Interferencias WiFi y No-WiFi

22
MARAVENTO STUDIO | TECNOLOGY AND SECURITY OPEN SOURCE MARAVENTO STUDIO INTERFERENCIAS WIFI Y NO-WIFI

description

Descripción de los tipos de interferencias Wifi y No-Wifi, así como de configuraciones de redes Wifi, medidas para mejorar las conexiones, mejoras, entre otros parámetros

Transcript of Interferencias WiFi y No-WiFi

Page 1: Interferencias WiFi y No-WiFi

MARAVENTO STUDIO | TECNOLOGY AND SECURITY OPEN SOURCE

MARAVENTO STUDIO INTERFERENCIAS WIFI Y NO-WIFI

Page 2: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

1

Interferencias Wifi y No-Wifi

Update: Sep 26/2014 Muchos creen que para montar una red Wifi, basta con comprar un router wifi (al

cual se le conecta el internet) y para administrar la red le colocamos el SSID, (ojo

no confundir SSID con BSSID) un cifrado WPA o superior, le activamos

el DHCP (para la asignación de IPs de la LAN) y finalmente una clave de

administración al router lo suficientemente robusta (y nunca cambian el usuario,

que por lo general siempre es admin)... Y listo... Espere un momento. ¿No falta

algo?... Déjelo así, que ya funciona de maravilla. Todos conectados y felices...

De la vida real… Y a los pocos días... Grave la situación -dice el "admin"- Muy lenta la red, la

gente se desconecta. Llamemos a “Fulano”, que es el duro en eso.

Una hora después…

- Tenías a mucha gente de afuera conectada ilegalmente a tu WiFi –dijo Fulano-

Le metí todas las direcciones MAC de tu LAN en el router y quedó vacano... son

100 palos"

Y al día siguiente...

- Hijuep@&%#... Fulano me robó -dice el admin- La red sigue lenta. Llamemos

a Mengano...

Llega Mengano y luego de una revisión "exhaustiva", dijo:

- Patrón; la solución es comprar un router de más calidad. Ese Cisco que tienes es

a 54 y solo es compatible con B y G; necesitas uno a 300 y que maneje B/G/N…

Tócalo para que veas... Si ves lo caliente que se pone… Eso es porque no soporta

todo ese tráfico… Yo lo soluciono. Con “250 palos” verás cómo esa red vuela.

Porque el ancho de banda de internet está bien. 10 megas para 50 equipos, esta

bien.-

Y al día siguientes (y la cuenta ir por 350 dólares)...

Page 3: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

2

- Malparid@&%#... -dice el admin- Sigue igual... Llamemos a "Zutano". Ese sí

soluciona el asunto

Y al llegar "Zutano", revisó los equipos y como un disco rayado (ya que casi

todos los técnicos en mantenimiento de PC dicen lo mismo), explicó:

- Virus... por toneladas. Tienes un zoológico en tu red local... Tienes dos

opciones. Le metemos un antivirus a cada equipo, lo cual no es una garantía, o

formateamos todos los equipos y los congelamos (freezer) para evitar que se

metan más virus. Y tus usuarios que guarden los archivos en una usb o en una

carpeta compartida...

- Mmm... Formatearlos y meterles un freezer me parece más razonable

Al final del día...

- Ya está listo... 400 dolores

24 horas después....

- Puta@&%#... Me engañaron de nuevo. Esa mier%$& de red se puso peor...

¿Qué hago? – le preguntó a su asistente, que encogía los hombros al no la

respuesta.

Y pasaron varios días de consultas en infinidades de foros en internet y preguntas

a más "expertos", hasta que un joven, de apenas 13 años, que paseaba por esos

lados, con sus enormes audífonos, se detuvo en un expendio de bebidas gaseosas,

al lado del cibercafé, se quitó sus “orejas” y escuchó las quejas del admin sobre

el caos en su red, que afuera del local, fumaba un cigarrillo tras otro mientras

hablaba por teléfono.

Como por instinto, prendió su tablet y corrió WiFi Analyzer de Farproc y

luego InSSider de Metageek, a los pocos minutos…

- ¡¡Cabeza de huevo!! – le gritó el joven- No ves que tienes 10 overlapping, 3 co-

channel y solo Dios sabe cuántos cuellos de botella... –y dio la espalda y se

marchó, mientras seguía hablando consigo mismo, en un lenguaje lleno de

tecnicismos incomprensibles. Solo la frase “Stupid Animal” se alcanzaba a oír,

entre jerga y más jerga informática, la cual se desvaneció junto con la música que

volvía a resonar en sus audífonos.

El Problema A medida que se fabrican más dispositivos con capacidad de transmisión RF,

más aumentan las interferencias WiFi y No-Wifi, que son tantas que describir

cada una sería imposible.

Es por esta razón que hemos diseñado una especie de FAQ, el cual representa la

opinión de muchos especialistas en el ramo, foristas y muchas otras fuentes

(referenciadas en lo posible mediante enlaces), representadas por el “Doctor X”,

a modo de “entrevista”, la cual esperamos satisfaga muchas de las interrogantes

actuales.

Nota importante: En ocasiones usaremos el término AP, no solo para referirnos a

un Access Point sino también para describir cualquier dispositivo con capacidad

Page 4: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

3

de transmitir señal RF (WiFi) y que puedan gestionar clientes conectados, con

posibilidad o no de administrar una red.

La "Entrevista"

Hay muchos que aún no saben cómo montar una red Wifi. ¿Existe algún

manual que en pocas palabras pueda aclararnos las dudas? Recomendaríamos el post Seguridad en Redes Wireless. Creo que ahí están

resumidos los aspectos más básicos de una red local WiFi, pero si quieres algo

más completo y detallado, lo encontrarás en el libro Redes Wireless de la

editorial RedUsers... En fin en San Google hay mucha tela por donde cortar.

Logré armar mi red local con un AP, sin embargo estos documentos solo

explican cómo hacerlo con un solo dispositivo para todos mis clientes.

¿Aplica igual si necesito varios APs? ¿Cómo debo configurarlos? ¿Deben

tener el mismo SSID, canal, clave y sistema de autenticación, mismo modelo

de AP, o se puede ser hacer una red híbrida con varios modelos de AP de

diferentes marcas y ponerle configuraciones diferentes a los APs?. Como dicen los colombianos: "Depende". Todo radica en la arquitectura que

uses. Por ejemplo; si tus APs se encuentran en modo "Bridge" (Puente),

conectados todos mediante un cable ethernet (con POE o alimentación directa de

corriente), cada uno conectado a un switch y tu red LAN administrada por un

Hotspot, router o un servidor, no recomiendo que todos tengan el mismo SSID,

ya que los APs solo se diferencian por la MAC de cada uno, y los clientes

comenzarán a hacer roaming (capacidad de moverse en una zona de cobertura)

todo el tiempo, entre los puntos, y eventualmente puede generar una sobrecarga

al AP. Esto no afecta a la seguridad (clave SSID y clave de administración).

Ese tipo de configuración (donde todo es igual), da mejores resultados cuando

usas otros modos diferentes a Bridge. Más bien una red de puntos AP (también

llamados "celdas"), con un grado determinado de solapamiento entre ellas, que

permiten hacer el roaming y unir redes wifi con físicas.

Una ilustración gráfica del funcionamiento de los diferentes modos de los

AP puedes verla en zero13wireless.net .

Básicamente los modos más comunes son:

Acces Point - (Punto de Acceso, AP) Recibe la señal por cable de red (RJ45) y la

distribuye en forma inalámbrica. Ej. convertir tu Internet alámbrico a

inalámbrico.

AP Client - (Cliente de AP) Recibe una señal inalámbrica y lo pasa a cable de red

(RJ45). Ej. Conectar a la red WiFi, alguna PC, Teléfono IP, Impresora, etc. que

requieran forzosamente cable de red.

Client Bridge - (Cliente de la Unión) Recibe la señal inalámbrica de otro AP y la

distribuye por cable, no permite conexión inalámbrica. Ej. Establecer una sola

red entre dos edificios.

Page 5: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

4

WDS Bridge - (Unión Inalámbrica) Recibe la señal inalámbrica de otro AP y la

distribuye por cable o de forma inalámbrica. Ej. Establecer una sola red entre dos

edificios.

Client Router - (Ruteador Cliente) Recibe la señal inalámbrica y la distribuye

asignándole IP's a los clientes. Ej. Compartir Internet con otros equipos

cableados.

Repeater - (Repetidor) Recibe una señal inalámbrica, la mejora y la repite. Ej.

aumentar la señal inalámbrica.

WDS AP - (Wireless Distribution System AP) Igual que Acces Point.

WDS Router - (Wireless Distribution System Router) Igual que Client Router.

Hay que aclarar que el modo roaming también depende de que la tarjeta WiFi del

cliente lo soporte, lo cual es más complicado, ya que si tienen una red abierta o

hotspot para vender internet WiFi, con mucha gente diferente conectada, es

virtualmente imposible saberlo y pueden presentarse problemas de conectividad

al "saltar" de un AP a otro con el mismo SSID. También influye el canal de

trasmisión, la velocidad, el cifrado y el estándar (IEEE 802.11 b, g, n, etc), si

usan SSID virtuales (que puede generar más problemas que beneficios), entre

muchos otros factores.

¿Y qué sucede si les pongo diferentes parámetros de configuración a cada

AP? Es más engorroso para el cliente, ya que debe conectarse a cada punto

individualmente, pero mejor para la red, ya que este esquema tiene menos carga

y provoca menos saturación de tráfico de los APs y en el servidor o router que

administre la LAN y por consecuencia menos fallas. Claro está, siempre y

cuando los APs sean de buena calidad, tengan la misma tecnología, soporten

todos los clientes conectados, y viceversa (estos a su vez soporten los APs) y

tener en cuenta la diferencia entre validación SSID, BSSID y ESSID. Todo

depende de las necesidades específicas del administrador.

Analicemos 3 casos:

1. Cuando los clientes, al hacer login en cada uno de los APs, memorizan el

trinomio Clave WPA/BSSID/ESSID la primera vez y hacen roaming, pero

no seamless (hay pérdida de datos en el salto).

2. Si establecemos el mismo ESSID, seguridad y también BSSID en todos los

APs, el cliente recibe tráfico duplicado de los dos APs y sólo necesita memorizar

una vez el trinomio Clave WPA/BSSID/ESSID (ya que hay un "único BSSID"),

pero el handover tampoco es seamless, ya que al cambiar de canal Wi-Fi la

interfaz del cliente se cae por unos instantes y pierde datos de forma

irrecuperable, por los protocolos como el TCP.

En palabras de Seguridad Wireless: “si establecemos el mismo ESSID y

seguridad en todos los APs, los clientes se dan cuenta de que no es el mismo AP

(ya que ven dos MACs distintas con el mismo nombre). Algunos clientes (en

Page 6: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

5

dependencia de su sistema operativo y versión) muestran una o varias redes con

el mismo nombre, pero no hacen roaming transparente".

3. Si establecemos el mismo ESSID, seguridad, BSSID, canal, administración,

etc; o sea todos los APs parametrizados iguales, como si fuesen clonados, es el

peor de los escenarios; la suma de todos los miedos; Satanás haciendo de las

suyas; ya que la red se vuelve loca y todo es un caos... Y mayor es el caos si

están cerca uno de otro.

Conclusión: Hay que añadir un administrador de red "inteligente" (centralizado o

distribuido) que filtre a nivel MAC las tramas de cada AP, para que sólo uno de

ellos responda a cada cliente (el que tenga mejor RSSI), sin embargo esto no

aplica para redes públicas donde no hay filtrado MAC.... O sea; no hay solución

por el momento para el problema del roaming transparente.

¿Y si activo el modo WDS? Wireless Distribution System (WDS), dicho en palabras cristianas, sirve para unir

de forma inalámbrica (como si fuera un cable Ethernet o tener conectados dos

switch) dos ubicaciones diferentes en el mismo nivel (nivel 2 - bridging).

Su ventaja principal es que todas las subredes podrán comunicarse fácilmente; o

sea, desde un enlace punto a punto puedo crear otro enlace similar hacia otra red

y así sucesivamente. O sea; en las redes interconectadas las estaciones registradas

pueden verse entre sí de forma transparente, mediante bridging. Por eso se

recomienda activarla si está disponible en el AP, siempre y cuando vayas a tener

más de un dispositivo tras ese enlace.

WDS se usa mucho en entornos de aplicaciones "punto-multipunto", o para

repetir la señal, ya sea por baja cobertura o por obstáculos.

Tiene dos modos: Cliente WDS (que no tiene la propiedad de emisor cuando

realiza un enlace y se conoce como AP Inverso; o sea recoge la señal WiFi y la

envía por un cable ethernet a la red local) y AP WDS (que puede establecer

varios enlaces punto a punto. Si tienes varios AP que soporten WDS, uno hace de

AP WDS y el resto de Station WDS.

Entonces, la solución es comprar APs que soporten la tecnología WDS No tan rápido. Esta tecnología tiene sus limitaciones. Si vas a usar "punto a

punto" no se recomienda el uso de WDS, ya que disminuye el troughput en un

50%. En "punto a punto" es más recomendable el modo AP en el punto A y

modo Cliente en el punto B.

Otra de sus limitaciones es que en algunos fabricantes (como Ubiquiti en algunos

modelos) solo admite hasta 6 dispositivos interconectados. Algo similar le sucede

a la tecnología UniFi de este fabricante; es excelente, ya que tiene hotspot nativo

y mucha seguridad, pero solo permite enlazar hasta 2 dispositivos a la vez, como

repetidores.

Decídete. ¿Es buena o es mala la tecnología WDS?

Page 7: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

6

El mundo WiFi no es negro ni blanco, sino gris. Si tus APs están unidos por

cable a un swich, no es necesario que también los unas por WDS. Esta tecnología

está diseñada principalmente para crear un sistema wireless distribuido. La

direcciones ips de los clientes las obtienen del AP principal, Router, Hotspot o

servidor, que tenga el DHCP, o se asignan manualmente, y se deben elegir muy

bien los canales donde van a trabajar y hacer el estudio de frecuencia. Ten

presente también que el trougtput se va dividiendo a medida que se agreguen más

repetidores.

Pero tus afirmaciones contradicen algo que leí en un foro especializado, y

explicaban que WDS era la mejor solución al ya “espinoso asunto” de la

desconexión momentánea al hacer roaming transparente entre APs Mitiga bastante el problema, pero no garantiza un 100% de transparencia. De

hecho ninguna de las tecnologías actuales garantiza esto, ya que al hacer roaming

se pierde la mitad del ancho de banda.

Supongo que cuando se masifiquen los nuevos estándares IEEE 802.11r y ac, y

comience a usarse la banda de los 5 Ghz, tal vez se podrá erradicar este problema

de raíz y de paso el de las interferencias; no lo sabemos con certeza, porque

podemos trasladar el problema a otra banda; sin embargo, sea cual sea el futuro,

estas nuevas tecnologías debe ser implementadas en los dos extremos de la

conexión; o sea, tanto en los APs como en los clientes… y los fabricantes se

olvidaron de ellos, al incorporar dispositivos WiFi de mala calidad en laptops,

tablets y smarthphones, solo aptos para 2.4 Ghz.

WDS, WPS; a veces me confundo con tantos términos... Pues no te confundas. WPS (Wi-Fi Protected Setup) es otra tecnología

incorporada a los APs WiFi y no recomendamos su uso, ya que es susceptible a

ataques informáticos, con Reaver-WPS, Bully y otras técnicas. El ataque consiste

en obtener el PIN secreto de la Red y reventar la llave de encriptación WEP o

WPA, atacando la funcionalidad WPS. En site40 puedes encontrar una base de

datos de pines WPS. Una descripción de este ataque está en Villacorp. Una vez

dentro el atacante puede hacerse con las MACs de la red e identificarlas según su

fabricante, para determinar sus parámetros y el resto es historia.

¿Los puntos de acceso WiFi pueden ser atacados? Por supuesto. Los más comunes son los ataques de denegación de

servicios DDoS, DNS Spoofing (con WiFi Pineapple), por inundación DHCP

(DHCP Sarvation), con herramientas como Gobbler, Yersinia, Metasploit,

DHCPig, AirRaid, etc y los autoataques por AP-reset (autoreset), entre muchos

otros. Un procedimiento para atacar un nodo Wifi mediante un script se describe

en el post Ataque DoS y en el portal Blackpoit.

Android tiene muchas herramientas para estos menesteres, como WiFi Kill, entre

otras.

Page 8: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

7

Otra modalidad es montar puntos de acceso "Fake" (como Karmetasploit, Fake

AP, Gerix, FuzzAP, AirRaid, etc), con configuraciones similares al original, pero

con un MITM para capturar los datos de los AP reales o simplemente para

ofuscar redes.

También está el asunto del wardriving y la emisión constante de beacon

frames que tanto perjudican nuestra privacidad y los ataques Rogue AP, que en el

mundo empresarial desencadenan un APT.

Los hotspot tampoco se salvan de una escalada, ya que no tienen una seguridad

muy estricta, ni tampoco el nuevo y flamante estándar Miracast.

Podemos usar un cifrado WPA2 AES (que es el más "seguro" y consume menos

memoria), sin embargo a la hora de un ataque dirigido contra un celda, estas

claves no son ninguna garantía; y como el cifrado WEP y WPA (TKIP) han sido

comprometidos, ahora la pregunta que todo el mundo se hace es: ¿cuánto tardará

en caer WPA2 AES?... Es solo cuestión de tiempo; y algunos afirman que ese día

ya llegó.

Y es precisamente por eso que la seguridad WiFi no puede radicar

exclusivamente en los APs. Debe existir al menos un Escudo de Red que proteja

el perímetro de la LAN y un segundo "muro de contención" por si es burlada; y

lo mejor es, como mencioné anteriormente, "administración inteligente", que

puede ser un proxy basado en GNU/linux, hotspot, o cualquier otra solución

administrable.

También podemos usar un antiespía para evitar el monitoreo con Pry-Fi o

cualquier otra herramienta, en dependencia de la plataforma que estemos usando

(Android, Linux, Windows, Mac, etc.), optimizar la zona de cobertura de

nuestros AP y utilizar una red de Honeypot virtuales (como Honeynet) para

reunir datos de los atacantes y usar sus mismas técnicas; en fin...

¿Autoataques por AP-reset? ¿Qué es eso? Supongamos que tienes un nodo inteligente que administra tu red local (servidor

proxy, router o hotspot) y que vas a usar IPs clase C en la diagramación de la

LAN. ¿Cuál sería la ip que le pondrías?...

Supongo que la 192.168.1.1 o la 0.1 Como la mayoría. Y sabes cuál es la IP que trae por defecto la mayoría de APs?

(routers, Access Points y demás dispositivos WiFi)… Salvo algunas excepciones,

como los APs de Ubiquiti que usan la .20, la mayoría de los equipos WiFi

utilizan la misma IP que acabas de mencionar; 192.168.0.1 o 1.1.

Lo anterior nos lleva inevitablemente a la siguiente pregunta: ¿Qué sucedería si

hay un cambio de voltaje o cualquier otro evento (natural o provocado), que

obligue al AP a auto-resetearse (algo que ocurre frecuentemente)

Se pierde la parametrización personalizada y todo queda "de fábrica" Y esto provoca una colisión con nuestro servidor o nodo principal, que tiene la

misma IP del punto WiFi con los valores "de fábrica", y ya puedes imaginar lo

Page 9: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

8

que sucede. Es por eso que la dirección IP de nuestro administrador de red, jamás

puede ser la misma que las que traen por defecto los APs. Es más; se recomienda

dejar estas "IPs default" sin uso, para en el caso que ocurra este tipo de eventos y

los APs hagan "reset" por sí mismos, no se presenten colisiones en la red local.

¿Durante la entrevista he escuchado mencionar 'estudio de frecuencias’? Antes de montar una red WiFi, lo primero (insisto; lo primero) que hay que

hacer es un análisis de la banda con la que se va a trabajar y de los canales

disponibles, de acuerdo a la región donde nos encontremos. Es lo que se conoce

como ‘estudio de frecuencias’. O sea, analizar, con alguna herramienta

disponible, el espectro y ver los canales de transmisión de los diferentes nodos

usados e ir ajustando los nuestros para que no haya solapamiento y otros tipos de

interferencias.

Los artículos recomendados al principio son el punto de partida para construir

una red WiFi. Ahora viene el principal y más grande problema que aqueja a las

redes WiFi: La interferencia.

Las interferencias (RF) son las causantes del mal desempeño de las redes WiFi,

la cobertura irregular y las caídas de las conexiones. La interferencia, que se

produce durante la transmisión, también causa pérdida de paquetes, lo que obliga

a las retransmisiones WiFi. Estas retransmisiones ralentizan el tráfico y

ocasionan un rendimiento extremadamente fluctuante para todos los usuarios que

comparten un determinado al AP.

Las herramientas de análisis de espectro, que se integran actualmente en los AP

para ayudar al administrador TI a visualizar e identificar las interferencias,

muchas veces son inútiles, pero a pesar de esto son imprescindibles.

La interferencia RF se acentúa con el estándar 802.11n, ya que utiliza múltiples

ondas de radio dentro de un AP para transmitir simultáneamente varios flujos de

Wi-Fi en diferentes direcciones y lograr así una conectividad más rápida, lo cual

no siempre sucede.

Existen muchos tipos de interferencia, como la co-canal (co-

channel), overlapping (solapamiento), crosschannel, Wifi Inverted, Invalid

Channel y Non Standard, esta última también llamada No-Wifi; en fin, hay un

centenar y todas generan pérdidas de datos y mal funcionamiento de nuestra red.

Qué es eso de "interferencias No-Wifi"? Son aquellas que no se usan normalmente en redes WiFi, pero que transmiten en

frecuencias de radio similares a WiFi, como por ejemplo Bluetooth, infrarrojo,

entre otras.

¿Cómo puedo evitarlas? Son más difíciles de detectar y evitar. Hay que saber qué tipo de dispositivos

electrónicos interfieren con nuestro AP. Los más comunes son, hornos

microondas, teléfonos inalámbricos, marcapasos, consola Wii, equipos de ayuda

para la audición, altavoces, monitores para bebés, bluetooth, cámaras ip, etc.

Page 10: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

9

Adicionalmente, también pueden causar interferencias las líneas y estaciones de

energía, antenas, barreras físicas, como paredes y pisos, que bloquean el paso de

una señal, los aires acondicionados, neveras, y un excesivo y largo etc.

Existen app, como WiSense y Airshark, que supuestamente pueden detectar estas

interferencias no-WiFi, sin embargo son versiones en desarrollo, por tanto se

desconoce su efectividad. También hay dispositivos de hardware que hacen este

trabajo, pero son escasos y muy costosos.

Veo que es un problema grande el que enfrenta esta tecnología. ¿Qué han

hecho los gobiernos? Las bandas WiFi (Lea ISM/UNII) usan una parte del espectro que no requiere de

licencia en casi todos los países, sin embargo algunos gobiernos, después de

enormes presiones, ya han comenzado a tomar medidas para evitar esta

problemática, poniendo topes a la potencia de transmisión de los equipos

comerciales y multas a aquellos que violen la regulación.

Normalmente el límite legal de energía irradiada (EiRP) para WLAN es

generalmente puesto a 100mW (= +20dBm) pero depende de las regulaciones del

país. Por ejemplo, la FCC (EEUU) el límite de potencia máximo es de 1 vatio (30

dBm); en Europa, es de 250 mW (24 dBm); en Colombia de 100mW (potencias

superiores deben tener un permiso del Ministerio de las TIC y de la Aeronáutica,

si lo van a instalar cerca de un aeropuerto; y deben pagar impuestos).

Pero no podemos sentarnos a esperar que los gobiernos solucionen el problema.

Hay que tomar iniciativas.

¿Qué clase de iniciativas? Con un buen ajuste de los parámetros de nuestra red WiFi. Por ejemplo,

supongamos que tenemos 4 APs distribuidos por varias zonas de nuestra

empresa, edificio o escuela. Para el caso del IEEE 802.11b o 802.11g, que

trabajan a 2.4GHz, y que es la banda más usada y por ende, la más saturada

(salvo 802.11n que hace uso simultáneo de 2,4 Ghz y 5 Ghz), los canales se

separan por 5.

Page 11: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

10

Si le asignas al AP1 el canal 1, el AP2 (que es el más cercano al AP1) le

asignamos el canal 6. El AP3, (que está cerca del AP2, pero lejos del AP1) le

asignamos el canal 1 y al AP4 (que está cerca del AP1 y AP2) le asignamos el

canal 11. Con esto evitarás solapamiento de señal.

También se hace no solo con los canales 1/6/11, sino también con los 2/7/12 y

3/8/13. A esto se le conoce como ‘tripletes’.

La explicación de este comportamiento la proporciona Blog.Gnutic: ‘Esta

frecuencia (2.4) se subdivide en canales separados por 5 MHz. que van desde el 1

hasta el 14; en Europa solo se usa el rango del 1 al 13. El problema es que cada

canal necesita 22MHz como mínimo de ancho de banda y provoca solapamiento

con los canales adyacentes. Si dividimos 22/5 nos da como resultado 4’4 canales

de ancho; esto significa que cada canal necesita 2’2 canales por cada lado de su

frecuencia origen para emitir. Así pues, para evitar las interferencias al 100%

deberemos tener una separación entre un canal empleado y otro de al menos 5

unidades, aunque lo cierto es que una separación entre 3 y 4 canales será

suficiente y tendremos pocas interferencias’.

Lo anterior sin importar que los AP tengan o no el mismo SSID, parámetros de

red, sean o no de la misma marca y modelo, etc, y asumiendo que haya pocas

redes a tu alrededor. Caso contrario escoge el canal libre menos usado y asígnalo

a los AP.

Entonces, es fácil. Elijo un triplete de canales que esté libre y ya tengo a

punto mi red WiFi No cantes victoria. Hay que tener en cuenta la cercanía de otras redes para

asignar los canales; y en una ciudad o edificio con cientos de APs, la cosa se

complica, ya que se produce lo que se conoce como interferencia co-channel o

co-canal (reutilización de frecuencias); un fenómeno que se ve mucho en

el Handover

Además, también influye el tipo de AP a usar, su velocidad teórica y práctica, su

alcance y el de los clientes; incluso afecta hasta el nombre que le pongas al SSID

(si son comas, puntos, etc), su autenticación (WPA2-PSK AES u otra); hay

muchos factores en juego.

Mmmm... No me quedó muy claro. Tranquilo; existen herramientas que hacen el trabajo sucio por nosotros; desde

las gratuitas hasta las más costosas.

Gratis está Netstumbler, Vistumble, TekWifi, Kismet, LinSSID, WiFi Auditor, y

la megabatería de apps para Android, tales como, WiFi Analyzer, Who Is On My

Wifi, RF Signal Tracker, Bugtroid Pentesting, Wi-Fi Analytics Tool, Dsploit, y

un largo etc. También existen distros de Linux especializadas en auditoría

wireless, como Kali, WifiSlax, Backtrack, Arudius, entre otras; todas de

excelente manufactura, las cuales pueden revisar los canales de tu red y de las

más cercanas y realizar una buena auditoría.

Page 12: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

11

Pagos tenemos a Wi-spy de metageek (Chanalyzer, Inssider), Airview de

Ubiquiti (solo se puede usar con dispositivos Ubiquiti de la serie MIMO y

algunos ya lo traen incorporados) o con adaptadores usb airView2, airView2-

EXT, airView9, airView9-EXT); Cisco CleanAir (incorporada a sus

AP aironet); Chanalyzer con CleanAir, Cisco Spectrum Expert, entre otras; pero

si tienes mucho $$$$$$, puedes comprar la super suite AirMagnet WLAN

Design & Analysis Suite de Fluke, que con su AirMagnet WiFi Analyzer PRO,

AirMagnet Spectrum XT y el tester Air Tester podrás hacer un excelente trabajo

de diagnóstico. También están los handheld, como Fluke Aircheck, Spectrum

Analyzer Bundles, Wilango, Artisan, etc. Nosotros recomendamos las mismas

herramientas que uso el joven al principio de este post.

Consideramos importante resaltar que la función de las herramientas descritas es

ayudar en la toma de decisiones del administrador IT, respecto a la arquitectura

de la red local y demás parámetros relacionados con la red WiFi, y también

proporcionar información sobre las redes WiFi adyacentes, pero estas

herramientas no hacen milagros.

En un entorno sobresaturado de APs, sin canales libres, es necesario compartir

canales con otras redes y hay una gran diferencia en hacerlo con una red

adyacente de poco tráfico a compartirlo con una que tenga mucha demanda, ya

que tendríamos problemas a la hora de emitir nuestra señal RF. Algunas de estas

herramientas tienen la capacidad de analizar tráfico de redes adyacentes, pero

consideramos mejor utilizar un programa sniffer (Wireshark, Acrylic WiFi,

dsniff, Capsa, tcpdump, etc) para capturar paquetes de las redes adyacentes y así

medir su tráfico real.

Ya tengo algunas herramientas mencionadas (las gratis, porque no tengo

$$$$), pero no se elegir el canal adecuado para mi red WiFi. Estas app me

ofrecen demasiada información que no comprendo. Hay algunos principios básicos que debes saber antes de usarlas:

1. A mayor cantidad de APs, que operen en un mismo canal, más interferencia

causan entre ellos; y si operan en canales diferentes, pueden causar interferencias

con otras redes.

2. La velocidad de acceso de los clientes dependerá de su cercanía al AP

3. Cada AP debe tener su propia área de cobertura.

4. Hay que tener en cuenta la zona Fresnel, que no es más que el área (de forma

elíptica) que sirve de propagación a una señal RF. Para que sea de utilidad debe

de mantenerse alrededor del 60% libre de obstáculos

5. Es muy importante calcular las pérdidas generadas por cable coaxial, por el

espacio libre de la banda, la sensibilidad del receptor, la proporción señal ruido,

etc. Para mayor información sobre este punto puedes visitar GuateWireless

6. Las bandas autorizadas para los equipos WiFi son 2.4 y 5 Ghz. La de 5 es la

mejor, pero casi no se usa y son escasos los fabricantes que incluyen en los

Page 13: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

12

laptops, tablets, PCs y smarthphones, tarjetas WiFi que soporten trabajar con la

banda 5GHz. Es por esta razón, que sin importar que tu AP trabaje en la banda de

5Ghz, es muy poco probable que puedas hacer uso de ella.

Sin embargo hay que aclarar que ambas bandas tienen sus pros y sus contras. De

acuerdo Tecnocompras, un portal especializado en hardware de red, los puntos

fuertes de la banda de 2.4 GHz son:

a. Configuración MIMO 3T3R (3 antenas de emisión, 3 antenas de recepción).

b. Compatibilidad con todos los dispositivos Wi-Fi que hay actualmente como

tablets, smartphones, consolas, portátiles etc, y asegura compatibilidad con

productos 802.11b/g/n.

Y los débiles (2.4 GHz) son:

a. Espectro muy saturado, interferencias con otras redes Wi-Fi y deficiente

rendimiento. Las interferencias también afectarán a la cobertura inalámbrica y la

estabilidad de la transmisión.

b. No podremos conseguir más velocidades más allá de los 450Mbps.

c. 12 canales teóricos para América Latina y otros dos más para algunos países.

Por su parte, los puntos fuertes de la banda de 5.0 GHz son:

a. Espectro prácticamente vacío, ya que muy pocos equipos que transmiten a esta

frecuencia.

b. Podremos conseguir más mayor velocidad (en tecnología 802.11 AC hasta

1300 kbps)

c. Mayor cobertura.

d. Alrededor de 42 canales de transmisión.

Pero también la banda 5.0 GHz tiene puntos débiles:

a. Equipos con precios más altos.

b. El equipo emisor de la señal wifi (router o AP), debe transmitir a 5 Ghz y el

receptor debe ser capaz de recibir a esta frecuencia.

Si tienes en cuenta estos principios, podemos pasar al siguiente nivel. Primero

que nada, hay que saber qué canales están disponibles en la banda 2.4 Ghz (que

es la que trataremos en este post). La cantidad de canales disponibles depende de

la región donde esté configurado el AP.

Canal 01: 2.412 Ghz

Canal 02: 2.417 Ghz.

Canal 03: 2.422 Ghz.

Canal 04: 2.427 Ghz.

Canal 05: 2.432 Ghz.

Canal 06: 2.437 Ghz.

Canal 07: 2.442 Ghz.

Canal 08: 2.447 Ghz.

Canal 09: 2.452 Ghz.

Canal 10: 2.457 Ghz.

Page 14: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

13

Canal 11: 2.462 Ghz.

Canal 12: 2.467 Ghz.

Canal 13: 2.472 Ghz.

Canal 14: 2.484 Ghz.

Nota: Te recuerdo que los puntos en inglés dentro de cifras numéricas

corresponden a la separación entre decimales y parte entera de la cifra. 2.4

Ghz=2400Mhz

Ojo: Los canales 12 al 14 no se usan en América. Así que de nada vale que los

elijas. Y así el AP permita ponérselos, los clientes nunca encontrarán una red

WiFi que trabaje en estos canales (salvo que fuercen el hardware, lo cual en

ningún caso es recomendable ni práctico).

Al grano. Cada canal necesita un ancho de banda de 22 Mhz para transmitir la

información, por lo que se produce un inevitable solapamiento de varios canales

contiguos. Para evitar interferencias en presencia de varios puntos de acceso

cercanos, estos deberían estar en canales no solapables (tripletes). O sea, si vas a

trabajar con 802.11b o 802.11g (2.4GHz) deberías utilizar canales que estén

separados 5 puestos (1/6/11, 2/7/12 y 3/8/13).

A la hora de escoger un canal se debe tener en cuenta el nivel de penetración de

la radiación electromagnética, el cual es inversamente proporcional a su

frecuencia (cuando la radiación electromagnética es de baja frecuencia, atraviesa

limpiamente las barreras a su paso). En teoría, cuando más alta es la frecuencia

hay más atenuación (pérdida de potencia).

También hay que tener en cuenta la antena y los cables que uses, la atenuación

isotópica, la recepción de la señal, el factor de ruido de fase, etc. Por ejemplo, la

antena tiene que estar compensada a punto, para que la onda pueda ser de mayor

potencia y así no emitir ondas resonantes que dañen o interfieran un canal

cercano (más conocido como ruido o interferencia). En este caso, lo mejor es

probar transmitiendo en un canal y captar esta señal lo más lejos posible, con

cualquiera de los programas citados arriba, sin embargo para un diagnóstico

preciso las conexiones, lo más recomendado es poner APs iguales y con las

mismas antenas. De esta manera se puede saber cuál es el mejor canal en que el

AP y el receptor están trabajando.

Cuando son equipos o antenas diferentes es una de las causas más frecuentes de

sobrecalentamiento en los APs (en unos más que otros), ya que, si la carga de la

antena no es la adecuada, la energía que no puede irradiar (ROE) es devuelta al

AP y se produce el sobrecalentamiento.

¿Y si aumentamos la potencia para evitar la atenuación y la interferencia? Este es el legado que ha dejado la publicidad barata de los vendedores

inescrupulosos, que engañan a los clientes diciéndoles que a mayor potencia se

evita la atenuación y las interferencias. Desafortunadamente muchos

administradores de red principiantes se dejan llevar por este ardid comercial y

Page 15: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

14

están creando el mayor caos en la historia, causando ‘interferencias deliberadas’

en la transmisión RF. Y lo peor de todo esto es que los organismos que deben

regular el espectro no hacen nada para evitarlo.

Ponerle más potencia a un AP no

necesariamente significa mejoras en la

transmisión RF de nuestro punto WiFi,

ya que puede aumentar la interferencia

al colisionar la señal con otras redes.

Supongamos que ponemos un AP en

nuestro hogar para enlazar el PC, la

tablet y una laptop. No tiene ningún

sentido que el AP tenga un alcance de

2 Kilómetros con una antena de 15 dbi; es como matar mosquitos con un fusil de

francotirador.

Aquí lo más recomendable es realizar un estudio de lo que se quiere, y colocar un

AP en dependencia del área de cobertura que se pretenda atender. Y si hay otros

APs transmitiendo que solapan nuestra señal y todos los canales están ocupados,

podemos hacer lo contrario; bajarle la potencia a nuestro AP, incluso por debajo

de los 20 Mhz; y si estas transmitiendo en 802.11n, puedes pasarte a G, ya que N

transmite los paquetes en varios canales, y si alguno está saturado puedes

comprometer el funcionamiento de tu equipo. Los vendedores nos engañan

diciéndonos que N es más rápido, bla, bla, bla y a veces ni siquiera tenemos el

ancho de banda suficiente para usar esta tecnología o el cliente que se va a

conectar no es compatible con N (la mayoría de los casos).

Por tanto, para que funcione la comunicación cliente-AP, el estándar inalámbrico

del adaptador WiFi del cliente debe ser igual o anterior al estándar del AP.

Por ejemplo, si el adaptador de red de tu PC usa 802.11n, pero tu AP usa

802.11g, no se podrá realizar una conexión, porque el estándar Wireless-G es de

una versión anterior y no reconoce Wireless-N. Sin embargo, si el AP usa

Wireless-N, pero el adaptador de tu PC usa Wireless-G, la conexión se podría

realizar si el AP está configurado en modo mixto, ya que Wireless-N funciona

con algunos de los estándares anteriores (802.11a, 802.11b y 802.11g) o con

todos ellos.

Otra cosa que nunca nos dicen estos vendedores inescrupulosos es que el WiFi es

un medio half-dúplex, por tanto su velocidad real es más o menos la mitad de la

teórica. En otras palabras, es la mitad de lo que dice en la caja del producto.

IEEE 802.11b: hasta 11Mbps teórico/6Mbps reales

IEEE 802.11g: hasta 54Mbps teórico/25Mbps reales

IEEE 802.11n: hasta 300Mbps teórico/150Mbps reales

En conclusión, lo mejor en este caso es tener APs que soporten todos los

estándares actuales, y que tengan la potencia balanceada (de acuerdo a las

Page 16: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

15

necesidades), para evitar perder visibilidad frente a otras redes (débiles o fuertes)

y así minimizar el riesgo de colisión por estación escondida.

¿Cómo podemos evitar estas ‘interferencias deliberadas’? Mejorando la calidad de la señal, en medio de esta selva WiFi de las grandes

urbes. Esta se mide como la cantidad de pérdida respecto a la fuente original

(AP). Por ejemplo, si el cliente está ubicado a pocos metros del AP WiFi, la

calidad de la señal recibida posiblemente sea -25dBm, lo cual significa una

pérdida muy pequeña, en cambio si está por encima de los 90 metros, muy

probablemente la calidad obtenida sea de -80dBm. Un valor óptimo sería entre -

75 dBm y 0 dBm (entre más cercano a 0, mejor).

Para determinar la calidad de la señal

WiFi recomendamos Inssider o WiFi

Analyzer, disponibles para Windows

y Android. En el siguiente ejemplo

(imagen izquierda), vemos que la red

de mejor calidad de señal es

‘WR1043ND-OWrt’ (con -20dBs) y

la de peor calidad es ‘TRENDNET’

(con -83dBs)

Naturalmente, hay que tener en cuenta la ubicación de

referencia desde la cual se realiza la prueba. En este caso,

Inssider debe correr en la zona media de su red local, para

que proporcione datos fiables.

Wifi Analyzer también puede realizar esta labor con una muy

buena efectividad, desde una tableta o smarthphone con

Android. Sin embargo, sea cual sea la herramienta que use,

tenga presente que depende del cliente que la está ejecutando,

de su hardware y del adaptador de red. Es por eso que se

recomienda adquirir un adaptador de red de buena calidad, o

especializado para realizar estas pruebas.

Hace poco mencionaste el "ancho del canal". ¿Cómo funciona? El Channel Width (ancho del canal) es de 22 o 40 mhz (20Mhz, 10Mhz, 5Mhz y

40Mhz). A mayor ancho de canal, más velocidad teórica puedes llegar a obtener,

pero también más interferencias de los canales contiguos y en dependencia de

esto, es que se hace la selección de canales para operar. Las señales wifi se

emiten por defecto en canales de 20 Mhz (aunque algunos AP ya vienen

configurados para trabajar con 40 Mhz).

Los equipos Wifi N tienen doble antena y pueden emitir por una antena usando

un canal, dando como resultado un ancho de banda de 150 Mbps o por 2 antenas

usando un canal por cada una de ellas, dando como resultado un ancho de banda

de 300 Mbps. Es por eso que en algunos analizadores de banda, como Inssider,

Page 17: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

16

vemos una red N que marca, por ejemplo, algo como 13 + 9. Esto significa que

transmite en dos canales a la vez (doble ancho de canal). N trabaja con 40 Mhz

(se utilizan las 2 antenas) en cambio los inferiores trabajan con 20 Mhz (una

antena).

Usar doble de ancho de banda tiene el inconveniente es que la red será más

sensible a interferencias con otras redes cercanas. Un excelente documento

técnico que lo explica es el de connect802.com. Sin embargo los 40Mhz no son

recomendables en ningún caso, como bien lo explica redeszone, ya que pueden

generar mayor interferencia.

De acuerdo al foro.elhacker.net, bajándole a la potencia de transmisión al AP se

pueden realizar enlaces sin antena o con un cable, sobre todo si tu router está

cerca del ordenador. Si tu antena a una frecuencia determinada coincide con un

múltiplo impar de 1/4 de longitud de onda, entonces la antena estaría en

resonancia y trasmitiría bien.

Por ejemplo; cada canal está separado por 5Mhz para evitar que un AP que

transmita en el canal 5 no se solape en el canal 6, tu AP puede modificar la

frecuencia de separación entre estos canales. Si le pones a tu AP un channel

width de 40 Mhz estaría transmitiendo en 8 canales al mismo tiempo, siendo la

máxima potencia transmitida en el centro de la banda (en el canal que hayas

puesto el AP).

Todos los AP tienen su máxima potencia de transmisión en el canal 6, ya que es

el centro de banda de la señal wifi y las antenas son calculadas para esta

frecuencia. Lo malo de utilizar el canal 6 es que es muy usado y por lo tanto está

saturado de señales (co-channel)

Es por esto que lo primero que debemos hacer al adquirir un AP es estresarlo al

máximo para determinar si cumple o no con la transmisión y desempeño

deseado, así como evaluar la calidad del enlace Cliente-AP.

¿WiFi estresado? En el campo profesional, Wifi Stress o "estresar un punto WiFi" son una serie de

pruebas, realizadas por profesionales, a las cuales se somete un AP, para

determinar las cargas de trabajo, tráfico, conexiones y otras mediciones, que son

ejecutadas en tiempo real y medidas con un analizador de espectro, con el

objetivo de evaluar el rendimiento y otros parámetros del AP, para mejorar la

calidad de la conexión cliente-AP... Aunque a veces también se le llama "WiFi

estresado”, cuando se congestiona un nodo producto del tráfico en exceso o de

interferencias, causando mal funcionamiento.

Si quieres conocer los mitos y verdades sobre el WiFi Stress, recomendamos los

posts informationWeek y Stress Electromagnético... (O los mitos de las

interferencias WiFi, en general, según Cisco.)

¿Y cómo podemos evaluar esta "calidad del enlace cliente-AP", sin

hacer estas rigurosas pruebas?

Page 18: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

17

La manera sencilla es con tu mismo AP, siempre que disponga de CCQ.

¿CQQ? CQQ de transmisión (Transmit CCQ) es un índice de cómo se evalúa la calidad

de la conexión del cliente inalámbrico. Tiene en consideración el conteo de

errores de transmisión, latencia, y rendimiento, mientras evalúa la tasa de

paquetes correctamente transmitidos en relación con los que deben ser

retransmitidos, y también tiene en cuenta la actual tasa en relación con la mayor

tasa especificada. El nivel está basado en un porcentaje donde 100% corresponde

a un enlace perfecto.

Si hay deterioro en el enlace (CCQ bajos) se debe verificar la calidad de la

conexión, o sea, la latencia con relación a los usuarios conectados. Y a no ser que

todos los clientes usen el mismo sistema operativo, hardware y adaptador de red

(algo improbable), los parámetros a modificar cambiarán de acuerdo a cada

cliente en específico. Por ejemplo: Cuando los CCQ están bajos es porque la

latencia es alta, así como las caídas de comunicación.

Hay que tener en cuenta a la hora de la parametrización los factores que

intervienen en el proceso de enlace, tales como la distancia AP-Cliente, y las

variables naturales del entorno las cuales inciden directamente en la estabilidad y

calidad del enlace.

Otro aspecto es lo que se conoce como Noise Floor y Transmit CCQ. Mientras

más estrecho sea el canal más sensible será. Por ejemplo, a 1mbps se maneja una

sensibilidad de -97dbm y en 54mbps se maneja -74dbm. Si se encuentra cercano

a -100 es mejor.

Otros parámetros a considerar son: Pausa ACK (ACK Timeout); Concatenado de

Tx/Rx(TX/RX Chains); Tasa de Tx y Rx (TX Rate and RX Rate), que muestra la

tasa actual de transmisión 802.11 mientras opera en modo Estación.

¿Y cómo mejoro el enlace?

Page 19: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

18

Lo primero es hacer el mapeo de la zona en la cual se pretende trasmitir la señal

inalámbrica, es decir, verificar si la geografía (accidentalidad del terreno) permite

irradiar en 360 grados por igual. Si existen colinas, saturación o si la zona es

plana. El resultado de este estudio determinará el tipo de antenas a usar en los AP

(omnidireccionales o sectoriales).

Luego se debe determinar la distancia a la cual se pretende llegar (cobertura). En

este punto hay que tener en cuenta la distancia real y no la teórica. La gran

realidad es que así el fabricante del AP diga que tiene un alcance de 30 kms,

asuma que es falso y mida usted mismo la distancia de cobertura real. Lo

máximo efectivo en AP comerciales a la fecha es de 3 kms en vista directa sin

obstáculos. Existen APs con mayor cobertura, pero los precios son

estratosféricos.

Si lo que se pretende es armar una red local, empresarial, de una entidad

educativa o un punto de acceso público, no podemos contar con distancias largas,

así el AP indique que puede hacerlo

Esto nos lleva al punto más importante: La elección del AP. Deberá ser un

equipo que soporte todos los estándares actuales y que tenga una antena con la

ganancia adecuada para brindar la cobertura deseada.

Y lo más importante (y que nadie le da importancia): Un buen microprocesador,

suficiente memoria y una buena sensibilidad. Los parámetros técnicos más

relevantes son Ptx (potencia del AP), Line loss (pérdida de la señal, que casi

siempre es de 1dbm) y Ga (Ganancia de la antena). O el resultante PIRE.

Ojo: Como aclaratoria, la energía irradiada [dBm] = Energía de transmisor [dBm]

- pérdida de cable [dB] + ganancia de antena[dBi]. La ganancia de una antena

está normalmente dada en decibeles isotrópicos dBi. Algunas antenas tienen su

ganancia expresada en dBd, es la ganancia comparada con una antena dipolo. En

este caso tienes que sumar 2.14 para obtener la ganancia correspondiente en dBi.

No confundir dBm con dBi. Son dos cosas diferentes. Como explicamos en la

tabla anterior, dBm o dB(mW) es la energía relativa a un milivatio (expresada

en mW) y dBi o dB(isotrópico) es relativo a la ganancia de la antena. No existe

una correlación directa entre vatios y dBi.

Dicho esto, para calcular estos parámetros, pongamos un ejemplo. Supongamos

que tenemos una antena de 17 dbi. Convertimos dbi a db restándole 2.14, que

daría como resultado 14.86db o dbm (db cuantitativamente son casi lo mismo

que los dbm). Y si la pérdida es de 1 dbm entonces, Ptx-

1dbm+14.86dbm<=36dbm

Esto daría como resultado final un Ptx=22.14 dbm. Lo que significa que si vamos

a usar una antena de 17 dbi, tan solo necesitamos comprar un AP que tenga una

potencia menor o igual a 22.14dbm (aproximadamente 163mw).

Para convertir de mw a dbm: (X) mw=10log(X)db (Logaritmo base 10). Para el

caso anterior, 22.14=10*log(x) => 2.214=log(X) => X=10^2.214 => X= 163mw.

Page 20: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

19

Tabla de conversión decibelios (ganancia) a vatios (potencia)

Se utiliza la unidad dBm (decibelios relativos al nivel de referencia de 1

milivatio). 1 mW es igual a 0 dBm y cada vez que se doblan los milivatios, se

suma 3 a los decibelios.

Por ejemplo, una antena de 12 dbi de potencia, irradiará aproximadamente unos

250 a 3500 mts. Una de 14 dbi, tendrá una cobertura aproximada de 800mts a

1km; de 16dbi/1 a 1.5km; de 17 llegara hasta los 1.5 o 2 km y una de 19dbi

llegara hasta 2.5km.

Existen antenas con ganancias superiores a 21dbi, pero no se usan

comercialmente y no son para realizar enlaces punto-multipunto, sino para Ad-

hoc/punto a punto (antenas grilla o parabólicas), entre otros usos.

En resumen, lo más importante que debemos aprender es que lo primero que

debemos tener en cuenta a la hora de comprar un AP para nuestra red es la

relación ganancia de la antena vs potencia del AP, priorizando siempre la

ganancia sobre la potencia. Esto es válido también para el cliente.

Si quieres profundizar, consulta el post Calcular la potencia del transmisor wifi

de manera simple.

O sea, que a fin de cuentas, puedo comprar un AP barato, y le pongo unas

superantenas de alta ganacia y funcionaría de maravilla... ¿Es correcto? Sí, pero ahora no salgas corriendo directo al basurero y recojas un AP de 5

dólares y le pongas unas antenas de 20dbi. Debes adquirir un AP que soporte

todas las tecnologías actuales, con las características de manufactura que se han

indicado y ponerle unas antenas acordes a la cobertura que pretendes brindar; ni

más, ni menos.

Page 21: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

20

También puedes construir tu propia antena, sobre todo si si necesitas cubrir

grandes distancias sin necesidad de repetidoras. Para construirlas, visita

el Proyecto Belgrano (SRM) o las biquad de Trevor Marshall.

Cuando explicabas cómo mejorar el enlace, mencionaste "a no ser que los

clientes usen el mismo sistema operativo". ¿Qué relación tiene esto con las

interferencias WiFi? No influye directamente, pero es determinante a la hora de establecer las

conexiones cliente-servidor. Los sistemas operativos, cada uno carga con su

propia cruz. Muchos recordamos el caso del problema con WirelessZero

Configuration (Configuración Inalámbrica Rápida) en Windows XP, que tantos

dolores de cabeza nos dio, y la vulnerabilidad APIPA con los sistemas Windows

actuales (que también afecta a Linux).

También está el problema de los drivers de las placas de red, que muchas veces

son defectuosos o el usuario instala "drivers forzados", cuando

hace downgrade de una versión de Windows a otra anterior.

Y si le sumamos que muchos terminales no cuentan con una debida protección,

ni tampoco los nodos, o sea, no hay un Control de Acceso a la Red (NAC), el

escenario puede ser caótico. Todo esto afecta las conexiones cliente-AP.

¿Algunos consejos finales para los lectores? Hay algunas pautas, que se pueden tener en cuenta para tener una red wifi en

condiciones lo más ideales posibles para una mejor operatividad, como por

ejemplo las que sugiere RedesZone, que son muy válidas:

1. Instalar el AP en lugar idóneo, preferentemente en un sitio elevado, lejos del

suelo, ventanas o muros gruesos, siempre al aire libre y evitar los objetos a su

alrededor, en especial los metálicos.

2. Elegir el canal más adecuado de acuerdo a un estudio previo de frecuencia

3. Determinar la cantidad de dispositivos que trabajarán en el mismo canal para

evitar interferencias y sobrecarga innecesaria

3. Si va a trabajar en una frecuencia compartida (canal compartido o co-channel),

revise la potencia de su equipo y de los que se encuentran en el mismo radio. Si

observa lentitud o cortes con un buen nivel de señal, es muy posible que la

saturación del canal de trabajo sea el problema.

4. Revise si hay dispositivos no-wifi en el radio de su AP que vampiricen la

señal. La saturación también puede ser ocasionada por estos dispositivos, que no

son detectados por las herramientas descritas en este post. Aquí lo más

recomendable es alejar lo más posible estos equipos de la fuente de transmisión y

verificar los canales por donde transmiten y evitarlos.

5. Elija siempre el canal menos saturado. Tenga en cuenta tanto el número del

canal (rango de frecuencia a la que se trabaja), como intensidad de la señal de ese

dispositivo. Tenga presente que algunos equipos Wifi, tienen la capacidad de

cambiar de canal de forma automática, si se encuentran con canales saturados,

Page 22: Interferencias WiFi y No-WiFi

HowTO/Guides/Manuals – Interferencia WiFi y No-WiFi

www.maravento.com

21

por tanto la información sobre canales es dinámica, y puede cambiar al añadirse

nuevos equipos Wifi en nuestra zona de influencia o por cambios de canal de

trabajo de los existentes (manuales o automáticos) o de los vecinos. Es por eso

que los administradores IT deben monitorizar constantemente las redes WiFi y

analizar el espectro para responder ante estos cambios imprevistos.

6. Los canales siembre comparten su frecuencia con los contiguos, por tanto

seleccione el canal más distante al canal origen del problema.

7. La señal inalámbrica es esférica, se expande por el aire, reduciéndose a medida

que aumenta la distancia o se encuentran obstáculos. Así, lo importante es

encontrar el centro de gravedad de la casa o establecimiento para situar el AP, tal

y como lo haríamos con un radio o un equipo de sonido que queramos escuchar

en toda la casa.

9. Cuando hay muchos objetos o interferencias en la casa, podemos probar con

una antena de router direccional en lugar de multidireccional. Esto permite

orientar mejor la señal para aprovechar la conexión.

10. Usa repetidores para aumentar el radio de cobertura, pero verifica que la

potencia no sea causa de interferencia con tu red o con redes cercanas.

11. Si vas a usar varios APs dentro de una misma red local WiFi, que sean del

mismo fabricante, modelo, firmware, y configuración. Manténgalo actualizado.

13. Ojo con el estándar a usar. La mayoría de los APs actuales permite operar

con 802.11g, b, n, etc. La tarjeta inalámbrica del cliente debe funcionar con el

mismo estándar y en lo posible el mismo canal del AP.

14. Si tiene clientes fijos dentro de su red, puede fijar el canal de trabajo de sus

adaptadores WiFi para una mejor interacción con el AP. En Linux abre una

ventana de terminal, escribe ‘ifconfig’ y comprueba cómo se llama tu interfaz

inalámbrica; probablemente wlan0 o wlan1. Toma nota de su nombre. Luego

escriba ‘iwconfig wlan0 channel #’ donde wlan0 es el nombre de tu interfaz y #

es el número del canal al cual te deseas cambiar. Después de ejecutar ese

comando, el canal se establecerá en el nuevo número de tu elección.

15. Y nosotros añadimos que tengan en cuenta los parámetros técnicos del AP y

la ganancia de la antena vs potencia del AP, descritos anteriormente, y que

utilicen, en lugar de sistemas distribuidos tradiciónales, tramas híbridas terrestres

para enlazar sus puntos WiFi y ampliar la cobertura, con medios de transmisión

alternativos, como el PLC, y así minimizar el impacto negativo de las

interferencias RF; o utilizar técnicas avanzadas de Radio Cognitiva (como el

nuevo estándar 802.22), pero esto será tema de otra entrevista.

© 2014. Por Alej Calero para Maravento Studio Contact: [email protected]