benzene to a minimum.

Exposure to perchloroethylene emissions from newly dry-cleaned materials to a

minimum.

Unwanted pesticides disposed safely.

Leave lead-based paint undisturbed if it is in good condition – do not sand or burn off

paint that may contain lead.

Do not remove lead paint yourself.

Signature of Research Supervisor

Signature of Research Scholar

21

Page 22: Introduction

Bibliography

1. Albalak, R., Keeler, G.J., and Frisancho, A.R., 1999. Assessment of PM10 concentration

from domestic biomass fuel combustion in two rural Bolivian high land villages, Env.

Science.Tech., 33, pp. 205-2509.

2. Boy E, Bruce N, Smith K and Hernandez R. 2000. Fuel efficiency of an improved wood-

burning stove in rural Guatemala; implications for health, environment and development.

Energy sustain Dev. 4; 21-9.

3. Bruce, N., Perez-Padillia, R., and Albalak, R., 2002. The Health Effects of Indoor air

Pollution Exposure in Developing Countries, WHO/SDE/OEH/02.05

4. Bruce, N., Perez-Padillia, R., and Albalak, R., 2000 Indoor air pollution in developing

countries: A major environmental and public health challenge. Bull World Health Organ;

78:1078-92

5. Dutt, D., Srinivasa, D., Rotti, S., Sahal, A., and Konar, D., 1996. Effect of indoor air

pollution on the respiratory system of women using different fuels for cooking in an

urban slum of Pondicherry, Natl. Med. J. India, 9, pp. 133-117

6. Ellegard, A., 1996. Tears while cooking: an Indicator of indoor air pollution and related

health effects in developing countries, Environ. Res., 75(1), pp. 12-22, October.

7. Ezzati M., and Kammen ,D., 2001. Indoor air pollution from biomass combustion and

acute respiratory infection in Kenya: an exposure response study, Lancet, 25; 358(9282),

pp. 619-24.

8. Ezzati M., Saleh H., and Kammen D.M., 2000. The contributions of emissions and spatial

microenvironments to exposure to indoor air pollution from biomass combustion in

Kenya.Environ. Health Perspect., 108(9), September.

9. Linwei Tian, Qing Lan, Dong Yang, Xingzhou He, Ignatius Y.S. yu, S and Katharine

Hammond 2009.Effect of chimneys on indoor air concentration of PM10 and

Benzo[a]pyrene in Xuan Wei, China. Atmospheric Environment, Volume 43, Issue, page

3352-3355.

10. Ludwig .J, Marful .L.T, Huber .B, Andrea M.O, and Helas G., 2003. Domestic

combustion of bio mass fuels in developing countries: a major source of atmospheric

pollutants.Journal of Atmospheric chemistry, 44(1),pp. 23-37.

22

Page 23: Introduction

11. Pandey M.R, 1984. “ Domestic smoke pollution and chronic bronchitis in rural

community of the hill region of Nepal”, Thorax, 39, pp.337-339.

12. Parikh J, Balakrishnan .K, Laxmi .V and Biswas .H, 2001. Exposure from cooking with

Bio-fuels: pollution monitoring and analysis for rural Tamil Nadu. Energy- The

International Journal 26,949-962.

13. Subramanyam V., Valsaraj K.T., Thibodeaux L.J and Reible D.D. Gas-to-particle

partitioning of polycyclic aromatic hydrocarbons in an urban atmosphere. Atmospheric

Environm. 28, 3083, 1994.

14. Van Jaarsveld J.A., Van pul W.A.J., de leeuw f.a 1997. Modelling transport and

deposition of persistent organic pollutants in the European region. Atm. Environm.

31,1011..

15. Wallace LA. 1987. The total exposure assessment methodology (TEAM study).

Washington (DC): EPA/600/6-87/002.

16. Wild S.R.and Jones K.C 1999 Polynuclear aromatic hydrocarbons in the United Kingdom

environment: a preliminary source inventory and budget. Environm. Poll. 88, 91.

17. World Health Organization. July 26, 2002 Children’s environmental health [internet].

[cited]. http://www.who.int/ceh/en.

18. World Health Organization. 1998. Global burden of diseases(Internet)

http://www.who.int/en.

19. Zang J, Smith K.R, Uma R, Ma Y, Kishore VVN and Lata K et al, 1999 Carbon

monoxide in cooking stoves in developing countries ,Potential toxic exposure, global

change science.

23