Integration of Virtual Labs into science  e-learning.

17
Integration of Virtual Labs in to Science e-learning. DongFeng Liu, Priscila Valdiviezo, Guido Riofrío, Rodrigo Barba November 19, 2015 VARE - 2015

Transcript of Integration of Virtual Labs into science  e-learning.

Page 1: Integration of Virtual Labs into science  e-learning.

Integration of Virtual Labs into Science e-learning.

DongFeng Liu, Priscila Valdiviezo, Guido Riofrío, Rodrigo BarbaNovember 19, 2015

VARE - 2015

Page 2: Integration of Virtual Labs into science  e-learning.

Agenda•Problems•Abstract•Introduction•Methodology

• Assembly module• Gauge module• Simulation module• Network module

•Implemetation and discussion•Conclusion

Page 3: Integration of Virtual Labs into science  e-learning.

Problems

• Theoretical subjects with experimental scenarios.

• Ignorance of pedagogical tools to support the learning process.

Page 4: Integration of Virtual Labs into science  e-learning.

Abstract

• This study focuses on the virtual assembly of instruments, the realization of dynamic 3D gauges, and the setup of emulation-based systems.

• Design and implement 3D Virtual Labs, which are considered as a low- cost alternative to educators and students in science e-learning.

• This research involves designing deploying and complex application that combines advanced visualization; interactive management through complex virtual devices and intelligent components.

Page 5: Integration of Virtual Labs into science  e-learning.

Introduction

• Virtual laboratories as a low-cost alternative solution comparing to real labs. 

They are gaining more and more attention in e-learning. • In our former studies, we developed a virtual 3D game environ

ment  for the intelligent tutoring of algebra and physics problems. 

Therefore, we consider integrating a virtual laboratory into GISTS

(”3D Game­ Based Intelligent Science­Tutoring­System”).• A virtual laboratory for e-

learning should have the functionalities to simulate the assembly and disassembly processes of instruments. 

• In this research we present our findings on the

construction of a virtual laboratory called GISTS.

Page 6: Integration of Virtual Labs into science  e-learning.

Methodology• The development of interactive tools that allow the student to solve

problems through experimentation using objects, tools, and 3D environments.

• Using a game and simulation engine appropriate for a wide variety of simulation and entertainment applications. (www.delta3d.org)

Page 7: Integration of Virtual Labs into science  e-learning.

• Assembly Sequence Planning The assembly sequence determines the current parts that can be  operated on.  In the assembly process, there may be more  than one current part. When a part is chosen, an interactive process  is carried out to determine whether it is the current part.

• Assembly Path Planning The assembly path is the motion trajectory of parts in virtual 

assembly environment, with the purpose of a faster and more effective assembly.

In virtual 3D environment, the assembly path means the series  points or curve from starting in PAM (Position Attitude Matrix) and end PAM.

Assembly Modeling

Page 8: Integration of Virtual Labs into science  e-learning.

Gauge Modeling

• The gauge module in GISTS is designed to create all categories of  3D virtual gauges. Each 3D Gauge in GISTS usually consists

of three parts:

Page 9: Integration of Virtual Labs into science  e-learning.

Simulation module

• The difference with VA (virtual assembly) in the engineering field, where the purpose is to train and improve the assembly skills. The VA used in the e-learning is to help students in understanding the basic structure and the architecture of an experimental instrument. Finally, it will help students operate these instruments to simulate the scientific process. The simulation module in GISTS is responsible for simulating the setup created by a learner.

Page 10: Integration of Virtual Labs into science  e-learning.

Network module.

Page 11: Integration of Virtual Labs into science  e-learning.

Implementation and discussionTo show a 3D Ammeter.

Each 3D gauge has a panel. Currently, the panel is designed and developed by OSG (Open Scene Graphics) gauge layers; the panel is covered with two OSG layers.

The dial is the base layer, which is static. The second layer is the pointer, which is dynamic and designed to simulate the running start of a gauge.

The game actors design the buttons in the ammeter.

Page 12: Integration of Virtual Labs into science  e-learning.

Implementation and discussionThe correct collision response can simulate the real operation process. The collision detections in virtual assembly of GISTS are done by special motion mode. When this mode is active, the parts in the virtual laboratory can collide with others. And this motion mode was developed in such a way we can move a part in three different modes.

During the process of dragging operation, the constraint relations between the parts are limited by setting of the collision detection and collision response.

Page 13: Integration of Virtual Labs into science  e-learning.

Implementation and discussionDisplaying the assembly results, the dynamics simulation is done by ODE (Open Dynamics Engine) in Delta 3D.

Page 14: Integration of Virtual Labs into science  e-learning.

Conclusion•This study is presented to improve the virtual laboratories in order to construct high-level virtual laboratories for middle-school from two points:

a) Integrating the industry using assembly technology into the virtual laboratory experiments. b) Introducing 3D gauges into the virtual laboratories.

• Its experimental assignments will not only help students to better understand scientific processes and rules, but also teach them how to apply the acquired knowledge to practice.

Page 15: Integration of Virtual Labs into science  e-learning.

Conclusion•The future work lies on three aspects:

a) Systematically implement various experimental learning contents.

b) Improving the network module to develop a virtual campus based on virtual laboratory systems.

c) Integration with a LMS (Learning Management System.)

Page 16: Integration of Virtual Labs into science  e-learning.

Questions ?

Page 17: Integration of Virtual Labs into science  e-learning.

Contact

Rodrigo Barba Guamá[email protected]@lrbarba