Interaction Effects of Multiple Pool Fires

8
7/23/2019 Interaction Effects of Multiple Pool Fires http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 1/8 Interaction f fects of M u ltiple Pool F ires K. G. HUFFMAN, J. R. WELKER, and C. M. SLIEPCEVICH University of klahoma What are the effects on flame behavior of a number of fires burning in close proximity to one another? The results of measurements of burning rates, heat feedback, flame height, and flame trailing are reported for fires involving liquid pools. HE interaction of multiple fires from liquid pools burning in close proximity has a substantial effect on the burning rate of the fuel, the size of the flame, and the rate of heat transfer from the flame to the sur- roundings. Although a few experimental studies of interacting fire effects have been described in the literature, 1,2,3 most of them have used gaseous fuel. Since the gas flow was a controlled variable, no data were obtained on fuel burning rates. EQUIPMENT In the present studies? methanol, acetone, hexane, cyclohexane, and benzene were burned in several sizes and spatial arrangements of burners as shown in Figure 1. Circular burners, 4 in. in diameter, were used in the 13-burner pattern, whereas burners with diameters of 2 in., 4 in., and 6 in. were used in the 9-burner pattern. The burners were mounted on the top of a 10-ft octagonal table. The top of the table was located 2 ft above the floor and was covered with insulation. The rims of the burners were mounted flush with the table top; the rims were tapered to a knife edge to minimize heat conduction from the table top. All the burners were 2 in. deep. They were kept flush full with fuel during the experiments by the use of a constant head siphon arrangement. The center burner was con- nected to one fuel reservoir, and the outer burners were connected to a second reservoir. During runs using the 13-burner pattern, the four inter- mediate burners were connected to a third reservoir. This arrangement permitted the burning rates for each group to be measured separately. The outer burners in the 9-burner pattern were separated from the center burner by a distance, S, as shown in Figure 1. In the case of the Present address: Continental Oil Co., Ponca City, Oklahoma. 225 Downloaded from http://www.elearnica.ir

Transcript of Interaction Effects of Multiple Pool Fires

Page 1: Interaction Effects of Multiple Pool Fires

7/23/2019 Interaction Effects of Multiple Pool Fires

http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 1/8

I n t er a ct i o n f f ec ts o f

M u l t i p l e P o ol F i r es

K. G. HUF FMA N, J . R. WE LK ER , and C. M. SLI EP CEV IC H

University of k lahoma

What are the effects on flame behavior of a number of fires burning

in close proximity to one another? The results of measurements of

burning rates, heat feedback, flame height, and flame trailing are

reported for fires involving liquid pools.

HE inter actio n of multi ple fires from liquid pools burning in close

proximity has a substantial effect on the burning rate of the fuel, the

size of the flame, and the rate of heat transfer from the flame to the sur-

roundings. Alt hou gh a few experim ental studies of inte ract ing fire effects

have been described in th e literatur e, 1,2,3 most of them have used gaseous

fuel. Since the gas flow was a controlled variable, no dat a were obt ained on

fuel burning rates.

E Q U I P M E N T

In the present studies? methanol, acetone, hexane, cyclohexane, and

benzene were burned in several sizes and spatial arrangements of burners

as shown in Figur e 1. Circular burners, 4 in. in diameter, were used in the

13-burner patt ern, whereas burners wi th diamet ers of 2 in., 4 in., and 6 in.

were used in the 9-burner pattern. The burners were moun ted on the top

of a 10-ft octagonal table. The top o f the table was located 2 ft above the

floor and was covered with insulation. The rims of the bur ners were

mounted flush with the table top; the rims were tapered to a knife edge to

minimize heat condu ction from the table top. All the burn ers were 2 in.

deep. Th ey were kept flush full with fuel during the experim ents by the

use of a constant head siphon arrangement. The center burner was con-

nected to one fuel reservoir, and the outer burners were connected to a

second reservoir. Duri ng runs using the 13-burner patter n, t he four inter-

mediate burners were connected to a third reservoir. This arrang ement

permitted the burning rates for each group to be measured separately.

The outer burners in the 9-burner pattern were separated from the

center bur ner by a distance, S, as shown in Figure 1. In t he case of the

Present address: Continental Oil Co., Ponca City, Oklahoma.

225

Downloaded from http://www.elearnica.ir

Page 2: Interaction Effects of Multiple Pool Fires

7/23/2019 Interaction Effects of Multiple Pool Fires

http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 2/8

  6

THIRTEEN BURNER PATTERN

F ir e Te c h n o lo g y

NI NE 8URGER PATTERN

~0~ \\// j~O

\ o o

Figure 1. Schematic diagram of f lame merging table , plan view.

1 3 - b u rn e r p a t t e r n , t h e s e p a r a ti o n b e t w e e n t h e o u t e r a n d i n t e r m e d i a t e

b u r n e r s a n d b e t w e e n t h e i n te r m e d i a t e b u r n e r s a n d t h e c e n t e r b u r n e r w a s

ma in t a ine d a t a d i s ta nc e , S . Thus , f o r t he 13 - bu r ne r pa t t e r n , t he d i s t a nc e

f r om the c e n t e r bu r ne r t o t he ou t e r bu r ne r s wa s 2S .

A c a m e r a wa s u se d t o pho to g r a p h t h e fi re s du r ing t he t e s t s . F l a m e

he igh t s we r e me a su r e d f r om the pho tog r a phs .

B U R N I N G R A T E S

As shown in F igu r e 2 , t he mu l t i p l e f ir e s c ha nge p r og r e s s ive ly f r om indi -

v idua l f l a me s w i th no i n t e r a c t i on t o i nd iv idua l i n t e r a c t i ng f l a me s a nd

f inal l y t o f u l l y me r ge d f l a me s a s t he s e pa r a t i on d i s t a nc e de c r e a se s . The

c ha nge f r om non - in t e r a c t i ng f i r e s t o me r ge d f i r e s i s v iv id ly i l l u s t r a t e d by

the burn ing ra te curves in F igure 3 for 4- in . d iameter cyc lohexane f i res .

The c u r ve s show the bu r n ing r a t e s f o r bo th t h~ c e n t e r bu r ne r a nd t he ou t e r

bu r ne r s a s a f unc t i on o f t he d ime ns ionl e s s s e pa r a t i on , S/D

whe r e D i s t he

bu r ne r d i a me te r . A t l ar ge s e pa r a t i on d i s ta nc e s , t he bu r n ing r a t e s f o r t he

c e n t e r bu r ne r a nd t he ou t e r bu r ne r s a re a bou t t he s a me . As t he bu r ne r s

a r e b r ough t c l ose r t oge the r f r om r i gh t t o l e ft i n F igu r e 3 ) , t he bu r n ing

r a t e f o r t he c e n t e r bu r ne r i nc r e a se s a nd pe a ks f a s t e r t ha n t ha t f o r t he ou t e r

bu r ne r s . How e ve r , bo th a pp r o a c h a c om mon va lue a t t he c lo se s t s e pa r a -

t i on d i s ta nc e . The ma x im um bu r n ing r a t e f dr t he c e n t e r bu r ne r oc c u r s a t

t he onse t o f me r g ing w he r e t he f l a me s f r om the bu r n e r s c e a se t o be i ndi -

v idua l ly d i scern ib le .

Figu re 2. Effect of separation distance on flam e interactions n-hexa ne in nine, 4-in.

diame ter burners); individu al fires left), interacting fires center), and m erged fires right).

Page 3: Interaction Effects of Multiple Pool Fires

7/23/2019 Interaction Effects of Multiple Pool Fires

http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 3/8

I n t e r a c t i o n E f f e c t s 2 2 7

T h e b e h a v i o r o f a ll

l u m i n o u s

f l a m e s w a s s i m i l a r t o t h e c u r v e s h o w n i n

F i g u r e 3 e x c e p t f o r t h e 6 -i n . b u r n e r s u s i n g c y c l o h e x a n e o r h e x a n e a n d t h e

2 - in . b u r n e r s u s i n g b e n z e n e . I n t h e s e t e s t s , t h e b u r n i n g r a t e o f t h e o u t e r

b u r n e r s d id n o t p e a k ; i t le v e l e d o f f a t a m a x i m u m v a l u e a s s h o w n i n F i g -

u r e 4, b u t a t a m u c h l o w e r v a l u e t h a n t h e b u r n i n g r a t e fo r t h e c e n t e r b u r n e r

i n a f u l ly m e r g e d f l a m e . T h e b u r n i n g r a te s o f t h e m u l t i p l e , n o n l u m i n o u s

m e t h a n o l f i r e s e x h i b i t e d l i t t l e v a r i a t i o n w i t h s e p a r a t i o n d i s t a n c e s i n c e t h e y

c o u l d n o t b e m a d e t o m e r g e .

F i g u r e 5 s h o w s t h e r e s u l t o f a t y p i c a l s e t o f t e s ts u s i n g t h e 1 3 - b u r n e r

p a t t e rn . T h e b u r n i n g r a te s fo r t h e c e n te r a n d i n t e r m e d i a t e b u r n e r s p e a k e d

a t a b o u t t h e s a m e s e p a r a t i o n d i s t a n c e , w h e r e a s t h e o u t e r b u r n e r s d i d n o t

r e a c h a p e a k w i t h i n t h e l i m i t s o f m i n i m u m s e p a r a t i o n d i s t a n c e a t t a i n a b l e

w i t h t h e e q u i p m e n t .

95 , ,

f

90 CIRCULAR BURNERS

B5 FUEL : CYCLOHEXANE

@ CENTER BURNER

gO lT~ OU I E BURNERS

75 ~ ~

O

-.. 70

O

6B

< BO f \e ~ ~d - ~

< BB ~

~ BO

45

40

3~

30

~ 20

15

10

5

0 2 3 a B 6 T B

DIMENSIONLESS SEPARATION S D

F i g u r e 3 B u r n i n g r a tes o f n t er a ct i n g

4 i n .

cyclohexane

f i res .

6 inch OIAMETER

CIRCULAR BURNERS

FUEL : CYCLOHEXANE

G CENTER BURNER

OUTE~ BURNERS

O O

J 1 ~ 1 : r - ~

DURNER PATTERN

SINGLE

0 i I I I i i t

2 3 4 5 6 7 e

D~ME SIONLESB SEPARATION S/D

F i g u r e 4 .

B u r n i ng ra t es o f n t er ac ti ng

6 i n .

cyclohexane

f i res .

H E A T F E E D B A C K

T h e b u r n i n g r a t e o f t h e l i q u id f u e l is d e t e r m i n e d b y t h e r a t e o f h e a t

f e e d b a c k f r o m t h e f ir e t o t h e f u el . T h e t o t a l h e a t f e e d b a c k i s t h e s u m o f

c o n d u c t i v e , r a d ia t i v e , a n d c o n v e c t i v e t e r m s . H o t t e P e x p r e s s e d t h e r a t e o f

h e a t f e e d b a c k f o r s i n g l e, l i q u i d - f u e l e d f i r es a s *

q __

4 k T F - T z )

D

+ U T F - T , ) + zF T 4 F - T 4B ) ( 1 - - e - D ) ( 1 )

I n t h e p r e s e n t i n t e r a c t i n g f i r e t e s t s , t h e b u r n e r r i m s w e r e t a p e r e d a n d i n -

s u l a t e d t o m i n i m i z e t h e c o n d u c t i o n t er m . T h e h e a t fe e d b a c k , t h e r e fo r e ,

w a s p r i m a r il y b y c o n v e c ti o n a n d r ad i a ti o n . A l t h o u g h t h e re m a y h a v e b e e n

S e e l is t o f n o m e n c l a t u r e o n p a g e 2 3 1 .

Page 4: Interaction Effects of Multiple Pool Fires

7/23/2019 Interaction Effects of Multiple Pool Fires

http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 4/8

  8 F i r e T e c h n o l o g y

a s m a l l i n c r e a s e i n t h e c o n v e c t i o n c o e f f i c i e n t d u e t o t h e i n t e r a c t i o n e f f e c t s ,

i t is p r o b a b l e t h a t i n c re a s e s in b u r n i n g w e r e d u e p r i m a r i l y t o i n c r ea s e s i n

r a d i a t i v e f e e d b a c k . B l a c k s h e a r , G n h i s a n a ly s i s o f h e a t f e e d b a c k f r o m in -

t e r a c t i n g f i r e s , c o n c l u d e d t h a t i n c r e a s e d b u r n i n g r a t e s f o r p o o l s f r o m 4 i n .

t o 8 0 i n . i n d i a m e t e r a r e l a r g e l y d u e t o i n c r e a s e s i n t h e g e o m e t r i c a l v i e w

f a c t o r . I n t h e p r e s e n t s t u d ie s , i t w a s c l e a r l y v i s ib l e t h a t , a s t h e fi r es w e r e

m o v e d c l os e r t o g e t h e r, t h e v i e w o f e a c h i n d i v id u a l p o o l c o n t a i n e d m o r e a n d

m o r e o f t h e a d j a c e n t f l am e s , p a r t i c u l a r ly f o r t h e c e n t e r fi re . T h e f l a m e s

t i l te d a n d e l o n g a t e d t o w a r d t h e c e n t e r b u r n e r b e c a u s e o f t h e a i r f lo w p a t -

t e r n, t h e r e b y i n c r e as i ng t h e v i e w f a c t o r an d , c o n s e q u e n t l y , t h e b u r n i n g

r a t e s .

F u r t h e r d e c r e a se s i n s e p a r a t i o n d i s t a n c e a f t e r t h e m a x i m u m b u r n i n g

r a t e s h a d b e e n a c h i e v e d i n t r o d u c e d o v e r - c o m p e n s a t i n g f a c t o r s , w h i c h

c a u s e d t h e b u r n i n g r a t e s t o d e c re a s e . A s t h e b a s e d i a m e t e r o f t h e c o m -

p l e t e l y m e r g e d f ir e w a s d e c r e a s e d , t h e o p a c i t y f a c t o r , 1 - e -V D ), d e c r e a s e d ,

w h i c h i n t u r n c a u s e d th e h e a t f e e d b a c k r a t e a n d h e n c e t h e b u r n i n g r a t e t o

d e c r e a s e . S i m u l t a n e o u s l y , t h e a i r f l o w i n t o th e fl a m e , p a r t i c u l a r l y a b o v e

t h e c e n t e r b u r n e r , b e c a m e m o r e r e s t r i c te d , t h e r e b y c a u s i n g a n i n c r ea s e in

t h e u n b u r n e d f u el v a p o r i m m e d i a t e l y a b o v e t h e l iq u i d l ev e l. I n t u r n , t h e

t h i c k e r l a y e r o f fu e l v a p o r b e c a m e m o r e e f f e c ti v e i n a b s o r b i n g p a r t o f t h e

r a d i a t i o n f e e d b a c k t o t h e p o o l a s w a s o b s e r v e d i n p r e v i o u s w o r k b y t h e

B u r e a u o f M i n e s . 7

T w o g e n e r a li z ed c o r r e l a t io n s o f b u r n i n g r a t e d a t a f o r t h e 9 - b u r n e r p a t -

t e r n w e r e m a d e - o n e f o r t h e c e n t e r b u r n e r a l o n e, a n d t h e o t h e r f o r t h e

a v e r a g e b u r n i n g r a t e o f a ll n i n e b u r n e r s c o m b i n e d . T h e a v e r a g e r a t e f o r

a l l n i n e b u r n e r s i s v e r y n e a r t h e r a t e f o r t h e e i g h t p e r i p h e r a l b u r n e r s .

For the center burner alone

~ A H v l = ~ D L m ~ o ~ l ]

2)

For the average of al l nine burners

_ m p

r n A ~ H I ~ P ~ = [ ~ j

3 )

T h e s e t w o c o r r el a t io n s a r e s h o w n i n F i g u r e s 6 a n d 7 . T h e c o r r e l a ti o n o f

t h e c e n t e r b u r n i n g r a t e w a s b e t t e r t h a n t h e c o r r el a ti o n o f t h e a v e r a g e b u r n -

i n g r a te . F i g u r e s 6 a n d 7 p r o v i d e t h e m e a n s f o r e s t i m a t i n g t h e b u r n i n g

r a t e s o f i n t e r a c t i n g f i re s p r o v i d e d t h e b u r n i n g r a t e f r o m a s i n g le p o o l a n d

t h e fu e l p r o p e r t i e s a r e k n o w n . C a u t i o n m u s t b e u s e d in e x t r a p o l a t i n g t h e

d a t a t o la r g e r p o o l s iz e s b e c a u s e , a s p o i n t e d o u t b y B l a c k s h e a r , t h e b u r n i n g

r a t e o f l a r g e r f ir e s w o u l d n o t i n c r e a s e s i g n i f ic a n t l y d u e t o i n t e r a c t i o n e f f e c ts .

Page 5: Interaction Effects of Multiple Pool Fires

7/23/2019 Interaction Effects of Multiple Pool Fires

http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 5/8

I n t e r a c t i o n E f f e c t s

105

I 0 0

95

BO

BS

< O0

~ 70

~ BB

~ ao

55

~

so

~ 4o

~ 3B

30

25

BO

0

|

FU EL : CYCLOHEXAN~

| CENTER BURNER

iNTERMEDIATE

@ BURNERS

OUTER BURNERS

0 0 0

0

0 0

0

BURNER PATTERN

2 3 4 5 6 7 8 9

OIMENSIONLES$ SEPARATION B/ D

2 2 9

Figure 5. Burning rates of interacting 4-in. cyclohexane fires 13-burner pattern).

F L A M E H E I G H T

T h o m a s , 8 i n h i s s tu d i e s o f f la m e h e i g h t s o f s i n g l e w o o d c r ib f ir e s , d e -

v e l o p e d t h e f o l l o w i n g r e la t io n s h i p b e t w e e n t h e f la m e h e i g h t a n d b u r n i n g

p a r a m e t e r s f o r w o o d c r i b f i r e s :

D --~ q = f p ~ v / g D 5

W a t e r m a n

e t a l 2

a p p l i e d t h e s a m e f l a m e h e i g h t r e l a t i o n t o t h e d a t a o b -

t a in e d d u r i n g th e i r s t u d y o f m u l t ip l e w o o d c r i b f ir es . T h e y t o o k t h e v a l u e

95

9 0

85

BO

75

70

65

60

45

~ l g o

35

SO

25

20

15

I0

o ACETONE

N-HEXANE

0 CYCLOHEXANE

0 BENZENE

o

Z .oh BURNERS

0

4 ,rich BURNERS

9

6 inch BURNERS

~ ~

0

0 0

; - B ~ o

o

~ e BURNER PATTERN

|

SINGLE

BURNER

l ~ I h ~ I I 3 1 5

oi, olB , . . . . . . .

~ [ ~ p~ o B7

B 8

8 4

BO

76

72

BB

64

60

fi6

52

4 8

44

40

36

3Z

28

24

20

16

12

B

4

0

AVERAGE BURNING RATE

O ACETONE o 0 O

N-HEXANE

o o o o

o

CYC~OH[XAN~

o ~

a B E N Z E N E

2 ~NCH BURNERS BURNER PATTERN

o 41NCH BURNERS

9 6 INCH BURNERS

i

' o , o 'e , ;

/6 21o

. . . . . . . . . .

4 ZB

S mp -L3

Figure 6. Correlation of center burning

r a t e s

for all fuels and rimless burner si es

9-burner

p a t t er n .

Figure 7. Correlation of average burning

r a t e s

for all fuels and rimless burner si es

9-burner pattern).

Page 6: Interaction Effects of Multiple Pool Fires

7/23/2019 Interaction Effects of Multiple Pool Fires

http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 6/8

2 3 F i r e T e c h n o l o g y

of De~ to be the dimension of the multiple crib arra y rat her than tha t of a

single crib.

The flame height correlation suggested by Thomas was applied to the

liquid inte rac ting fires. Comparison of the wood crib and liquid fires is

given in Figure 8. The flame heights for merged fires and for single burners

with no interaction effects were plotted according to Equ ation 4 for which

D~q for the liquid interacting fires was assumed to be 2S. The flame heights

were about the same as or slightly larger than those of Thomas, but they

were significantly larger than Water man s data.

F L A M E T R A I L I N G

T h e t r a i l i n g e f f e c t e x h i b i t e d b y w i n d - b l o w n p o o l f i r e s h a s b e e n d e s c r i b e d

p r e v i o u s l y . 9 A s i s a p p a r e n t i n F i g u r e 2 t h e i n d u c e d w i n d c a u s e d t h e s a m e

e f f e c t i n t h e i n t e r a c t i n g f i r e t e s t s . S e v e r a l p h o t o g r a p h s w e r e t a k e n o f i n d i -

v i d u a l p e r i p h e r a l f i r e s d u r i n g t h e r u n s . A f e w m e a s u r e m e n t s o f t h e v e l o c i t y

a t w h i c h t h e a i r m o v e d i n t o t h e f i r e w e r e m a d e . T h e p h o t o g r a p h s a n d a i r

v e l o c i t y m e a s u r e m e n t s w e r e u s e d a l o n g w i t h t h e a p p r o p r i a t e b u r n e r s i z e

a n d f u e l p r o p e r t i e s t o c o m p a r e t h e e x t e n t o f f l a m e t r a i l i n g w i t h t h a t f o r t h e

p r e v i o u s f i r e s . F l a m e t r a i l i n g f o l l o w e d t h e e q u a t i o n f o u n d f r o m e a r l i e r

w o r k : 0

~- 2.1

F r o 2x

(5)

Figure 9 is a schematic diagram of a flame showing the geometrical para-

meters of Equati on 5.

A comparison of the data from the interacting fire tests with that of

the earlier wind tunnel tests is shown in Figure 10. It indicates the versa-

i

BO

6

4

2

B

4

2

os

o6

O 4

THOMAS CORREL TON

r WOOD CRSBS

0 e w < x X x X x x

x x x x x x

W A T E R M A N I t o l , ( 2 6 )

Y ~ W OOD C R IB S

0 P E A K B U R N I N G R A T E D A T A

b S I N G L E B U R N E R D A T A

0 2

O ACETONE

MEXANE

Ol 0 CYCLOHEXANE

0 B E N Z E N E

0 Z ~ nc h D I A M E T E R

4 ,r i ch O I A M E T E R

9 6 , . c A O $ A M E T E R

= . . . . . . . . . . . . . . . . . . . . . .

fO ~ Z 4 6 8 fO z 2 4 e e i0 Z 4 6 e t o

s J z

F i g u r e 8 E f f e c t o f b u r n i n g r a te o n [ l a m e

h e i g h t o [ s i n g l e a n d m u l t i p l e [ i r es

\ \ \ \ \

U

W I N D V E L O C I T Y

\

_ . J \ \ \ \ \ \ \ \ \ \ \ \ \ \

F i g u r e 9 S c h e m a t i c d i a g r a m o f t r a i l i n g

f i r e f r o m a c i r c u l a r b u r n e r

Page 7: Interaction Effects of Multiple Pool Fires

7/23/2019 Interaction Effects of Multiple Pool Fires

http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 7/8

I n t e r a c t i o n f f e c t s

C l ~ o

:

231

q

k - -

D =

TF =

Ts =

U

F

m

m s

m p

AH~

A H , =

pg ~

Pa

S

L

D e q

g

m t

D r =

Fr

U

N O M E N C L T U R E

h e a t f e e d b a c k p e r u n i t o f p o o l a re a , B t u / h r - f t 2

c o n d u c t i o n c o e ff i ci e n t, B t u / h r - f t - ~ R

b u r n e r d i a m e t e r , f t

f l a m e t e m p e r a t u r e , ~ R

p o o l t e m p e r a t u r e ( u s u a ll y t h e b o il in g t e m p e r a t u r e ) , o R

c o n v e c t i o n c o e ff i ci e n t, B t u / h r - f t L ~ R

S t e p h a n - B o l t z m a n n c o n s t an t , B t u / h r - f t L ~ R 4

g e o m e t r i c a l v i e w f a c t o r f r o m t h e l i q u i d t o t h e f l a m e , u n i t l e s s

B e e r s l a w e x t i n c t i o n c o e f fi c i en t o f t h e f l a m e t o a l lo w f o r i n c r e a s i n g

o p a c i t y w i t h t h i c k n e s s , f t - 1

b u r n i n g r a t e p e r u n i t a r e a o f i n t e r a c t in g f ir e, l b / h r - f t 2

b u r n i n g r a t e p e r u n i t a r e a o f s i n g l e f ir e , l b / h r - f t 2

p e a k b u r n i n g r a t e p e r u n i t a r e a o f i n t e r a c t i n g f ir e, l b / h r - f t 2

h e a t o f c o m b u s t i o n o f t h e f u e l, B t u / l b

h e a t o f v a p o r i z a t i o n a t t h e b o i l in g p o i n t p l u s t h e s e n s ib l e h e a t f o r

r a i s i n g t h e f u e l f r o m a m b i e n t t e m p e r a t u r e t o t h e b o i l i n g p o i n t ,

B t u / l b

d e n s i t y o f f u e l v a p o r a t b o i li n g p o i n t , l b / f t 3

d e n s i t y o f a m b i e n t a ir , l b / f t 3

b u r n e r s p a c i n g , f t

f l a m e h e i g h t , f t

f u e l s o u r c e d i m e n s i o n , f t

g r a v i t a t i o n a l a c c e le r a ti o n , f t / h r 2

t o t a l f u e l m a s s b u r n i n g r a t e , l b / h r

f l a m e t r a i l i n g le n g t h , f t

F r o u d e n u m b e r , U ~ - / D g , u n i t l e s s

a i r v e l o c i t y , f t / s e c

§ WIND TUNNEL DAT A (9)

| ACETONE 4 i n c h BURNERS

A N-HEXANE 4 inch BURNERS

0 N-HEXANE 6 inch BURNERS

E l A C E T O N E 4 i n c h B U R N E R S I S B U R N E R

PATTERN )

O l I i L L . .. . I , , . . . . . . I , , , , , , ,,

l 1 u2 I (

Fr = --

Og

Figure 10 Flame trailing correlation for interacting fires

t i l i t y o f t h e f l a m e t ra i l i n g c o r r e l a t io n f o r s i t u a t i o n s i n v o l v i n g w i n d - f l a m e

i n t e r a c t i o n s .

Page 8: Interaction Effects of Multiple Pool Fires

7/23/2019 Interaction Effects of Multiple Pool Fires

http://slidepdf.com/reader/full/interaction-effects-of-multiple-pool-fires 8/8

232 F i r e Techn o logy

R E F E R E N C E S

Put nam , A. A. and Speich, C. F., A Model Study of the Intera ctio n of Multiple

Turbu lent Diffusion Flames, Nint h Symposi um International) on Combustion, 1963,

Academic Press, New York, pp. 867-877.

Thomas, P. H., Baldwin, R., and Heselden, A. J. M., Buo yan t Diffusion Flames:

Some Measurements of Air Entrainme nt, Heat Transfer, and Flame Merging, Tenth

Sym pos ium International) on Combustion, 1965, The Combustion Institute, pp.

983-996.

Wate rman , T. E., Labes, W. G., Salzberg, F., Tamney, J. E., and Vodvarka, F. J.,

Predict ion of Fire Damage to Install ations and B uilt-Up Areas from Nuclea r Weap-

ons, Final Report, Phase III, Exper imenta l Studies, Appendices A-G, IIT Research

Institute report for National Military Command System Support Center, Contract

No. DCA-8, November 1964.

4 Huffman, K. G., The Inter actio n and Merging of Flames from Burn ing Liquids,

Ph.D. Thesis, The U niv ers ity of Oklahoma, 1967.

6 Hottel, H. R., a review of Cert ain Laws Governing Diffusive Burn ing of Liquids,

V. I. Blinov and G. M. Khudi akov, Fire Research Abstracts and Reviews, Vol. 1, No. 2

(Jan. 1959), p. 41.

Blackshear, P. L., Some Thoughts on Heat and Mass Transfer in Very Large

Fires, Defense Atomic Support Agency, Informat ion and Analysis Center Special

Report 59, Santa Barbara, California, Oct. 1967.

Burgess, D. S., Strasser, A., and Grum er, J., Diffusive Burn ing of Liquid Fuels

in Open Trays, Fire Research Abstracts and Reviews, Vol. 3, No. 3 (Sept. 1961), p. 177.

8 Thomas, P. H., The Size of Flames from Natura l Fires, Ninth Symposium

International) on Combustion, 1963, Academic Press, New York, pp. 844-859.

9 Welker, J. R. and Sliepcevich, C. M., Bendin g of Wind-bl own Flames from L iquid

Pools, Fire Technology, Vol. 2, No. 2 (May 1966), p. 127.

ACKNOWLEDGEMENT: Fina nc ia l suppo rt for th is work came from the Na tion al

Bureau of Standards, U.S. Army Edgewood Arsenal, and the Un iversi ty of Oklahoma.