Interface Physics Group

34
Padua 15 April 2010 1 Interface Physics Group Biophysics The FluRedox Principle: The FluRedox Principle: Biosensors and Sensing Biosensors and Sensing Single Enzymes Single Enzymes Leiden University Nijmegen U. R. Nolte A. Rowan H. Engelkamp N. Hatzakis A. Patil Oxford U. J. J. Davis G. Mizzon T. LION, Biophysics J. Aartsma M. Elmalk J. Salverda N. Akkilic Lorentz/EdRox, 1 Nov 2010 S. L. Tabares Zauner LIC, METPROT G. W. Canters G. Kuznetsova A. Tepper D. Heering M. Strianese Newcastle U. C. Dennison D. Kostrzc

description

LIC, METPROT. Oxford U. LION, Biophysics. G. W. Canters. J. J. Davis. T. J. Aartsma. G. Zauner. G. Mizzon. M. Elmalk. Kuznetsova. A. Tepper. A. Patil. J. Salverda. L. Tabares. N. Akkilic. D. Heering. M. Strianese. The FluRedox Principle: Biosensors and Sensing - PowerPoint PPT Presentation

Transcript of Interface Physics Group

Page 1: Interface Physics Group

Padua 15 April 2010 1

Interface Physics Group

Biophysics

The FluRedox Principle: The FluRedox Principle: Biosensors and Sensing Biosensors and Sensing

Single EnzymesSingle Enzymes

LeidenUniversity

Nijmegen U.R. NolteA. RowanH. EngelkampN. Hatzakis

A. Patil

Oxford U.J. J. DavisG. Mizzon

T.LION, Biophysics

J. AartsmaM. ElmalkJ. SalverdaN. Akkilic

Lorentz/EdRox, 1 Nov 2010

S.

L. Tabares

Zauner

LIC, METPROT

G. W. CantersG.

KuznetsovaA. Tepper

D. HeeringM. Strianese

Newcastle U.C. DennisonD. Kostrzc

Page 2: Interface Physics Group

2

Förster Resonant Energy Transfer

FRET

Lorentz/EdRox, 1 Nov 2010

Page 3: Interface Physics Group

3

Fluorescence detection of redox state

No FRET FRET

+e-

-e-

Energy

Reduced Oxidized

Lorentz/EdRox, 1 Nov 2010

Page 4: Interface Physics Group

4

+ ++

Proof of principle

Anal. Biochem. 350 (2006) 52

Now for:

Lorentz/EdRox, 1 Nov 2010

Page 5: Interface Physics Group

5

Single Molecules

Lorentz/EdRox, 1 Nov 2010

Page 6: Interface Physics Group

6Proc. Natl. Acad. Sci. (1961), 47. 1981Lorentz/EdRox, 1 Nov 2010

Page 7: Interface Physics Group

7

Oil

O

HO

HOOH

OH

O

O

O

O

O

HO

HOOH

OH

OH

OO

COOH

β-D-Galactosidase

B. Rotman, P.N.A.S. 1961, 47, 1981.

OilH2O

The first single enzyme experiment (1961)

+

Lorentz/EdRox, 1 Nov 2010

Page 8: Interface Physics Group

8

H. P. Lu, L. Xun, X. S. Xie,H. P. Lu, L. Xun, X. S. Xie,Science, Science, 1998,1998, 282 282, 1877, 1877..

OH O

H2O2 O2

Fluorescent

CholesterolCholesteroloxidaseoxidase

Cox in oxidized form

Lorentz/EdRox, 1 Nov 2010

Page 9: Interface Physics Group

9

FRET & Electrochemistry:

Fluorescent CVThe quest for single molecules

Lorentz/EdRox, 1 Nov 2010

Page 10: Interface Physics Group

10

Fluorescence detection with Potentiostatic control

Potentiostat

Protein with attached dye

CCD camera

Fluorescencemicroscope

Reference electrode

Work electrode

Counter electrode

Gold with C8 monolayer and wt-azurin

Lorentz/EdRox, 1 Nov 2010

Page 11: Interface Physics Group

11

Fluorescence image (32x32 μm) of WT azurin

200 mV/s

Cyclic Voltammetry

Lorentz/EdRox, 1 Nov 2010

Page 12: Interface Physics Group

12

-0.2

-0.1

0

0.1

0.2

0.3

0 10 20 30 40 50

Time (s)

Po

ten

tial

vs.

SC

E (

V)

37 μm16 μm

0

500

1000

1500

2000

0 10 20 30 40 50Time (s)

Flu

ore

sc

en

ce

(a

.u.)

-2000

-1000

0

1000

2000

0 20 40 60 80 100

Time (s)

Flu

ore

sc

en

ce

(a

.u.)

Fluorescence traces show cyclic redox switching

Widefield (Leiden): near-monolayer w. variable brightness

TIRF (Oxford): very low coverage in clusters

Results – fluorescence switching

Lorentz/EdRox, 1 Nov 2010

Page 13: Interface Physics Group

13

0

0.4

0.8

1.2

-0.2 -0.1 0 0.1 0.2 0.3

Potential vs. SCE (V)

Flu

ore

scen

ce (

a.u

.)

0

0.4

0.8

1.2

-0.2 -0.1 0 0.1 0.2 0.3

Potential vs. SCE (V)

Flu

ore

scen

ce (

a.u

.)

0

0.4

0.8

1.2

-0.2 -0.1 0 0.1 0.2 0.3

Potential vs. SCE (V)

Flu

ore

sce

nc

e (a

.u.)

10 mV/s

100 mV/s

1 V/s

FCV and CV: increase of separation to ~40 mV at 1V/s(widefield (Leiden) data example, FCVs from full images)

Scan rate dependence

150

100-100

-50

0

50

100

0.01 0.1 1 10

Scan rate (V/s)

Po

ten

tial

(m

V, v

s. S

CE

)

Lorentz/EdRox, 1 Nov 2010

Page 14: Interface Physics Group

14

0

1

2

3

4

5

6

7

8

-50

-30

-10 10 30 50 70

E 0 vs. SCE (mV)Fr

eque

ncy

E0 dispersion much larger in more dilute TIRF sample!

TIRF (N42C) (Oxford)

Widefield (wt azurin) (Leiden)

Thermodynamic (E0) dispersion

0

10

20

30

40

50-5

0

-30

-10

10 30 50 70

E0 vs. SCE (mV)

Fre

qu

enc

y

Lorentz/EdRox, 1 Nov 2010

Page 15: Interface Physics Group

15

0

5

10

15

20

0.2

5 1 4

16

64

25

6

k 0 (s−1)

0

5

10

15

20

0.25 0.

5 1 2 4 816 32 64

128

256

512

Fre

qu

ency

0

5

10

15

20

0.2

5 1 4

16

64

25

6

k 0 (s−1)

* Large k0 dispersion in both datasets!

* Factor 100 difference within 10 micron on surface possible

Kinetic (k0) dispersion

TIRF (N42C) (Oxford)

Widefield (wt azurin) (Leiden)

Angew. Chemie 2010, in press

0

5

10

15

20

Fre

qu

ency

0

5

10

15

20

0.2

5 1 4

16

64

25

6

k 0 (s−1)

Lorentz/EdRox, 1 Nov 2010

Page 16: Interface Physics Group

16

Dispersion E0

Protein-protein complexes

Effect of charges

Dielectric between partners

Protein-surface interaction

El. Fields of 3-30mV/Å

ΔE0: 0-100 mV

Batie & Kamin, JBC 256(1981)7756

Knaff cs BBA 635(1981)405

Davidson cs JBC 263(1988)13987

Haehnel cs Biochem 35(1996)1282

Murgida & Hildebrandt Chem S Rev 37(2008)937

Lorentz/EdRox, 1 Nov 2010

Page 17: Interface Physics Group

17

S

S

n

Dispersion k0

S S S S S S SS S S S S S S S S S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S

k0

Feng et al. J.Chem.Soc.

Far. Trans. 1997 93, 1367

Lorentz/EdRox, 1 Nov 2010

Page 18: Interface Physics Group

18

Nitrite Reductase

NiR

Lorentz/EdRox, 1 Nov 2010

Page 19: Interface Physics Group

19

Cu-containing Nitrite Reductase - NiR

NO2-

e-

e-

Xox

NO

Xred

Lorentz/EdRox, 1 Nov 2010

Page 20: Interface Physics Group

20

What will happen during turnover?

e-

NO2-NO

Ex Em Ex ExEm Em

Lorentz/EdRox, 1 Nov 2010

Page 21: Interface Physics Group

21NO2- + e- + 2H+ NO + H2O

Nitrite Reductase

J. Biol. Chem. 281 (2006) 16340Lorentz/EdRox, 1 Nov 2010

Page 22: Interface Physics Group

22

Confocal Fluorescence Spectroscopy

of

NiR

Lorentz/EdRox, 1 Nov 2010

Page 23: Interface Physics Group

23

Experimental set-up

Detection pinhole

Single photon detector

ObjectiveSample plane

Point laser light source

PNAS (2008) 105, 3250.Lorentz/EdRox, 1 Nov 2010

Page 24: Interface Physics Group

24

Measuring single molecules at work

Background

Inactive and bleaches

Turning over and bleachesTurnover!

Lorentz/EdRox, 1 Nov 2010

Page 25: Interface Physics Group

25

Intensity histogram

300 320 340 360 380 4000

5

10

15

20

25

Co

un

ts /

10 m

s

360 361 3620

5

10

15

20

25

Co

un

ts /

10 m

s

Time, s

Time, s 0 5 10 15 20 25

0

100

200

300

400

500

600

700

Nu

mb

er

of

bin

s

counts/bin

Binsize: 10 ms

Poissonian distributions

Lorentz/EdRox, 1 Nov 2010

Page 26: Interface Physics Group

26

NiR - ATTO 655 turnovers with asc/PES

20mM HEPES pH710mM NO2

-

3mM ascorbate0.3 nM PES

25

360 361 362

0

5

10

15

20

highCou

nts

/ 10

ms

Time, s

bglow

high

300 320 340 360 380 4000

5

10

15

20

25

Cou

nts

/ 10

ms

Time, s

bglow

0 5 10 15 20 25

0

1000

2000

3000

4000

5000

6000

7000

Nu

mb

er

of

eve

nts

Fluorescence intensity, counts/10 ms

Lorentz/EdRox, 1 Nov 2010

Page 27: Interface Physics Group

27

Autocorrelation:Correlation of a signal with its time-shifted image.

Fluorescence time trace: AUTOCORRELATION

Fluorescence

t1

t2

t

2)(I

)t(I)(I)t(G

0

0

Lorentz/EdRox, 1 Nov 2010

Page 28: Interface Physics Group

28

)texp(A)texp(A)t(G 2211 )texp(A 22

λ1, λ2: f (ki)

S1S2

S3 k3

k-3

k1

k2

k-2

k-1

OO

RO

OR

k3

k1

k2

e

NO2-NO

k-3

Qian & Elson Biophys Chem 101-102 (2002) 565

Lorentz/EdRox, 1 Nov 2010

Page 29: Interface Physics Group

29

[NO2-]-dependent autocorrelation decay timing

The autocorrelation curves

can be fitted to a

stretched exponential:

0/ tetG

=0.8

0.7

0.6

0.6ms

70342217

i/ti eA

0/ tetG X

Lorentz/EdRox, 1 Nov 2010

Page 30: Interface Physics Group

30

de t /)(

Single exponential meansSingle rate:

Stretched exponential meansDistribution of rates:

/)( tetG

)/( 0)( tetG

τ/τ0

ρ

0.8

0.7 d)(

)/(Γ/0 1

k/1

Mumbai 4 Nov 2009

Page 31: Interface Physics Group

31

Why a "stretched" instead of a simple exponential?

In the stretched exponential is not a single value but a distribution

The distribution of depends on :if =1, there is no distribution in if <1, the distribution becomes broader

0.070 s0.034 s0.022 s0.017 s

[NO2-]

5M50M

500M5000M

0.810.720.600.61

= 0.6

1 order of magnitude distribution

WHY?

50.50

Mumbai 4 Nov 2009

Page 32: Interface Physics Group

32

A partial disorder at the catalytic heart of NiR First coordination sphere - Type-1 Cu site: Met150 is partially disordered

- Type-2 Cu site: The water ligand is disordered in the reduced state

Proton delivery - His255: is partially disordered

- Asp98 : has a large B-factor

- Network of water molecules

PNAS 105 (2008) 3250

Lorentz/EdRox, 1 Nov 2010

Page 33: Interface Physics Group

33

How can we get the kinetics parameters?

Global fit:

Mumbai 4 Nov 2009

Page 34: Interface Physics Group

04/21/23 34

How can we get the kinetics parameters?

k1 = 3.5 x105 M-1s-1

k2 = 9.5 s-1

k3 = 21 s-1

k-3 = 14 s-1

Electron Transfer Ratebetween Cu1 and Cu2!

KM = k2 ( k3 + k-3 )

k1 ( k2 + k3 )= 31 M

Vmax = k2k3

( k2 + k3 )= 6.5 s-1

In good agreement with in-bulk measurements : 50 M and 8.0 s-1

Mumbai 4 Nov 2009