Intravenous Fluid Therapy in Traumatic Brain Injury And

download Intravenous Fluid Therapy in Traumatic Brain Injury And

of 12

Transcript of Intravenous Fluid Therapy in Traumatic Brain Injury And

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    1/12

     Journal compilation © 2014 Trauma Research Center, Shiraz University of Medical Sciences,

    www.beat-journal.com3

    T

     Bull Emerg Trauma 2014;2(1):3-14.Review Article

    Intravenous Fluid Therapy in Traumatic Brain Injury and

    Decompressive Craniectomy

    Hernando Raphael Alvis-Miranda1 , Sandra Milena Castellar-Leones1 , Luis Rafael Moscote-Salazar 2* 

    1University of Cartagena, Colombia, South America.

     2Department of Neurosurgery, University of Cartagena, Colombia, South America.

    Corresponding au thor: Luis Rafael M os cot e-Salazar 

    Address: Universityof Cartagena, Cartagena de Indias,Colombia,South America.e-mail:[email protected]

    Received: November 9, 2013

    Revised: November 15, 2013Accepted: November 28, 2013

    The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currentlytraumatic brain injury constitutes a public health problem. Knowledge  of the various supportive therapeuticstrategies in the pre-hospital and pre-operative stages is essential for optimal care. The immediate rapid infusionof large volumes of  crystalloids to restore blood volume and blood pressure is now the standard treatment of patients with combined traumatic brain injury (TBI) and hemorrhagic shock (HS). The fluid in patients  w ithbrain trauma and especially in patients with brain injur y is a critical issue. In this context we present a review

    of the literature about the history, physiology of current fluid preparations, and a discussion regarding the useof fluid therapy in traumatic brain injury and decompressive craniectomy.

    Keywords: Brain trauma; Colloid solutions;Fluid resuscitation.

    Please cite this pa pe r  as:

    Alvis-Miranda HR, Castellar-LeonesSM, Moscote-Salazar LR. Intravenous Fluid Therapy in Traumatic Brain Injury  andDecompressive Craniectomy. Bull Emerg Trauma. 2014;2(1):3-14.

    Introduction

    raumatic brain injury (TBI) is a major   public

    health problem and a leading cause of   deathand disability [1]. It is frequently accompanied byhaemorrhagic shock (HS) [2-5]. The mechanism   f oradverse outcome in patients with combined TBI andHS may be due in part to the secondary ischemicinjuryof already vulnerable brain following loss of cerebralauto-regulation and or to adverse effects of  TB I itself on the normal compensatory response to HS  [6].Rapid infusion as quickly as possible of  large volumesof crystalloids to restore blood volume and   bloodpressure is now the standard treatment for  patients

    with combined TBI and HS [7,8]. Perioperative fluidadministration   is an important  aspect of  surgical care,but is often poorly understood [9-13], and continues

    to be an empirical  exercise, with nagging questionsabout its efficacy and complications [14].

    Fluid therapy (FT), as the name implies is a treatmentwith fluids [15]. The final goal of fluid managementis to optimize the circulatory system to ensure   thesufficient delivery of oxygen to organs [16]. FT isneeded for the following conditions:

    1. Normal maintenance;2. Blood or fluid loss due to wounds,  drains,induced diuresis etc;3. Third space losses socalled fluid sequestrationin tissue oedema or ileus;4.Increased systemic requirements resulting from

    fever and hypermetabolic state.TF should be tailored to match these requirements[17].Intravenous (IV) fluids may be broadlyclassified

    http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    2/12

    4   Bull Emerg Tr auma 2014;2(1)

     Alv is- Mir and a HR et al

    into colloid and crystalloid solutions. They havevery different physical, chemical, and physiologicalcharacteristics. Colloid solutions can be   natural(albumin) or synthetics (gelatins, dextrans,   andhydroxyethyl starches).

    Goal-directed fluid therapy (GDT) aimed   atoptimizing cardiac output and oxygen delivery has

    been shown to improve the outcome of   high-risksurgical patients [18].Most information presented herein is derived

    from the fluid management for the surgical  patientin general, and those who were critically ill, such astrauma patients. Primary studies on   preoperativefluid therapy for decomprssive craniectomy (DC) aresparse.

    The fluid management for patients   undergoingelective major surgery, e.g., neurotrauma surgery,is controversial [19-21]. During the   perioperativeperiod, many pathophysiological changes occur  thatalter the normal efficiency of fluid homeostasis.Despite this, perioperative fluid prescription is oftenpoor, being based on an insufficient knowledge of water and electrolyte requirements and distribution[22-25]. Perioperatively, crystalloids, colloids   andblood components are required to meet the ongoinglosses and for maintaining cardiovascular stability tosustain adequate tissue perfusion [26,27].

    Intravenous fluids maintain hydration whilepatients are unable to drink and replace losses thatoccur as a result of surgery [28]. Severity of illness,

    magnitude and duration of surgery,  comorbiditiesand the host response to injury, influence   theperioperative fluid needs. Although the   principlegoal of fluid administration is to maintain   adequatetissue perfusion and the perils of over and   under-resuscitation are well documented, there are   nostandards of care guiding for perioperative fluidadministration [28].The aim of this work is to reviewthe current topics of fluid management in  patientswith traumatic brain injury and the candidates   f ordecompressive craniectomy.

    History of  Modern Fluid TherapyThe intravenous fluid therapy (IVF) first gained

    importance in the treatment of cholera in   the1830s [29-34], with the reports of William BrookeO’Shaughnessy on his terminal cholera   patients’blood observations [29]. Their blood were thick andobscure, thus concluded that there was water deficitin those patients [31]. Aiming to replace the  corporalfluid loss, the 0.9% physiologic saline solution wasused for surgical patients. The perioperative useof IVF to compensate for the injurious effects of 

    anaesthesia began in1880s. Clinical   improvementswere consequently noted, though the adverse effects

    of saline were observed. Thomas Latta was the first toadminister intravenously water and salt solutions  todying patients with no favorable results [29,35].   Theuse of different mixes of water and salt in conjunctionwith the poor hygienic practices of those days ,did notprove safe, thus the fluid therapy did not initiallygain acceptance [15].

    In 1880, Sidney Ringer observed the differentprotoplasmic activity of sodium, calcium, potassiumand chloride salts, and introduced Ringer’s solution[15]. George Crile in 1899, using a hemorrhagic shockanimal model, studied the solution and recommendedit in warm form. War injuries during the First WorldWar were treated with primitive saline and colloidsolutions. The Gum arabic, a natural colloid from the

     Acacia se negalis tree used by W.C. Cannon, was a highpoint colloid [15].

    In 1924, the intravenous "drip" was introduced byRudolph Matas. In 1930, Hartmann and Senna   inorder to avoid the hyperchloremic acidosis resultingfrom the use of  Ringer´s solutions [36], added sodiumlactate, allowing sodium to be linked to the excessivechloride. This facilitated the lactate metabolism,thus, giving rise to the Hartman solution or Ringer-lactate. The work of Ringer, Hartmann, and   othersemphasized the importance of the composition of IV fluids and laid the foundations for the balancedsolutions in use today [37]. During the Second WorldWar, blood and plasma were massively  administered,even in the battlefield, aimed at prolonging the lives

    of injured   soldiers. In general, FT has been changingcontinuously, depending on current trends [15]. Asthe metabolic response to injury was increasinglyinvestigated  in the 1940s and 1950s, the cause of  post-operative oliguria was widely debated by Moore andShires, the most prominent surgeons [37]. DuringVietnam War, the preservation of renal function,became a therapeutic   objective, thus, allowing the useof large amounts of crystalloid for the hemorrhagicshock in the Da Nang Army Hospital. At this  timepulmonary complications called Da Nang lung   orwet lung syndrome, previous denominations of   thepresent Adult Respiratory Distress Syndrome (ARDS),was observed which derived from prescribing largevolumes of fluids.

    These differences in opinion, coupled with reportson survival of injured soldiers from the Korean warwho received large IV fluid infusions, dictated  thesurgical practice of liberal IV fluid   administrationuntil very recently [37]. Recent research in fluidtherapy has explored the concept of fluid restriction.Shoemaker and  col leagues also pioneered the conceptof    fluid administration to achieve   supranormal

    indices of cardiorespiratory function, which has ledto the advent of goal-directed fluid therapy [37].

    http://www.sid.ir/http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    3/12

     Journal compilation © 2014 Trauma Research Center, Shiraz University of Medical Sciences,

    www.beat-journal.com5

    Fluid therapy in traumatic brain injury

    Alongside the development of balanced solutions, therenewed focus on perioperative fluid therapy has ledto IVF administration being guided by physiologicalprinciples with a new consideration of the lessonsgleaned from history [37]. With military medicineadvances, fluid therapy has attracted   particularattention, and become increasingly important   when

    it is combined with hemotherapy. But, with no clearideas about the proper volume. Currently, fluidtherapy stills with largecontroversies.

    Fluid PhysiologyThe fundamentals governing fluid and electrolyte

    management in patients date to the 19th century [38].In the first half of the 20th century work by Gambleand Darrow and colleagues defined the electrolytecontent of extracellular, intracellular and   interstitialfluid compartments [38]. The body of adult  humancontains 60% water, of  which two-third is intracellularand the remaining one- third is in the extracellularspace, which in turn is divided between intravascularand extravascular or interstitial   compartments[39,40].

    The interstitial compartment is actually a   matrix,a collagen/gel substance that allows the   interstitiumto provide structural rigidity which resists againstgravity and can maintain structural integrity duringextracellular volume depletion. The collagen/gelinterstitial space, especially in skin and connective tissue,is an important reservoir of  extracellular fluid [38].

    The total intravascular volume, also referred   toas blood volume, is approximately 5 liters of which2 liters (40%) form intracellular structures such asred and white cells and platelets and 3 liters(60%)constitute extracellular component (plasma) [39,40].Extracellular compartment is important for oxygenand nutrients transport, and the elimination of carbonic anhydride and other products from cellularmetabolism. Another compartment is transcellularthat includes fluids not equilibrated with the  otherfluids, and constitutes  synovial, cerebrospinal fluids,gastrointestinal secretions, etc. This   compartmentthrough the lymphatic system returns the fluids to theintravascular space[40].

    The cells and the intravascular space have membranesthat preserve their structural integrity and allow themolecule and fluid interchange between differentcompartments. The main function of membranesis to preserve osmolarity and the electronegativityin of each compartment. The cell wall separatesthe intracellular space from the extracellularcompartment. The capillary endothelium and   thewalls of arteries and veins divide the extracellular

    compartment into the intravascular and the interstitialareas such as tissue or extravascular compartments.

    Water moves freely through cell and  vessel walls andenters al l these compartments. The energy-dependentNa/K adenosine triphosphatase in cell walls extrudesNa+ and Cl- and maintains a sodium gradient acrossthe cell membrane with Na+ as an extracellularion. The capillary endothelium is freely permeableto small ions such as Na+ and Cl-, but is relatively

    impermeable to larger molecules such as   albuminand the semisynthetic colloids like gelatin   andstarch, which normally remain in the   intravascularspace. Plasma is a solution in water of inorganic ionsincluding predominantly sodium chloride, simplemolecules such as urea, and larger organic moleculeslike albumin and the globulins. Plasma and interstitialfluid are highly interchangeable. Fluid exchangethrough a capillary is regulated by Starling’s law, whichmathematically summarizes the forces governing theflow of fluid out of blood vessels into   surroundingtissues, and expressed asQf = Kf [(Pc − Pi) − R(πc − πi)].

    Where Qf  is the total fluid flux out of  capillaries (notthe quantity, but just the speed of water  movement[16]) and Kf is the filtration coefficient (the  productof the membrane conductance and the membranesurface area), Pc is intravascular hydrostatic pressure,Pi is interstitial hydrostatic pressure,   πc   is colloidosmotic pressure within the vasculature,   πi   isinterstitial colloid osmotic pressure gradient across thevessel wall, and R is the oncotic reflection coefficient,the tendency of a membrane to impede the passage of 

    oncotically active particles (Starling, 1896) [16,41]. Rof 0 indicates a membrane that is totally permeableto protein while R of 1 represents a membrane   thatcompletelyprevents protein diffusion.

    Distribution terminates when the balance of   thehydrostatic pressure and the osmotic pressure canceleach other out.  Because the interstitium consists notonly of free space but also of absorbent  gel, capturedwater in the gel does not contribute to lowering  theosmotic pressure in the interstitium [16]. Therefore,the osmotic pressure does not  easily change until  thegel is saturated by flow of water. This is a mechanismof edema formation. Thus,  Starling’s   law does  notdetermine the distribution ratio between plasma andinterstitium, it just explains the movement of waterthrough the capillary wall [16].

    The original interpretation of an   equilibriumincluding fluid reabsorption at the venous end of  themicrocirculation is now known to be incorrect throughactual measurement of the pressures involved. Rather,a steady state is involved,with a level of  permeability toplasma proteins in the microvascular  walls. Net fluidmovement occurs in the vessels from the intravascular

    to the perivascular space [42]. The fluid transfer ismediated by the endothelial  glycocalyx layer (EGL),

    http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    4/12

    6   Bull Emerg Tr auma 2014;2(1)

     Alv is- Mir and a HR et al

    a physiological entity discovered and studied over thepast 30 years [43]. A model for fluid transfer acrossthe EGL [44] accounts for the discrepancies observedin fluid transfer as predicated by Starling's originalequation, and proposes a modified hypothesis basedon pressures involving the generation of fluid throughthe   glycocalyx  rather than the interstitial space [45]

    modifying the Starlingequation to:Qf = (Pc –  Pi)-R (πc – πg)Where Pi and   πg are the hydrostatic and  osmotic

    pressures respectively, exerted by the formation of ultrafiltrate across the glycocalyx [46]. While the EGLis the conduit for water passage from the intravascularto the extravascular space, plasma proteins cross  theendothelial barrier through a separate pathway, thelargepore system[46].

    This model is perturbed by a number of factorsduring anesthesia and  surgery. Patients scheduled f orsurgery are presented with a variety of conditions thatresult in altered fluid distribution. Many anestheticdrugs like IV induction medications and volatileanesthetics cause vasodilation, leading to a reductionin the ratio between the circulating volume and   thecapacity of the intravascular space, or myocardialimpairment, causing a reduction in flow through  thecirculation.

    Fluid shifts between compartments may also reducethe circulating volume representing third-space lossesand loss of intravascular fluid into the   interstitiumbecause of altered endothelial permeability in sepsis

    and inflammatory states .[39]The following section is devoted to a resume of  themain characteristics of different kind of  solutions.

    Crystalloids

    A crystalloid fluid is a solution of small   wa ter-soluble molecules that can diffuse easily acrosssemi-permeable membranes. The properties of thesesolutions are largely determined by their   tonicity(osmolality relative to plasma) and their   sodiumcontent (affecting their distribution within bodycompartments) [47]. They redistribute   throughoutthe extracellular fluid (ECF) compartment, of which75% is interstitial fluid. This suggests that 4 litres of crystalloid are required to replace a blood loss of 1litre. [48] Studies have shown that the volume kineticsof infused crystalloid solutions differ betweennormovolaemic and hypovolaemic patients. [49]

    IV infusions of isotonic saline solution only expandthe intravascular space by a maximum of  one-thirdof the volume used in normal subjects, with only16% left after 30 minutes. The volume of crystalloidrequired to replace an acute blood loss   remains

    3-4-fold because of redistribution into, and   rapidelimination from, the ECF [48].

     Isotoni c Solutions

    Isotonic or iso-osmolar solutions,with an osmolality≈300   mOsm/L, such as sodium chloride 0.9%(normal saline), Ringer’s solution or plasmalyte, donot change plasma osmolality and do not increasebrain water content [50]. They also contain   sodiumat physiological plasma concentrations. These fluids

    distribute freely within the ECF compartment causinglittle change in sodium concentration and osmolality.As a result, this limits the movement of water out of the extracellular fluid (ECF) into the   intracellularfluid (ICF) compartment and vice versa. Commerciallactated Ringer’s solution is not truly iso-osmolarwith respect to plasma. Its measured osmolality is⋲254 mOsmol/kg, which explains why administrationof large volumes can reduce plasma osmolality  andincrease brain water content and intracranial pressure(ICP). [50]

     Hypo tonic Solutions

    Large amounts of hypo-osmolar or hypotonic fluidsreduce plasma osmolality, drive water across   theblood brain barrier (BBB), and increase cerebral watercontent and ICP. A solution of 5% dextrose (D5W)is essentially water since the sugar is metabolizedvery quickly and provides free water which dispersesthroughout the intracellular and extracellularcompartments with little use as a resuscitative fluid[50]. Therefore , hypo-osmolar crystalloids (0.45%NaCl or D5W) should be avoided in neurosurgical

    patients [50].

     Hyp ertonic cr ystalloids: Mannitol and hypertonic saline

    Osmotherapy agents such as hypertonic saline(HTS) are currently used in the treatment of  patientswith post-traumatic cerebral edema and raised ICPresulting from TBI [51].It is believed to have aparticularly useful role in the treatment of ICP whilstadministering small volume fluid resuscitation [52].HTS solutions typically improve cardiovascularoutput  as well as cerebral oxygenation whilst reducingcerebral oedema. Hypertonicity seems to affect someinnate immune-cell functions, specifically neutrophilburst activity in preclinicalstudies, probably providingbeneficial impact on modulation of the inflammatoryresponse to trauma [53-58].

    Clinical studies however do not provide compellingevidence to support the use of HTS either for TBIor for haemorrhagic shock. A small   randomizedclinical trial (RCT) reported a significant reductionin mortality when comparing a 250 ml bolus of HTS/ dextran with isotonic saline in 222 patients   withhaemorrhagic shock [59]. But many other RCTs

    have not demonstrated reduction in mortality   inthis group of patients [60-63], including the  most

    http://www.sid.ir/http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    5/12

     Journal compilation © 2014 Trauma Research Center, Shiraz University of Medical Sciences,

    www.beat-journal.com7

    Fluid therapy in traumatic brain injury

    recent and largest RCT comparing HTS, HTS/ dextran and normal saline. This trial recruited twoseparate cohorts, one with TBI (n = 1087) [64] andthe other with haemorrhagic shock (n =  853) [65];with primary endpoints of neurological outcome at6 months after TBI and 28 day survival respectively.The TBI study was terminated early due to futility,

    as interim analysis was unable to   demonstratean improvement in neurological status or   indeedmortality at 6 months. Another study demonstratedno significant difference in mortality at 28 days, andwas terminated early for concerns of potential (albeitstatistically non-significant) increase in   mortalityobserved with a subgroup of patients receiving HTSbut no blood transfusions within the first 24 h [65].Wade  et al., [66] undertook a cohort analysis of individual patient data from a previous prospectiverandomized double-blinded trial to evaluateimprovements in survival at 24 hours and dischargeafter initial treatment with HSD in patients whohad TBI (head region Abbreviated Injury Score ≥4)and hypotension (systolic blood pressure  ≤90 mmHg). They found that treatment with HSD resultedin survival until discharge of 37.9% (39 of 103)compared with 26.9% (32 of 119) with   standardcare ( p=0.080). Using logistic regression, adjustingfor trial and potential confounding variables, thetreatment  effect can be summarized by the odds ratioof 2.12 ( p=0.048) for survival until discharge. Theyconcluded that patients with traumatic brain injuries

    in the presence of hypotension and receiving HSDareabout twice as likelyto survive as those who receivestandard of care.

    Rockswold   et al., [67] examined the effect of hypertonic saline on ICP, cerebral perfusion pressure(CPP), and brain tissue oxygen tension (PbtO2), andfound that hypertonic saline as a single osmotic agentdecreased ICP while improving CPP and PbtO2   inpatients with severe traumatic brain injury. Patientswith higher baseline ICP and lower CPP levelsresponded to hypertonic saline more significantly.

    Colloids

    Colloids are fluids with larger, more insolublemolecules that do not readily cross  semi-permeablemembranes, across which they exert oncotic pressure.Water is drawn in from the interstitial and ICF byosmosis. Their movement out of the   intravascularspace and their duration of action is dependent ontheir molecular weight, shape, ionic charge and   thecapillary permeability [47]. Apart from   albumin,all colloids are polymers and contain particles  withdifferent molecular weights [48]. They may increase

    plasma volume by more than the volume infused,because of their higher osmolality; hence the   term

    plasma expanders [48]. Studies suggest they can causesignificant impairment of clot formation activity[68,69].

     Albumin

    Albumin is a multifunctional, non-glycosylated,negatively  charged plasma protein, with a molecular

    weight of 69 kD. It is a biological   therapeutic,manufactured from an inherently variable materialsource using a variety of purification   techniques.Albumin is an effective volume expander, has   notbeen associated with allergic-type reactions,   andhas no intrinsic effects on clotting [50]. Its use asreanimation fluid has not been linked to   bettersurvival compared with the synthetic colloids, a factthat together with costs, discredits its use in criticallyill patients [70]. There are in different concentrations:iso-oncotic (4-5% albumin) and hyper-oncotic (20%albumin). The later has adverse renal events.

    Synthetic colloidsGelatins

    Gelatin products are semi-synthetic colloids derivedfrom bovine collagen and prepared as polydispersivesolutions by multiple chemical modifications [48,71].Gelatins for volume therapy have been   withdrawnfrom the US market due to the high rate of  anaphylacticreactions [71]. Conventional gelatin   preparationshave a mean molecular weight of  30-35kDa and a lowmolecular mass range. Their intravascular persistence

    is short (2-3 hours), particularly for the urea-linkedgelatins, with rapid renal excretion (80% molecules< 20 kDa). Since the cross-linked gelatin moleculescontain negative charges, chloride concentrations of the solvent solution are reduced in contrast to  othertypes of colloid. Since the latter fact results in slighthyposmolality, infusion of large amounts of gelatinsolutionsmay reduce plasmaosmolality and ultimatelyfoster the genesis of intracellular edema [71].  Therapid urinary excretion of gelatin is associated withincreased diuresis and has to be substituted byadequate crystalloid infusion to prevent dehydration.Gelatin infusion may furthermore increase bloodviscosity and facilitate red blood cell aggregationwithout influencing the results of crossmatching.Severe anaphylactoid reactions are low   (thoughmore likely with gelatins than with other colloids),and usually occur only with rapid infusions (1/13000for succinylated gelatin; 1/2000 for   urea-linkedgela tin), although much less with newer f ormulations.Reactions are usually mild (incidence < 0.4%).(48)Clinically, they have little effect on coagulation [48].

     DextranesThese are neutral, high-molecular-weight

    http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    6/12

    8   Bull Emerg Tr auma 2014;2(1)

     Alv is- Mir and a HR et al

    glucopolysaccharides based on glucose monomers.Dextranes are derived from the action of  the bacterium

     Le uc onostoc mese nteroides  on a sucrose medium viathe dextran sucrose enzyme. This produces a  groupof branched polysaccharides of  200,000 glucose units.Subsequent partial hydrolysis produces moleculesof mean MW 40, 60, 70 and 110 kDa, with half-lives

    ranging from 15 minutes to several days. They aremainly excreted via the kidneys (70%), with the restmetabolized by endogenous dextranase. They arerelatively cheap (£4-5 per 500 ml).

    Dextran 40 is hyperoncotic and initially acts as aplasma expander before its rapid elimination by thekidney. Its main use is in promoting peripheral  bloodflow in  cases of prophylaxis for deep vein thrombosisand arterial insufficiency. Dextran 70 and 110 aremainly used for plasma expansion; 6% dextran 110 isno longer available clinically. Blood flow improvementresults from a reduction in blood  viscosity, possiblyby coating the vascular endothelium and cellularelements of blood, thus reducing their   interaction.Dextrans inhibit platelet adhesiveness,   enhancefibrinolysis and may reduce factor VIII activity. Dosesabove 1.5 g/kg cause bleeding tendency. Initial useshould be limited to 500 – 1000 ml with a  restrictionof  10 – 20 ml/kg/day thereafter.

    Modern solutions do not interfere with blood cross-matching or cause roleaux formation, which was afeature of the early, very high MW dextrans. Theycan impair renal function by tubular   obstruction

    from dextran casts. This is usually seen with dextran40 combined with hypovolaemia and pre-existingrenal dysfunction. They can also cause an   osmoticdiuresis. Severe anaphylactic reactions like  immunecomplex type III can occur resulting from prior cross-immunization against bacterial antigens   f ormingdextran reactive antibodies. The incidence of 1/4500is reduced with monovalent hapten   pre-treatment(injection of 3 g dextran 1) to 1/84000. This blocksthe antigen-binding sites of circulating antidextranantibodies, preventing formation of    immunecomplexes with subsequent infusions of dextran 40or 70. Dextran 1 (MW 1000 Da) is not available inthe UK[48].

     Hydroxye thy l  star ch(  HE S)

    HES is a semi-synthetic colloid, related to glycogen

    The mean molecular weight of the different HESpreparations ranges from 70 and 670 kDa. Followinginfusion of  HES, small molecules  8;

    Low < 8

    Concentration  High 10%;

    Low 6%.

    http://www.sid.ir/http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    7/12

     Journal compilation © 2014 Trauma Research Center, Shiraz University of Medical Sciences,

    www.beat-journal.com9

    Fluid therapy in traumatic brain injury

    the standard’ maintenance volume in neurosurgicalpatients (2.000 mL/day of 0.45 normal saline in 5%dextrose) increases serum osmolality over abouta week [72]. Thus the old concept of benefit   fromfluid restriction was simply a consequence of   anincreased osmotic gradient over time [50].   Theavailable data indicate that volume replacement  and

    expansion will have no effect on cerebral   edemaas long as normal serum osmolality is maintained,and cerebral hydrostatic pressures are not markedlyincreased due to true volume overload and elevatedright heart pressures. Whether this is achieved  w ithcrystalloid or colloid seems uncertain, althoughthe osmolality of the selected fluid is crucial. Aspreviously mentioned, lactated Ringer’s solution isnot strictly iso-osmotic (measured osmolality 252-255 mOsmol/kg), particularly when administered   topatients whose baseline osmolality has been increasedby hyperosmolar fluids (mannitol, HS) [50].

    In TBI, a blunt or penetrating injury incitesmechanical and autodigestive destruction of   thenormally tightly intact endothelium of  the blood brainbarrier [73]. This allows uncontrolled movement of fluid and serum proteins into the brain parenchyma,eventually leading to vasogenic cerebral edema andincreased ICP. It has been shown that in critically illpatients, there is increased leakage of albumin acrossthe capillary wall [74]. In the brain, this increasedextravasation of albumin could lead to heightenedinterstitial oncotic pressure and exacerbate cerebral

    edema.

    Pr e-hospital

    In nine randomised controlled trials and one  cohortstudy of pre-hospital fluid treatment in patients w ithTBI [75], hypertonic crystalloids and colloid solutionswere not more effective than isotonic saline [76].In a combined polytrauma model of   uncontrol ledhaemorrhage and TBI in swine, Teranishi   et al.,[6] investigated if pre-hospital administration of the haemoglobin based oxygen carrier HBOC-201will improve tissue oxygenation and physiologicparameters compared to LR solution. They   f oundthat mean TBI force (2.4±0.1 atm; means ± standarderror of the mean) and blood loss (22.5±1.7 mL/ kg) were similar between groups. Survival at the 6hendpoint was similar in all groups (≈50%). Cerebralperfusion pressure (CPP) and brain tissue oxygentension were significantly greater in HBOC-201 ascompared with LR animals ( p

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    8/12

    10   Bull Emerg Tr auma 2014;2(1)

     Alv is- Mir and a HR et al

    Mortality was assessed after 10 and 28 days, 6 and18 months. They found that the total fluid balancewas positive on days 1-3, and negative on days 4-10,and the crystalloid balance was negative from day2. The mean serum albumin was 38±6 g/L. Colloidsconstituted 40-60% of the total fluids given per day.Furosemide was administered to 94% of all patients.

    Severe organ failure defined as  SOFA≥3  was evidentonly for respiratory failure, which was observed in29% with none developing renal failure.After 28 days,mortality was 11% and, after 18 months, it was 14%.Thus, a protocol including albumin   administrationcombined with a neutral to a slightly negative fluidbalance wasassociated with lowmortality in patientswith severe TBI despite a relatively high frequency(29%) of respiratory failure, assessed by the SOFA.Acute lung injury (ALI) and ARDS are   reportedcommonly after TBI and their appearance isassociated with fluid management. ALI and ARDS areconsidered as independent factors for mortality [85-88].

    A single equimolar infusion of 7.45% hypertonicsaline solution is as effective as 20% mannitol   indecreasing ICP in patients with brain injury [79].In the Taiwan guidelines for TBI management,  withneeded massive fluid transfusion, it is recommendedthat normal saline is better than lactated Ringer'ssolution (grade D). Fresh frozen plasma is onlyindicated for coagulopathy and not used as a regularvolume expander (grade C). Hypertonic saline may

    be useful in patients with complication of  severe TBIand systemic shock (grade D) [89].The Saline versus Albumin Fluid Evaluation (SAFE)

    study was an international trial that   randomizedcritically ill patients to either 4% albumin   ornormal saline fluid resuscitation for 28 days [89].Although there was no overall difference in 28-daymortality between the 2 groups, there was a   trendtoward increased mortality in patients with  traumarandomized to albumin resuscitation. This increasedmortality appeared to be driven by patients   withtrauma with TBI compared with those with traumawithout TBI. A post hoc analysis of patients   withTBI randomized during the   SAFE   study   confirmedthat resuscitation with albumin was associated  w ithincreased mortality at 24 months compared   withnormal saline [90-92]. This increased risk was entirelydriven by patients with severe TBI, defined as GCS ≤8.Sekhon  et al., [91] in their study on 171  patientsattemted to determine if there was an associationbetween synthetic colloids and mortality in  patientswith severe TBI,and found that patients receivingpentastarch had higher acute physiology and  chronic

    health II scores (23.9 vs 21.6, p

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    9/12

     Journal compilation © 2014 Trauma Research Center, Shiraz University of Medical Sciences,

    www.beat-journal.com11

    Fluid therapy in traumatic brain injury

    •   Give carbohydrate drinks.•   Avoid bowel preparation.

    Peri-operative:•  Use fluid management technologies to deliver

    individualized goal directed fluid therapy.•  Avoid crystalloid excess (salt and water overload).

    Maintenance’ fluid, if utilized, should be limitedto less than 2 ml/kg/hr including any   drug

    infusions.The use of isotonic balanced electrolytesuch as   Hartmann’s   solution will minimizehyperchloraemic acidosis.

    Post-operative: Avoid post-operative i.v.fluids when it is possible. Always ask the question;  ‘what are we giving

    fluids for?Maintenance fluid? -Push early drinking   and

    eating; Replacement fluid? ; Considering oral before

    i.v. and prescribing oral fluidsResuscitation fluids? ; Using goal directed fluid

    therapy

    Physiological responses during the pe ri op erati ve phase

    In the critically ill, effectsof surgery per se and itsassociated changes in the hormonal milieu interne areexaggerated by a systemic inflammatory response withdevelopment of capillary leak. This leads to difficult-to-balance losses into the interstitium and frequently

    visible oedema formation. Resulting abnormalitiesof fluid and electrolyte balance in the critically ill arepurposefully or involuntarily influenced, in addition,by nutritional support and measures that affect acid – base homeostasis [79].

    Surgery alters fluid balance [39], generates asystemic inflammatory response which increasesoxygen consumption, and is associated with increasein cardiac output and oxygen delivery. Failure to meetthe metabolic demands of recovery from surgery isassociated with increased morbidity and   mortality[95]. The stress response to surgery and   trauma

    involves a number of different physiological reactions.Importantly, the   renine-angiotensine-aldosteronesystem is stimulated, leading to increased sodium andfluid retention, decreased urinary output and alteredfluid balance. In addition, the activated inflammatoryresponse causes vasodilatation and increasedpermeability of capillary wall [47]. This affects  theintravascular duration of fluids administration,   withincreased capillary leak of fluids into the  interstitialtissues. As a result, the perioperative period is a timewhen the body’s management of  fluids is dramaticallyaltered and needs to be considered carefully  whenprescribing fluids [47].

    In conclusion, perioperative fluid therapy continuesto be an exercise in empiricism, with naggingquestions about its efficacy and complications. Thereare no evidence-based guidelines or standards of care for the management of fluid therapy in  patientsundergoing decompressive craniectomy. Knowledgeof the properties of the various available IV f luids, andthe awareness of the pathophysiology of  endothelial,parenchymal and endocrine alterations emerging  inTBI should guide i.v. fluid administration, to   reach

    a good medium that favors better neurological,morbidity and mortality outcomes.

    Conflict of Interest: None declared.

    References

    1. Sharma D, Vavilala MS. Perioperativemanagement of adult traumatic braininjury. Anes the sio l C lin 2012;30(2):333-46.

    2. Langlois JA, Rutland-Brown W, Wald

    MM. The epidemiology and impactof traumatic brain injury: a brief overview.   J    Head Trauma Rehabil2006;21(5):375-8.

    3. Shackford SR, Zhuang J, Schmoker J.Intravenous fluid tonicity: effect onintracranial pressure, cerebral bloodflow, and cerebral oxygen deliveryin focal brain injury.   J    N eur os ur g1992;76(1):91-8.

    4. Gennarelli TA, Champion HR,Copes WS, Sacco WJ.   Comparisonof mortality, morbidity, and severityof 59,713 head injured patients   with

    114,447 patients with extracranialinjuries.  J  Trauma 1994;37(6):962-8.

    5. McMahon CG,  Yates   DW, Campbell

    FM, Hollis S , Woodford M. Unexpectedcontribution of moderate   traumaticbrain injury to death after majortrauma.   J  Trauma 1999;47(5):891-5.

    6. Teranishi K, Scultetus A, Haque A, Stern

    S, Philbin N, Rice J, et al.  Traumaticbrain injury and severe uncontrol ledhaemorrhage with short delay   pre-hospital resuscitation in a swine model. Injury 2012;43(5):585-93.

    7. Bullock R, Chesnut RM, Clifton G,Ghajar J, Marion DW, Narayan RK,et al. Guidelines for the managementof severe head injury. Brain   TraumaFoundation.   Eur    J Em erg   Med 1996;3(2):109-27.

    8. Brain Trauma Foundation; AmericanAssociation of Neurological Surgeons;Congress of Neurological Surgeons;

    Joint Section on Neurotrauma   andCritical Care, AANS/CNS, Bratton SL,Chestnut RM, Ghajar J, McConnell

    Hammond FF, Harris OA, Hartl R, etal. Guidelines for the managementof severe traumatic brain injury. II.Hyperosmolar therapy.  J  Neurotrauma2007;24 Suppl 1:S14-20.

    9. Dick F, Erdoes G, Opfermann P,Eberle B, Schmidli J, von Allmen RS.Delayed volume resuscitation duringinitial management of    rupturedabdominal aortic aneurysm.  J  Vasc S ur g2013;57(4):943-50.

    10. Assaad S, Popescu W, Perrino A. Fluidmanagement in thoracic surgery. Curr Opin Anaesthesiol 2013;26(1):31-9.

    11. Moore E, Bellomo R, Nichol A.  T hemeaning of acute kidney injury   andits relevance to intensive care   andanaesthesia.   Anaesth Intensive Care2012;40(6):929-48.

    12. Ivashkov   Y,   Bhananker SM.Perioperative management of  pediatrictrauma patients. Int   J  Crit Illn Inj Sci

    http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    10/12

    12   Bull Emerg Tr auma 2014;2(1)

     Alv is- Mir and a HR et al

    2012;2(3):143-8.13. Searl CP, Perrino A . Fluid management

    in thoracic surgery.  Anesthesiol Clin2012;30(4):641-55.

    14. Svensen CH, Rodhe PM, Prough   DS.Pharmacokinetic aspects of fluidtherapy. Be st P rac t R es C lin Anaesthesiol2009;23(2):213-24.

    15.  González Posada  MÁ,  Quintana   DíazM. Info Colloids. Fluidoterapia en elpaciente politraumático. Barcellona,Fresenius Kabi Espana SA; 2010.  p.3-14.Available from:   http://www.fresenius-kabi.es/pdf/info_colloides/ InfoColloids 8-FLUIDOETERAPIA ENEL PACIENTE POLITRAUMÁTICO-Ene10.pdf 

    16. Iijima T. Complexity of blood volumecontrol system and its implicationsin perioperative fluid management.   J  Anesth 2009;23(4):534-42.

    17. Kerridge RK. Perioperative   patientmanagement.  Best Pract Res Clin Obstet Gynaecol 2006;20(1):23-40.

    18. Shoemaker WC, Appel PL, Kram HB,Waxman K, Lee TS. Prospective   trialof supranormal values of survivors astherapeutic goals in high-risk surgicalpatients. Chest  1988;94(6):1176-86.

    19. Bellamy MC. Wet, dry or   somethingelse? Br  J  Anaesth 2006;97(6):755-7.

    20. Li   Y.   Perioperative goal-directedfluid therapy: grand progress   andcontroversy. Zhonghua Wei  Chang W aiKe Za Zhi 2012;15(6):540-3.

    21. Haas  S,  Eichhorn V, Hasbach T, TrepteC, Kutup A, Goetz AE, et al. Goal-directed fluid therapy using strokevolume variation does not result   inpulmonary fluid overload in  thoracicsurgery requiring one-lung  ventilation.Crit Care Res Pract  2012;2012:687018.

    22. Knighton J, Smith GB. Perioperativefluid therapy. Anaesthesia and IntensiveCare Medicine 2003;4(10):324-6.

    23. Warrillow SJ, Weinberg L, ParkerF, Calzavacca P, Licari E, Aly A,   etal. Perioperative fluid   prescription,

    complications and outcomes in majorelective open gastrointestinal surgery. Anaesth Inte nsi ve Ca re 2010;38(2):259-65.

    24. De Silva AN, Scibelli T, Itobi E,Austin P, Abu-Hilal M, Wootton SA,et al. Improving peri-operative fluidmanagement in a large teachinghospital: pragmatic studies on theeffects of changing practice.  Proc  N ut r So c 2010;69(4):499-507.

    25. Walsh SR, Cook   EJ , Bentley R, FarooqN, Gardner-Thorpe J, Tang T, et al.Perioperative fluid management:prospective audit.   Int    J    Clin Pract 2008;62(3):492-7.

    26. Arya VK. Basics of fluid and blood

    transfusion therapy in paediatricsurgical patients.   Indian   J    Anaesth2012;56(5):454-62.

    27. Chowdhury AH, Cox EF, Francis ST,Lobo DN. A randomized,   control led,double-blind crossover study on theeffects of 2-L infusions of 0.9% salineand  plasma-lyte®   148 on renal bloodflow velocity and renal cortical tissueperfusion in healthy volunteers. AnnSurg 2012;256(1):18-24.

    28. Chong PC, Greco EF, Stothart D,Maziak DE, Sundaresan S, ShamjiFM, et al. Substantial variation of both opinions and practice  regardingperioperative fluid resuscitation. Can   J Surg 2009;52(3):207-14.

    29. Baskett TF. William O’Shaughnessy,Thomas Latta and the origins of intravenous saline.   Res us c itat ion2002;55(3):231-4.

    30. Howard-Jones N. Cholera therapy

    in the nineteenth century.   J  Hist Med  Allie d Sc i 1972;27(4):373-95.

    31. Cosnett   JE . The origins of  intravenousfluidtherapy. La nce t  1989;1(8641):768-71.

    32. Kleinman RE, Barness LA, Finberg L.History of pediatric nutrition and fluidtherapy.  Pediatr Res 2003;54(5):762-72.

    33. Mengoli LR . Excerpts from the historyof postoperative fluid therapy.   Am   J Surg 1971;121(3):311-21.

    34. Foëx BA. How the cholera epidemicof 1831 resulted in a new   techniquefor fluid resuscitation.   Emerg   Med   J 2003;20(4):316-8.

    35. Latta T. Malignant cholera: Documentscommunicated by the Central Boardof Health, London, relative to thetreatment of cholera by the   copiousinjection of aqueous and saline fluidsinto the veins. Lancet  1832;2:274 – 7.

    36. Neville KA, Sandeman DJ, RubinsteinA, Henry GM, McGlynn M, WalkerJL. Prevention of    hyponatremiaduring maintenance   intravenousfluid administration: a prospectiverandomized study of fluid type versus

    fluid rate. J Pediatr   2010;156(2):313-9.e1-2.

    37. Srinivasa S, Hill AG. Perioperative fluidadministration: historical highlightsand implications for practice. Ann S ur g2012;256 (6):1113-8.

    38. Friedman A. Fluid and electrolytetherapy: a primer.   Pediatr Nephrol2010;25(5):843-6.

    39. Grocott MPW, Mythen MG, Gan TJ.Perioperative fluid management   andclinical outcomes in adults.   Anesth Analg 2005;100(4):1093-106.

    40. Datta R, Chaturvedi R. Fluid therapy intrauma.  Medical  J ournal  Armed   F or ces India 2010;66(4):312-6.

    41. Prough DS, Olsson J, Svensén C.

    Chapter 11- Crystalloid Solutions.In: Winslow RM, Robert M. WinslowMDBT-BS,   editors. Oxford: AcademicPress; 2006. p. 126-138. Available from:http://www.sciencedirect.com/science/ article/pii/B9780127597607500184

    42.  Michel CC. Starling: the formulation of his hypothesis of microvascular fluidexchange and its significance  after 100years. Exp Physiol 1997;82(1):1-30.

    43. Weinbaum S, Tarbell JM, DamianoER.  The structure and function of theendothelial  glycocalyx   layer. Annu Rev Bi om ed Eng 2007;9:121-67.

    44. Adamson RH, Lenz JF, Zhang X,Adamson GN, Weinbaum S,   CurryFE. Oncotic pressures opposingfiltration across non-fenestrated   ratmicrovessels.   J    Physiol   2004;557(Pt3):889-907.

    45. Levick JR. Revision of the Starlingprinciple: new views of tissue fluid

    balance.  J  Physiol 2004;557(Pt   3):704.46. Farrugia A. Albumin usage in clinical

    medicine: tradition or therapeutic?Transfus Med Rev 2010;24(1):53-63.

    47. Cook SC, Brown J. Perioperative fluidtherapy. Anaesthesia & Intensive CareMedicine 2009;10(12):573-5.

    48. Gutteridge G. Crystalloids, colloids,blood, blood products and bloodsubstitutes. Anaesthesia & IntensiveCare Medicine 2004;5(2):42-6.

    49. Gondos T, Marjanek Z, Ulakcsai Z,Szabó Z, Bogár L, Károlyi M, et al.Short-term effectiveness of differentvolume replacement therapies   inpostoperative hypovolaemic  patients.E u r J   Anaesthesiol 2010;27(9):794-800.

    50. Tommasino C, Picozzi V. Volume  andelectrolyte management.  Best Pract  ResClin Anae sth es iol  2007;21(4):497-516.

    51. Elliott MB , Jallo JJ, Barbe MF, Tuma RF.Hypertonic saline attenuates tissue lossand astrocyte hypertrophy in a  modelof traumatic brain injury.  Brain Res2009;1305:183-91.

    52. Hashiguchi N, Lum L, RomerilE, Chen   Y, Yip   L, Hoyt DB, et al.

    Hypertonic saline resuscitation:efficacy may require early  treatmentin severelyinjured patients.   J  T r auma2007;62(2):299-306.

    53. Powers KA, Woo  J, Khadaroo RG , PapiaG, Kapus A, Rotstein OD.  Hypertonicresuscitation of hemorrhagic shockupregulates the   anti-inflammatoryresponse by alveolar macrophages.Surgery 2003;134(2):312-8.

    54. Rizoli SB, Kapus A, Parodo J,Rotstein OD. Hypertonicity preventslipopolysaccharide-stimulated CD11b/ CD18 expression in human neutrophilsin vitro: role for p38 inhibition.   J Trauma   1999;46(5):794-8; discussion798-9.

    http://www.sid.ir/http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    11/12

     Journal compilation © 2014 Trauma Research Center, Shiraz University of Medical Sciences,

    www.beat-journal.com13

    Fluid therapy in traumatic brain injury

    55. Angle N, Hoyt DB, Coimbra R, LiuF, Herdon-Remelius C, Loomis W,et al. Hypertonic saline  resuscitationdiminishes lung injury by suppressingneutrophil  activation after hemorrhag icshock.  Shock  1998;9(3):164-70.

    56. Homma H, Deitch EA, Feketeova E, LuQ, Berezina TL, Zaets  SB , et al. Smallvolume resuscitation with   hypertonicsaline is more   effective in amelio ratingtrauma-hemorrhagic shock-inducedlung injury, neutrophil   activationand red blood cell dysfunction   thanpancreatitic protease inhibition.   J Trauma 2005;59(2):266-72.

    57. Deitch EA, Shi HP, Feketeova E,Hauser CJ, Xu DZ.   Hypertonicsaline resuscitation limits neutrophilactivation after   trauma-hemorrhag icshock.  Shock  2003;19(4):328-33.

    58. Deree J, Martins JO, Leedom A, LamonB, Putnam J, de Campos T, et al.

    Hypertonic saline and pentoxifyllinereduces hemorrhagic shockresuscitation-induced   pulmonaryinflammation through   attenuationof neutrophil degranulation   andproinflammatory mediator   synthesis.   J Trauma 2007;62(1):104-11.

    59.Younes   RN, Aun F, Ching CT,Goldenberg DC, Franco MH, MiuraFK,  et al. Prognostic factors to predictoutcome following the  administrationof hypertonic/hyperoncotic   so lutionin hypovolemic patients.   Shock 1997;7(2):79-83.

    60. Maningas PA, Mattox KL, Pepe PE,Jones RL, Feliciano D V, Burch JM.Hypertonic saline-dextran   solutionsfor the prehospital management of traumatic hypotension.   Am   J    S ur g1989;157(5):528-33; discussion 533-4.

    61. Vassar MJ, Perry CA, Gannaway WL,Holcroft JW. 7.5% sodium   chloride/ dextran for resuscitation of   traumapatients undergoing helicoptertransport.  Arch Surg 1991;126(9):1065-72.

    62.Younes   RN, Aun F, Accioly CQ,

    Casale LP, Szajnbok I, Birolini D.Hypertonic solutions in the   treatmentof hypovolemic shock: a prospective,randomized study in patients admittedto the emergency room.   Sur ger  y1992;111(4):380-5.

    63. Jousi M, Reitala J, Lund V, KatilaA, Leppäniemi A. The role of   pre-hospital blood gas analysis in   traumaresuscitation.   World    J E m er g   S ur g2010;5:10.

    64.Bulger EM, May S, Brasel KJ, SchreiberM, Kerby JD, Tisherman   SA , et al . Out-of-hospital hypertonic   resuscitationfollowing severe traumatic braininjury: a randomized controlled  trial. J  AMA 2010;304(13):1455-64.

    65. Bulger EM, May  S , Kerby JD, Eme rsonS, Stiell IG, Schreiber MA, et al. Out-of-hospital hypertonic   resuscitationafter traumatic hypovolemic shock: arandomized, placebo controlled   trial. Ann Surg 2011;253(3):431-41.

    66. Wade CE, Grady JJ, Kramer GC, YounesRN, Gehlsen K, Holcroft JW. Individualpatient cohort analysis of theefficacy of hypertonic saline/dextranin   patients with traumatic braininjury   and hypotension.   J    Trauma1997;42(5Suppl):S61-5.

    67. Rockswold GL, Solid CA, Paredes-Andrade E, Rockswold SB, Jancik JT,Quickel RR. Hypertonic saline and itseffect on intracranial pressure, cerebralperfusion pressure, and brain tissueoxygen. Neurosurgery 2009;65(6):1035-41; discussion 1041-2.

    68. Witt L, Osthaus WA, Jahn W, Rahe-

    Meyer N, Hanke A, Schmidt F, et al.Isovolaemic  hemodilution with gelatinand hydroxyethylstarch 130/0.42:effects on hemostasis in piglets.Paediatr Anaesth 2012;22(4):379-85.

    69. Mauch J, Madjdpour C,   KutterAP, Spielmann N, Bettschart-Wolfensberger R, Weiss M, et al.Effect of rapid fluid   resuscitationusing crystalloids or colloids   onhemostasis in piglets.  Paediatr  Anaesth2013;23(3):258-64.

    70. Schortgen F, Girou E, Deye N, BrochardL;   CRYCO   Study Group. The riskassociated with hyperoncotic colloidsin patients with shock. Intensive Care Med  2008;34(12):2157-68.

    71. Ertmer C, Rehberg S, Van Aken H,Westphal M. Relevance of  non-albumincolloids in intensive care medicine. Best Pract Res Clin Anaesthesiol

    2009;23(2):193-212.72. Shenkin HA, Bezier HS,   Bouzarth

    WF. Restricted fluid intake. Rationalmanagement of the neurosurgicalpatient.  J   Neurosurg 1976;45(4):432-6.

    73. Werner C, Engelhard   K.

    Pathophysiology of traumatic braininjury. Br  J  Anaesth 2007;99(1):4-9.74. Greenhalgh DG, Housinger  TA , Kagan

    RJ, Rieman M, James L, Novak S,  e tal. Maintenance of serum   albuminlevels in pediatric burn patients: aprospective, randomized trial. J  T r auma1995;39(1):67-73;  discussion 73-4.

    75. Tan PG, Cincotta M, Clavisi O, BraggeP, Wasiak J, Pattuwage L, et al. Reviewarticle: Prehospital fluid managementin traumatic brain injury.  Emerg   Med  Austra las 2011;23(6):665-76.

    76. Rosenfeld J V, Maas AI, Bragge P,Morganti-Kossmann MC, ManleyGT, Gruen RL. Early management of severe traumatic brain injury.  Lancet 2012;380(9847):1088-98.

    77. Rodling Wahlström M, Olivecrona M,Nyström F, Koskinen LO, Naredi S.Fluid therapy and the use of  a lbuminin the treatment of severe traumaticbrain injury.   Acta   Anaesthesiol Scand 2009;53(1):18-25.

    78. Geeraedts LM Jr, Kaasjager HA, vanVugt AB, Frölke JP. Exsanguinationin trauma: A review of diagnosticsand treatment options.   Injury2009;40(1):11-20.

    79. Bauer M, Kortgen A, Hartog C,Riedemann N, Reinhart K. Isotonicand hypertonic crystalloid   solutionsin the critically ill. Best Pract Res Clin Anae sth es iol  2009;23(2):173-81.

    80. Hariri RJ, Firlick AD, Shepard SR,Cohen  DS,  Barie PS,  Emery JM 3rd, etal. Traumatic brain injury, hemorrhag icshock, and fluid resuscitation:effects on intracranial   pressureand brain compliance.   J    N eur os ur g

    1993;79(3):421-7.81. Modig J. Advantages of dextran 70

    over Ringer acetate solution in shocktreatment and in prevention of adult respiratory distress syndrome.A randomized study in man aftertraumatic-haemorrhagic shock. Res us ci tat ion  1983;10(4):219-26.

    82. Feinstein AJ, Patel MB, Sanui M,Cohn SM, Majetschak M, ProctorKG. Resuscitation with pressors aftertraumatic brain injury.  J  Am Coll S ur g2005;201(4):536-45.

    83. National Heart, Lung, and BloodInstitute Acute Respiratory DistressSyndrome (ARDS) Clinical TrialsNetwork, Wiedemann HP, Wheeler AP,Bernard GR, Thompson BT, HaydenD, deBoisblanc B, et al.   Comparisonof two fluid-management strategiesin acute lung injury.  N Engl   J   Med 2006;354(24):2564-75.

    84. Cotton BA, Guy JS, Morris JA Jr,Abumrad NN. The cellular, metabolic,and systemic consequences of aggressive fluid resuscitation strategies.Shock  2006;26(2):115-21.

    85. Contant CF, Valadka AB,  GopinathSP, Hannay HJ, Robertson CS. Adultrespiratory distress syndrome: acomplication of induced  hypertensionafter severe head injury.   J   N eur os ur g2001;95(4):560-8.

    86. Bratton  S L,  Davis RL . Acute lung injuryin isolated traumatic brain injury. Neu rosu rg er y   1997;40(4):707-12;discussion 712.

    87. Holland MC, Mackersie RC, MorabitoD, Campbell AR, Kivett VA, PatelR, et al. The development of   acutelung injury is associated with worseneurologic outcome in patients   withsevere traumatic brain injury.  J  T r auma2003;55(1):106-11.

    http://www.sid.ir/http://www.sid.ir/

  • 8/16/2019 Intravenous Fluid Therapy in Traumatic Brain Injury And

    12/12

    14   Bull Emerg Tr auma 2014;2(1)

     Alv is- Mir and a HR et al

    88. Lee K, Rincon F. Pulmonarycomplications in patients with severebrain injury.   Crit Care Res Pract 2012;2012:207247.

    89. Finfer S, Bellomo R, Boyce N,  FrenchJ, Myburgh J, Norton R; SAFE StudyInvest igators. A comparison of  albuminand saline for fluid resuscitation   inthe intensive care unit.  N Engl  J  Med 2004;350(22):2247-56.

    90. SAFE Study Investigators; Australianand New ZealandIntensive Care SocietyClinical Trials Group; Australian RedCross Blood  Service;  George Institutefor International Health, Myburgh J,Cooper DJ, Finfer S , Bellomo R , NortonR, Bishop N, et al. Saline or   albumin

    for fluid resuscitation in patients  w ithtraumatic brain injury. N Engl  J  Med 2007;357(9):874-84.

    91. Sekhon MS, Dhingra VK, Sekhon IS,Henderson WR, McLean N, GriesdaleDE. The safety of synthetic colloidin critically ill patients with severetraumatic brain injuries.   J  Crit Care2011;26(4):357-62.

    92. Bentsen G, Breivik H, Lundar T,Stubhaug A. Predictable   reductionof intracranial hypertension   withhypertonic saline hydroxyethylstarch: a prospective clinical trial   incritically ill patients with subarachnoidhaemorrhage.   Acta Anaesthesiol  Scand 2004;48(9):1089-95.

    93. Schwarz S, Schwab S, Bertram M,Aschoff A, Hacke W. Effects of hypertonic saline hydroxyethyl starchsolution and mannitol in patients  w ithincreased intracranial pressure afterstroke. Stroke 1998;29(8):1550-5.

    94. Mythen MG, Swart M, Acheson N,Crawford R, Jones K, Kuper M,   etal. Perioperative fluid management:Consensus statement from theenhanced recovery   partnership.Perioperative Medicine 2012;1(1):1-4.

    95. Shoemaker WC, Appel PL, Kram HB.Role of  oxygen debt in the developmentof organ failure sepsis, and   deathin high-risk surgical patients.   Chest 1992;102 (1):208-15.

    http://www.sid.ir/http://www.sid.ir/http://www.sid.ir/