Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters...

196
Bavarian Environment Agency Instruction Manual for the Assessment of Running Water Ecological Status in Accordance with the Requirements of the EG-Water Framework Directive: Macrophytes and Phytobenthos Version January 2012 Dr. Jochen Schaumburg Christine Schranz Dr. Doris Stelzer Dr. Andrea Vogel Dr. Antje Gutowski

Transcript of Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters...

Page 1: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Bavarian Environment Agency

Instruction Manual for the Assessment of Running Water Ecological Status in Accordance with the Requirements of the EG-Water Framework Directive: Macrophytes and Phytobenthos

Version January 2012

Dr. Jochen Schaumburg Christine Schranz Dr. Doris Stelzer Dr. Andrea Vogel Dr. Antje Gutowski

Page 2: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

Contractor Bavarian Environment Agency (Bayerisches Landesamt für Umwelt) Project Management Dr. Jochen Schaumburg, Bayer. Landesamt für Umwelt Coordination Dipl.-Biol. Christine Schranz, Bayer. Landesamt für Umwelt Macrophytes Dr. Doris Stelzer, Hohenbrunn-Riemerling Diatoms Dr. Andrea Vogel, Hechendorf Phytobenthos Dr. Antje Gutowski, Bremen Translation Dr. Lydia King und Jacqueline King, Freiburg With articles from Dr. Klaus van de Weyer and Dr. Uwe Koenzen et al. (Planungsbüro Koenzen).

Page 3: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

Page 4: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

Page 5: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

1

Table of Content

1  Preliminary Remarks 15 

2  Sampling and Determination of the Macrophyte & Phytobenthos Biocoenosis 16 

2.1  Macrophytes 17 

2.1.1  Mapping Equipment 17 

2.1.2  Determination of the Mapping Section 18 

2.1.3  Completion of the Field Protocol 18 

2.2  Diatoms 22 

2.2.1  Sampling Intervals 22 

2.2.2  Sampling Methods 22 

2.2.3  Sampling Equipment for Running Waters 24 

2.2.4  Preparation 25 

2.2.5  Preparation of Permanent Mounts 27 

2.2.6  Microscopic Evaluation 29 

2.2.7  Criteria for Reliable Evaluation and Assessment 30 

2.3  Phytobenthos without Diatoms 33 

2.3.1  Sampling 33 

2.3.2  Transport, Fixation, Storage and Shipment of Samples 36 

2.3.3  Microscopic Analysis and Documentation 37 

3  Determination of Running Water Type 44 

4  Assessment 53 

4.1  Macrophytes 53 

4.1.1  Calculation of the Reference Index 53 

4.1.2  Type Specific Particularities of the Assessment Procedure 59 

4.2  Diatoms 63 

4.2.1  Assessment Module “Species Composition and Abundance” 63 

4.2.2  Assessment Module “Trophic Index and Saprobic Index” 65 

4.2.3  Assessment Module “Indicators of Acidification” 65 

4.2.4  Assessment Module “Halobic Index” 66 

4.2.5  Determination of Ecological Quality by Combination of Modules 67 

4.2.6  Module Diatoms 67 

4.2.7  Additional Metrics 68 

4.3  Phytobenthos without Diatoms 89 

4.4  Overall Assessment of Running Waters with Macrophytes and Phytobenthos 99 

Page 6: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

2

4.4.1  Combination of the Metrics Macrophytes, Diatoms and Phytobenthos without Diatoms 99 

4.4.2  Determination of the Ecological Status Class 101 

4.5  Remarks to the Interpretation of Assessment Results 129 

5  Literature 131 

6  Identification Literature 135 

7  Appendix 144 

7.1  Profiles of Biocoenotic Macrophyte Types 146 

7.2  Preservatives for Phytobenthos Sampling 162 

7.3  Mapping and Field Protocols 164 

7.4  Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by Dr. Klaus van de Weyer 178 

7.5  Consultation about the Determination of the Valley Bottom Gradient for a Macrophyte Typology for Running Waters article by Planungsbüro Koenzen 184 

Page 7: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

3

List of Tables Table 1: Possible reasons for the non-existence of macrophytes at a sampling section and the assessment

regarding the classification as macrophyte eradication.................................................. 21 

Table 2: List of pennate diatom taxa with a planktic way of life to be excluded during microscopic analysis (D = distribution, m = marine, b = brackish water, No = serial number)......... 30 

Table 3: Aerophilic taxa according to LANGE-BERTALOT (1996) and HILDEBRAND (1991) ........................ 32 

Table 4: Estimation of abundance................................................................................................................. 39 

Table 5: Recommendations of work and time required for sub-samples – simplified analysis .................... 39 

Table 6: Recommendations of work and time required for sub-samples - detailed procedure ..................... 40 

Table 7: Abundance estimates - simplified method ...................................................................................... 42 

Table 8: Abundance estimates – detailed procedure..................................................................................... 43 

Table 9: Key to the macrophyte types in the ecoregion Alps ....................................................................... 46 

Table 10: Key to the diatom types in the ecoregion Alps. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008) ................................................................................................. 46 

Table 11: Key to the phytobenthos types within the ecoregion Alps. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008) ......................................................................... 46 

Table 12: Key to the macrophyte types in the Alpine Foothills.................................................................... 47 

Table 13: Key to diatom types in the ecoregion Alpine Foothills. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008) ............................................................................................. 47 

Table 14: Key to phytobenthos types in the ecoregion Alpine Foothills. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008) ......................................................................... 47 

Table 15: Key to the macrophyte type in the Central German Upland......................................................... 48 

Table 16: Key to diatom types in the ecoregion Central German Upland. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008) ......................................................................... 49 

Table 17: Key to phytobenthos types in the ecoregion Central German Upland. LAWA-Typ according to POTTGIEßER & SOMMERHÄUSER (2008) ......................................................................... 49 

Table 18: Key to macrophyte type in ecoregion North German Lowland.................................................... 50 

Table 19: Criteria for the differentiation of rhithral and potamal running waters or water body sections (Extract from van de Weyer, see Appendix, chapter 7.4, slightly modified)................. 51 

Table 20: Suggestion for a macrophyte running water type adjustment: LAWA-PHYLIB for the North German Lowland (according to van de Weyer, included are only the most probable types, see Appendix, chapter 7.4, modified).................................................................. 51 

Table 21: Key to diatom types in the ecoregion North German Lowland. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008) ......................................................................... 52 

Table 22: Key to phytobenthos types in the ecoregion North German Lowland. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008) ......................................................................... 52 

Table 23: Type specific indicator groups for macrophyte evaluations (No = serial number)....................... 53 

Table 24: Application of siliceous and calcareous groups of reference taxa for the different diatom types. In this table, sub-types are combined to types of higher order. ..................................... 64 

Table 25: Reduction of the sum of reference taxa in the case of mass occurrences of a type specific reference taxon (>40%) in running waters of the Central German Uplands and the North German Lowland (diatom type D 5 to D 13, including sub-types)...................... 64 

Table 26: Indicators of anthropogenic acidification ..................................................................................... 66 

Table 27: Assessment module “indicators of acidification” ......................................................................... 66 

Table 28: Conversion of relative abundance to abundance class.................................................................. 67 

Page 8: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

4

Table 29: Assessment module “Salinization” ............................................................................................... 67 

Table 30: Type specific reference taxa (if no varieties are mentioned, the type variety is concerned) Synonyms are incorporated in the evaluation software ................................................. 69 

Table 31: General reference taxa Geochemistry: blue: = reference taxon of siliceous water bodies, yellow: = reference taxon of calcareous water bodies, grey = to be considered as reference taxon due to trophic sensitivity (data of geochemical preference still insufficient). If no varieties are mentioned, the type variety is concerned. Synonyms are incorporated in the evaluation software. .................................................................. 70 

Table 32: Taxon specific parameters for calculation of trophic index and saprobic index according to ROTT et al. (1997, 1999) TW = trophic value; SW = saprobic value; G = weighting. If no varieties are mentioned, the nominat variety is concerned. This table corresponds with the publication of ROTT et al. Not all taxa included here are also part of the phytobenthos as in PHYLIB (e.g. centrics) and are relevant for assessment (see also Chapter 2.2.6 and 2.2.7). Synonyms are incorporated in the evaluation software.......................................................................................................................... 77 

Table 33: Indicator taxa for salinity of inland waters (modified and expanded according to ZIEMANN et al. 1999) HG = halobic group: hx = haloxenic taxa, hmp = halophilic, mesohalobic and polyhalobic taxa Synonymes are incorporated in the evaluation software. ........... 85 

Table 34: Classification of PoD taxa in four assessment categories according to SCHAUMBURG et al. (2004)............................................................................................................................. 90 

Table 35: Classification of taxa *: Chantransia-Stages are not included in assessment if at a site species of the genera Batrachospermum, Lemanea, Paralemanea or Thorea are found with an abundance of 3, 4 or 5. **: The taxa Chamaesiphon confervicolus and Chamaesiphon incrustans can be combined to the taxon Chamaesiphon confervicolus/incrustans (DVNr 8342) if assessment is carried out using the shortened indicator list. ................ 91 

Table 36: Index limits for assignment of ecological status class: Running waters of Limestone Alps with catchment size ≤ 1000 km²; LAWA-type 1.1 .............................................................. 102 

Table 37: Index limits for assignment of ecological status class: Running waters of Limestone Alps with catchment size > 1000 km²; LAWA-type 1.2 .............................................................. 102 

Table 38: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of Limestone Alps with catchment size ≤ 1000 km²; LAWA-type 1.1................................................................................ 103 

Table 39: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of Limestone Alps with catchment size > 1000 km²; LAWA-type 1.2................................................................................ 103 

Table 40: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Running waters of the Alps LAWA-types 1.1 and 1.2 ................................................ 103 

Table 41: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Running waters of the Alps, LAWA-type 1.1 and 1.2 ......................... 104 

Table 42: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Running waters of the Alps; LAWA-types 1.1 and 1.2 ......................................................................... 105 

Table 43: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms: Running waters of Limestone Alps, LAWA-types 1.1 and 1.2 ................................................................................... 105 

Table 44: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module macrophytes: Running waters of Limestone Alps, LAWA-types 1.1 and 1.2 .......................................................................................................... 105 

Table 45: Index limits for assignment of ecological status class: Siliceous running waters of Alpine Foothills with catchment area ≤ 1000 km², LAWA-type 2.......................................... 106 

Page 9: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

5

Table 46: Index limits for assignment of ecological status class: Calcareous running waters of Alpine Foothills with catchment area ≤ 1000 km², LAWA-types 3 and 11 and 19 in the ecoregion Alpine Foothills........................................................................................... 106 

Table 47: Index limits for assignment of ecological status class: Running waters of Alpine Foothills with catchment area > 1000 km², LAWA-type 4......................................................... 106 

Table 48: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous running waters of Alpine Foothills with catchment area ≤ 1000 km², LAWA-type 2 ................................................................. 107 

Table 49: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of Alpine Foothills with catchment area ≤ 1000 km², LAWA-types 3 and 11 and 19 in ecoregion Alpine Foothills ....................................................................................................................... 107 

Table 50: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of Alpine Foothills with catchment area > 1000 km², LAWA-type 4 .................................................................................. 107 

Table 51: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Running Waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills ........................................................................................................... 108 

Table 52: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Running Waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills.................................................................................. 108 

Table 53: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Running Waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills109 

Table 54: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms: Running Waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills ............. 109 

Table 55: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module macrophytes: Running waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills........................................... 109 

Table 56: Index limits for assignment of ecological status class: Siliceous running waters of variegated sandstone and bedrock in the Central German Upland with catchment area ≤ 100 km², LAWA-types 5 (excl. subtype 5.2: volcanites) and 5.1 and 11 in ecoregion Central German Upland............................................................................................................ 110 

Table 57: Index limits for assignment of ecological status class: Siliceous running waters of volcanic areas in the Central German Upland with a catchment area ≤ 100 km², LAWA-type 5.2 ................................................................................................................................ 110 

Table 58: Index limits for assignment of ecological status class: Siliceous running waters of variegated sandstone and bedrock in the Central German Uplands with catchment area > 100 km² and ≤ 1000 km², LAWA-type 9............................................................................ 110 

Table 59: Index limits for assignment of ecological status class: Calcareous running waters of the loess and keuper regions in the Central Germal Upland with catchment are ≤ 1000 km²; LAWA-types 6 and 6_K and 9.1 in loess, keuper and chalkstone regions excl. lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions and 19 in the Central German Upland............................................................. 111 

Table 60: Index limits for assignment of ecological status class: Calcareous running waters of calcareous regions of Central German Upland with catchment are ≤ 100 km², LAWA-type 7 .... 111 

Table 61: Index limits for assignment of ecological status class: Calcareous running waters of calcareous regions of Central German Upland with catchment area > 100 km² and ≤ 1000 km², LAWA-type 9.1 in lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions excl. loess, keuper and chalkstone regions .................... 111 

Page 10: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

6

Table 62: Index limits for assignment of ecological status class: Calcareous running water in the Central German Upland with catchment area > 1000 km² and ≤ 10.000 km², LAWA-type 9.2112 

Table 63: Index limits for assignment of ecological status class: Calcareous running waters in the Central German Upland with catchment area > 10.000 km², LAWA-type 10............. 112 

Table 64: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous running waters of variegated sandstone and bedrock in the Central German Upland with catchment area ≤ 100 km², LAWA-types 5 (excl. subtype 5.2: volcanites) and 5.1 and 11 in ecoregion Central German Upland113 

Table 65: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous running waters of volcanic areas in the Central German Upland with a catchment area ≤ 100 km², LAWA-type 5.2 ............. 113 

Table 66: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous running waters of variegated sandstone and bedrock in the Central German Upland with catchment area > 100 km² and ≤ 1000 km², LAWA-type 9 ...................................................................................................... 113 

Table 67: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of the loess and keuper regions in the Cerntral Germal Upland with catchment are ≤ 1000 km²; LAWA-types 6 and 6_K and 9.1 in loess, keuper and chalkstone regions excl. lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions and 19 in the Central German Upland ............................................................................................... 114 

Table 68: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of calcareous regions of Central German Upland with catchment are ≤ 100 km², LAWA-type 7 ..................... 114 

Table 69: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of calcareous regions of Central German Upland with catchment area > 100 km² and ≤ 1000 km², LAWA-type 9.1 in lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions excl. loess, keuper and chalkstone regions .................................... 114 

Table 70: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running water in the Central German Upland with catchment area > 1000 km² and ≤ 10.000 km², LAWA-type 9.2 ............ 115 

Table 71: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters in the Central German Upland with catchment area > 10.000 km², LAWA-type 10 ....................................... 115 

Table 72: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Siliceous running waters in the Central German Upland, LAWA-types 5, 5.1, 5.2, and 9 as well as 11 in the Central German Upland............................................................. 116 

Table 73: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters in the Central German Upland, LAWA-types 6, 6_K and 9.1_K as well as 19 in the Central German Upland ..................................................... 116 

Table 74 Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of calcareous regions of Central German Upland with catchment are ≤ 100 km², LAWA-type 7..................................................................... 116 

Table 75: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of Central German Upland, LAWA-types 9.1, 9.2 and 10117 

Table 76: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Siliceous running waters of Central German Upland, LAWA-types 5, 5.1, 5.2 and 9 as well as 11 in Central German Upland............................................... 117 

Table 77: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters in the German Central Upland, LAWA types 6 and 6_K and 9.1 in loess, keuper and chalkstone regions excl. lacustrine

Page 11: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

7

limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions and 19 in the Central German Upland as well as type 7 .............................................. 117 

Table 78: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of Central German Upland, LAWA-types 9.1 in in lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions excl. loess, keuper and chalkstone regions, 9.2 and 10 ................. 118 

Table 79: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms and unreliable module diatoms: Siliceous and calcareous running waters of Central German Upland ................................................ 119 

Table 80: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Siliceous running waters of Central German Upland................................................................................ 119 

Table 81: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Calcareous running waters of Central German Upland with catchment area ≤ 1.000km².............. 119 

Table 82: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Calcareous running waters of Central German Upland with catchment > 1.000km² ..................... 120 

Table 83: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module diatoms: Any running waters of Central German Upland.......................................................................................................................... 120 

Table 84: Index limits for assignment of ecological status class: Siliceous or organic running waters of North German Lowland with catchment are ≤ 1000 km², LAWA-types 11 and 12 in ecoregion North German Lowland as well as 14 and 16, all base-poor or siliceoua types ............................................................................................................................. 121 

Table 85: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area ≤ 1000 km², LAWA-types 11 with base-rich character, 12 with base-rich character, 14 with calcareous character, 15, excl. loess regeion and catchment ≤ 1.000km² as well as 19 in ecoregion North German Lowland121 

Table 86: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area > 1000 km², LAWA-type 15 with catchment area > 1.000km² (i.e. 15_g), excl. loess region and 12 with catchment > 1.000 km² .. 121 

Table 87: Index limits for assignment of ecological status class: Running waters of North German Lowland in loess regions, LAWA-type 18 and 15, only lows regions ........................ 122 

Table 88: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area ≤ 1000 km², LAWA-type 16, calcareous character as well as 17 with catchment ≤ 1.000km²..................................................... 122 

Table 89: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area > 1000 km², LAWA-type 17 with catchment area > 1.000km² ........................................................................................................... 122 

Table 90: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area > 10.000 km², LAWA-type 20....................... 123 

Table 91: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous or orgnis running waters of North German Lowland with catchment area ≤ 1000 km², LAWA-types 11 and 12 in the ecoregion North German Lowland as well as 14 and 16, all types with base-poor or siliceous character....................................................................................................................... 123 

Table 92: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of North German Lowland with catchment area < 1000 km², LAWA-types 11 with base-rich character, 12 with catchment ≤ 1.000km² and with base-rich character, 14 and 16, both with calcareous character, 15, excl. loess region and with catchment ≤ 1.000km², 17 with catchment ≤ 1.000km² and 19 in ecoregion North German Lowland.......................... 123 

Page 12: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

8

Table 93: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of North German Lowland with catchment > 1000 km², LAWA-types 12, base-rich character and at the same time catchment area 1.000 km², 15 i.e.t 15_g), excl. loess regions and at the same time catchment area > 1.000 km², 17 with catchment area > 1.000km² and20 20............... 124 

Table 94 Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of North German Lowland in loess regions, LAWA-types 15, only loess regions and 18 .................................................. 124 

Table 95: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Siliceous or orgnic running waters of North German Lowland, LAWA-types 11, 12, 14 and 16 with base-poor or siliceous character .......................................................... 124 

Table 96 Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of North German Lowland, LAWA-types 11, 12, 14 with base-rich or calcareous character, 15, 18, and 19 in North German Lowland ............. 125 

Table 97: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of North German Lowland, LAWA-types 16, with calcareous character and 17 ......................................................................................... 125 

Table 98: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of North German Lowland, LAWA-type 20 .................... 125 

Table 99: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Siliceous or organic running waters of North German Lowland with catchment area ≤ 1000 km², LAWA-types 11 and 12 in ecoregion North German Lowland and 14 and 16, all types with base-poor or silisceous character ................... 126 

Table 100: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland, LAWA-types 11 with base-rich character, 12 with catchment area ≤ 1.000km² and base-rich character, 14 with calcareous character, 15, excl. loess region and a catchment ≤ 1.000km² and 19 in ecoregion North German Lowland .............................................. 126 

Table 101 Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland with catchment area > 1000 km², LAWA-type 15 with catchment area > 1.000km² (i.e. 15_g), excl. loess regions and 12 with catchment > 1.000 km² ....................................................... 126 

Table 102: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland, LAWA-type 18 and 15, only loess regions............................................................................................ 127 

Table 103: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running water of North German Lowland, LAWA-types 16 with calcareous character, and 17 with catchment area ≤ 1.000km²............................ 127 

Table 104: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland, LAWA-type 17 with catchment > 1.000km².......................................................................................... 127 

Table 105: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland, LAWA-type 20127 

Table 106: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms: Running Waters of North German Lowlands ........................................................................................................ 128 

Table 107: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Siliceous or organic running waters of North German Lowland ..................................................... 128 

Table 108: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module diatoms: Siliceous or organic and calcareous running waters of North German Lowlands ................................................................ 128 

Page 13: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

9

Page 14: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

10

Page 15: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

11

Table of Figures Figure 1: Folding of a moss capsule ............................................................................................................. 19 

Figure 2: Type MRS: Schwarzbach Höhe Jagdschlösschen (Sampling Site No 33, Bavaria).................... 148 

Figure 3: Type MRK: Würm near Mühltal (Sampling Site No 223, Bavaria)............................................ 150 

Figure 4: Type MPG: Innerer Rhein, Niederhausen (Sampling Site No 881, Baden-Württemberg) ......... 152 

Figure 5: Type TR: Schwärze outflow Schwärzensee (Sampling Site 10018; Brandenburg) .................... 154 

Figure 6: Type TNk: Grove near Wehdel (Sampling Site 10026; Lower Saxony) ..................................... 156 

Figure 7: Type TN: Pfefferfließ west of Stangenhagen (Sampling Site No 25, Brandenburg) .................. 158 

Figure 8: Type TNg: Weser near Dörverdev (Sampling Site 10084; Lower Saxony) ................................ 160 

Figure 9: Field protocol for water body structural quality according to LAWA (LÄNDERARBEITSGEMEINSCHAFT WASSER 2000), page 1............................................. 166 

Figure 10: Field protocol for water body structural quality according to LAWA (LÄNDERARBEITSGEMEINSCHAFT WASSER 2000), page 2............................................. 167 

Figure 11: Field protocol for diatom sampling ........................................................................................... 168 

Figure 12: Field protocol for phytobenthos sampling................................................................................. 170 

Figure 13: Microscopy protocol phytobenthos without diatoms, suitable for documentation of an individual subsample.................................................................................................... 172 

Figure 14: Microscopy protocol phytobenthos without diatoms, suitable for documentation of all subsamples of a sample................................................................................................ 174 

Figure 15: Field protocol macrophytes and phytobenthos in running waters (page 1)............................... 176 

Figure 16: Field protocol macrophytes and phytobenthos in running waters (page 2)............................... 177 

Page 16: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

12

Page 17: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

13

List of Equations Equation 1: Conversion of plant abundance in quantities............................................................................. 53 

Equation 2: Calculation of reference index................................................................................................... 59 

Equation 3: Diversity index .......................................................................................................................... 61 

Equation 4: Evenness.................................................................................................................................... 61 

Equation 5: Trophic index according to ROTT et al. (1999).......................................................................... 65 

Equation 6: Saprobic index according to ROTT et al. (1997)........................................................................ 65 

Equation 7: Halobic index ........................................................................................................................... 67 

Equation 8: Conversion of total of reference taxa ........................................................................................ 68 

Equation 9: Conversion of diatom index (diatom types 1 to 12) .................................................................. 68 

Equation 10: Conversion of saprobic index (diatom type 13) ...................................................................... 68 

Equation 11: Calculation of DIFG for diatom types 1 to 12........................................................................... 68 

Equation 12: Calculation of DIFG for diatom type 13 ................................................................................... 68 

Equation 13: Red data book index (RLI) ...................................................................................................... 69 

Equation 14: Assessment index .................................................................................................................... 99 

Equation 15: Equation for conversion of the module RIFG (referenz index running waters macrophytes) on a scale from 0 to 1........................................................................................................... 100 

Equation 16: Equation for conversion of the module BI (assessment index phytobenthos without diatoms) on a scale from 0 to 1. ................................................................................... 100 

Equation 17: Calculation of the index value M&PFG for determination of the ecological status of a running water with reliable results from three modules............................................... 100 

Equation 18: Calculation of the index value M&PFG for determination of the ecological status of a running water with reliable results from the modules diatoms and phytobenthos without diatoms............................................................................................................ 101 

Equation 19: Calculation of the index value M&PFG for determination of the ecological status of a running water with reliable results from modules macrophytes and diatoms .............. 101 

Equation 20: Calculation of the index value M&PFG for determination of the ecological status of a running water with reliable results from the modules macrophytes and phytobenthos without diatoms............................................................................................................ 101 

Page 18: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

14

Page 19: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

15

1 Preliminary Remarks

The assessment techniques presented here were developed and tested as part of a research project including a limited number of sampling sites. Organisms were thereby assigned to indication groups. The developed lists were complemented using literature. These species lists might contain gaps or errors only detectable during the course of further application of this method.

During the past years, considerable taxonomic and nomenclatural changes were made, especially for macrophytes and benthic diatoms. These changes were only included in the indicator lists of this manual if respective knowledge about the ecological preferences of the taxa was available. However, the at the time of publication of the tool latest version of the taxa list of the water organisms of Germany (MAUCH et al. 2003) is incorporated into the according version of the evaluation software PHYLIB. Synonyms and split taxa can be imported into the tool and included in the calculations. A list of all synonyms considered can be exported from the software.

It is obligatory that possibly necessary adjustments to the indicator lists are only carried out by the authorities in collaboration with specialists. Ideally, the project team, in collaboration with the Bavarian Environment Agency, should be consulted.

The class borders of the evaluation method were tested and agreed on by the counties. This phase of the project took place in connection with the development of the new evaluation software. The agreed class borders are listed in this manual.

Information exceeding this instruction manual and regarding the development of the procedures can be found in SCHAUMBURG et al. 2004, SCHAUMBURG et al. 2005, SCHAUMBURG et al. 2007 und SCHAUMBURG et al. 2012.

These and further publications to this topic are available for download at the following web page: http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_englisch/index.htm.

The evaluation software PHYLIB is also available for free and can be found at:

http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/software/index.htm.

Page 20: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

16

2 Sampling and Determination of the Macrophyte & Phytobenthos Biocoenosis

Sampling takes place once a year in the summer during the main growth season of macrophytes. The ideal mapping time (usually mid June to early September) has to be determined for each water body according to the conditions on site. The investigation includes all benthic, phototropic organisms of the reach of a water body. Macrophytes are mapped in the field, diatom samples are collected and stored for preparation and the remaining phytobenthic algae (phytobenthos without diatoms = PoD) are macroscopically recorded and samples for microscopic analysis are collected. Types of water bodies where evaluation procedures could not yet be developed for each module and sampling sites where not all three components can be found should, for now, be assessed using the remaining modules.

The location of the sampling site should be recorded as accurately as possible, ideally by reading the coordinates directly from a GPS. Starting point and endpoint of the investigated section should be recorded.

At first, the section to be investigated has to be determined exactly. Therefore, the water body is surveyed from the bank and a section for macrophyte mapping is selected according to the criteria in Chapter 2.1.2, page 18. Then the form to the structural quality is completed. This step can be omitted if the mapping of the structural quality is already available. An area for phytobenthos sampling is determined within the macrophyte mapping section (Chapter 2.3.1, page 33) and the diatom sampling site is selected according to the criteria in Chapter 2.2.2, page 22.

Diatom sampling takes place before walking through the water body to map macrophytes and phytobenthos to allow collection of the sample from an area as undisturbed as possible. Subsequently, PoD is investigated first, followed by macrophytes. Care has to be taken that all investigations and samplings are carried out as gently as possible and populations of other organism groups are not impaired.

The documentation of sampling and/or mapping forms an important basis for the evaluation and interpretation of the results. The field protocols included in this manual contain all for this procedure relevant information. The repetition of the information to the abiotic factors on all field protocols shall ensure that all in the field recorded original data can always be assigned without doubt. If different specialists work on different components, the additional information to the sampling site is available to all. If the sampling/mapping of the entire benthic flora is carried out by only one person, it is not necessary to record this information several times. In this case a field protocol can be used which only once requires the additional information to the sampling site (Appendix, Figure 15, Figure 16).

Page 21: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

17

2.1 Macrophytes

2.1.1 Mapping Equipment

Italics: optional • GPS • Topographical maps 1:25 000 bzw. 1: 50 000 • Field protocols • Copy of the instruction manual • Field protocol for mapping structural quality (LÄNDERARBEITSGEMEINSCHAFT WASSER 2000) • Instruction for mapping structural quality (LÄNDERARBEITSGEMEINSCHAFT WASSER 2000) • Writing utensils • Chest waders • Extractable rake • Underwater viewer • Camera • Freezer bags and clips • Cool box and ice packs • Envelopes/moss capsules for moss samples • Identification guides (see below) • Handlense • (Portable) stereo microscope and accessories • Plant press and accessories • Safety equipment if applicable (e.g. life jacket)

Identification guides (selection) • CASPER & KRAUSCH (1980, 1981) • KLAPP & OPITZ VON BOBERFELD (1990) • KRAUSCH (1996) • KRAUSE (1997) • OBERDORFER (1994) • ROTHMALER (1994A, 1994B) • SCHMEIL & FITSCHEN (2009)

Special guides for identification of mosses (selection) • BERTSCH (1959) • BURCK (1947) • DEMARET & CASTAGNE (1964) • FRAHM & FREY (1992) • FREY, FRAHM, FISCHER & LOBIN (1995) • LANDWEHR (1984) • MÜLLER (1957) • NEBEL & PHILIPPI (2000) • NEBEL & PHILIPPI (2001) • NYHOLM (1986) • NYHOLM (1993) • PAUL, MÖNKEMEYER & SCHIFFNER (1931) • SCHUSTER (1980) • SMITH (1992) • WELCH (1960)

A summary is also VAN DE WEYER et al. (2011).

Page 22: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

18

2.1.2 Determination of the Mapping Section

Macrophyte mapping takes place at, from an ecological point of view, homogenous section of running water during the main growing season (usually mid-June to early September). Above all, the studied section should be homogenous regarding flow velocity, shading and sediment conditions. Along a section there should not be large changes in land use (e.g. forest/pasture). In addition, there must be no inflows (e.g. tributaries, drainages) into the sampling section of the running water. If there are abrupt changes in the macrophyte vegetation composition, the investigated area has to be delimited. Mapping at sampling sites near bridges or weirs should take place upstream of such structures and therefore outside its direct influence. The length of the section to be investigated is about 100 m or, if necessary, more.

2.1.3 Completion of the Field Protocol

The latest version of the field protocol can be printed from: http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_englisch/index.htm

On page 1of the standardised field protocol (Figure 15) the general characteristics of the sampling site are recorded. Grey fields are optional, i.e. they only have to be completed if a detailed survey is carried out (see above). Apart from general information, characteristic structural parameters like mean depth, water level and mean width, and optionally also turbidity, are recorded. Shading of the whole section is estimated following the five-stage shading scale of WÖRLEIN (1992). Flow conditions are recorded using the mapping and assessment procedure for structural quality of the BAYERISCHES LANDESAMT FÜR WASSERWIRTSCHAFT (1995). Conspicuities in colour and smell of the water can be noted verbally. Substrate conditions at the sampling site are classified in 5% steps according to an eight-stage scale (distribution of grain size according to SCHACHTSCHABEL

et al. 1992). In addition, building constructions and foreign substrate are noted. If it is impossible to investigate the entire cross section of large rivers, it has to be recorded whether the entire water body or only the part along the bank was studied. At least two photographs (e.g. upstream and downstream) should be taken for each sampling site. In addition, peculiarities or abnormalities at a sampling site are recorded as well as the length of the mapped area.

Macrophytes occurring in the mapped section are investigated by wading, if possible, against flow direction, through the running water. To cover the whole width of the running water, wading should be carried out following a zigzag pattern. Thereby an underwater viewer or a comparable viewing aid should certainly be used. Using a boat, especially in deep, not wadable water is possible, but not obligatory.

Stoneworts, mosses and vascular plants growing submerged or, at least at mean water level, rooting in the water are recorded. As far as possible, species identification is carried out in the field. Only if this is not possible, samples are taken for later identification. Characeae and phanerogams are best transported in labelled freezer bags with little water and kept in cool boxes.

Moss samples are stored in so called “moss capsules” made out of paper. To make a moss capsule a piece of DIN A4 paper is folded as follows (Figure 1): The bottom third is folded upwards (1), then about 2 cm on the right and left are folded inwards (2,3) to close the edges. In the end, the

Page 23: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

19

upper third of the paper is folded downwards as a “cover” (4). Moss samples can be dried in these – best pencil labelled – moss capsules and later dampened with water for identification.

Figure 1: Folding of a moss capsule

On the second page of the field protocol (Figure 16) the species and their abundances according to KOHLER (1978) are recorded. Additionally, it is noted whether the plants grow submerged or emerged. Optionally, notes can be made regarding vitality and sociability as well as to the sediment within the macrophyte stand and if any plants were collected for the herbarium. If a taxon occurs in two different growth forms (i.e. submerged and emerged) or on two very different substrates (i.e. stone and wood), the taxon is recorded twice on the field protocol. The abundance can then also be noted twice, but in addition the total abundance of this taxon has to be recorded for the sampling site too. For a general characterisation of the sampling site it is advisable to record roughly the dominant taxa growing along the river bank.

At great depth and/or at high turbidity plants are mapped using an extractable rake (max. length = 3 m, width = 60 cm, space between prongs ca. 2 cm). Deep, inaccessible running waters are investigated from the water’s edge by wading into the river as far as possible and carefully raking over the bottom. Mapping from a boat or with the help of divers is also possible. The type of mapping has to be noted in the field protocol. If it is only possible to map along the river bank, then this has also to be mentioned in the field protocol (p.1).

If helophyte dominance occurs at a site, this has to be recorded on page 1 of the field protocol. The criterion is considered fulfilled, if the bottom of a section of the water body is covered continuously and densly by one or more of the following emerged growing species:

• Glyceria maxima • Phalaris arundinacea • Phragmites australis • Sagittaria sagittifolia • Sparganium emersum • Sparganium erectum • Urtica dioica

The taxa forming this dominance are also noted.

Page 24: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

20

On page 1 of the field protocol it is recorded if macrophyte eradication exists together with the associated reasons. In the evaluation software the field “reason for macrophyte eradication” is an obligatory field and has to be filled in. The inspection of possible reasons already during the mapping on site is necessary.

Macrophytes cannot be found at all sampling sites. There might be various reasons for this. Some types of water body are naturally barren and free of macrophytes or only sparsely populated by macrophytes in their reference state. However, there might also be anthropogenic influences preventing or constraining macrophyte growth. To be able to evaluate a sampling site according to the available macrophyte vegetation, some minimum requirements regarding the abundance and number of the occurring taxa have to be fulfilled (see Chapter “Criteria for a Reliable Assessment”, page 58). If there are only very few or no macrophytes at a sampling section, macrophyte eradication has always to be taken into consideration. Macrophyte eradication is defined as the absence of macrophytes for anthropogenic reasons; however, this does not include the non-existence of macrophytes for natural reasons. The reasons for the lack of macrophyte vegetation are not always obvious. It is possible that sites without recognisable anthropogenic influences are free of macrophytes despite good growing conditions. In the case of under reference conditions (nearly) macrophyte free sites there might be not recognisable anthropogenic pollution. If macrophyte eradication or anthropogenic influences leading to complete or nearly complete breakdown of the macrophyte population can be proven, the module macrophyte is assigned class 5. If it is not possible to unambiguously find a reason for the absence of macrophyte vegetation, the index calculation is seen as not reliable and is not included in the determination of the ecological status class.

A list of possible reasons for the lack of macrophytes is given in Table 1. This compilation might not be complete; however, it is in accordance with the possible reasons which obligatory have to be included in the evaluation software, if macrophyte eradication exists. If an extension of the list becomes necessary, this can, after examination, be adjusted within the software centrally.

Page 25: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

21

Table 1: Possible reasons for the non-existence of macrophytes at a sampling section and the assessment regarding the classification as macrophyte eradication

Kind of pressure Pressure

Macrophyte eradication

Entry Phylib-Tool

Strong trophic pollution Yes √

Strong saprobic/organic pollution Yes √

Acidification Yes √

Geogenic low pH No

Salinization Yes √

Geogenic high salt content No

Chemical pollution(e.g. pesticides or heavy metal) Yes √

Material

Naturally high humics content No

High load of suspended solids (e.g. through erosion of fields) Yes √

Naturally caused suspended solids input (e.g. affected by glacier outflow) No

Mowing Yes √

Clearing Yes √

Dredging (e.g. ship routes, harbours) Yes √

Anthropogenic wave action (e.g. navigation) Yes √

Naturally caused waves (e.g. wind exposure) No

Bankfixation leading to changes in hydromorphological conditions (e.g. waves strongly breaking instead of rolling)

Yes √

Sediment relocation due to natural reasons (e.g. regular flooding, rapid flow conditions due to steep slopes)

No

Boat activity Yes √

Bathing activity Yes √

Mechanic

Trample and use by pasture animals Yes √

Bed lining Yes √

Rockbed No

Rhithralisation by straightening Yes √

Structural

Naturally rapid flow conditions (e.g. steep slopes) No

Herbivorous fish Yes √

Non-native and/or too large populations of crayfish Yes √

Natural population size of native crayfish No

Herbivorous native water birds in natural population size No

Herbivore organisms

Non-native herbivorous water birds and/or too large populations of herbivorous water birds

Yes √

Few/no macrophytes without recognisable natural or anthropogenic reason No

Anthropogenic strong shading (e.g. due to buildings at the bank or bridges) Yes √

General

Natural strong shading (e.g. forest) No

A more detailed morphological survey of the sampling sites in regards to riverbed, bank and surroundings can be conducted using the “Field report for mapping water body structural status in accordance with the recommendations of LAWA 1998” (LÄNDERARBEITSGEMEINSCHAFT WASSER 2000) (Figure 9 and Figure 10), if an up-to-date mapping of structural status of the section is not already available.

Page 26: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

22

2.2 Diatoms

2.2.1 Sampling Intervals

Sampling should take place during a period of low flow after several weeks of stable hydrological conditions. In water bodies characterised by an alpine drainage system the best time is late winter. In the Alpine foreland, in the Central German Uplands and the North German Lowland the ideal sampling months are August and September, when communities are usually taxon rich and diverse. The time of maximal biomass development from autumn to spring, however, is not suitable in these regions, because the communities are, during that time, often dominated by one or few species (e.g. Navicula lanceolata) so extremely that an assessment is difficult if not even impossible. If temporary changes in ecological status due to land use are known, a second sampling is strongly recommended.

Exceptions are streams in the Central German Upland which are in danger of acidification. To prove an acidification impact, sampling has to be carried out two to four weeks after the end of snow melt. If a characterisation of the state of acidification should go beyond the assessment according to the WFD, additional sampling during a period of low flow is absolutely necessary. Only then can it become possible to say whether the water body is acidic all year round, only periodically acidic or not at all acidic (see CORING 1999).

2.2.2 Sampling Methods

At structural uninfluenced sites samples are taken from the natural, for the water body characteristic bottom substrates in representative proportions. If the site is structurally degraded, samples are taken from the available natural and/or anthropogenic introduced substrates. Sampling has to take place in a depth zone continuously submerged to prevent the collection of taxa adapted to drying and aerophilic taxa. This is particularly important when sampling along shipways.

Areas with extremely strong current as well as still water zones close to the bank are to be avoided. Furthermore, strongly shaded sections should not be considered except if they are characteristic for the water body section under investigation. Moreover, there should be no inflows or drainages into the section to be sampled. The water body is waded through against the flow. The characteristics of the investigated section (position, substrate, light conditions, etc.) of the water body have to be noted in the field protocol (Figure 11). At each site at least two photographs should be taken (e.g. upstream and downstream).

In running waters with medium to high flow velocity it is recommended to sample from hard substrate, especially from pebbles or cobbles. Therefore at least ten stones are removed carefully from the water body making sure that they remain in their original orientation. As far as possible the stones should be collected from all over the cross section and it should be stones which are not relocated under normal hydrological circumstances. The epilithon from the top of the stones is scratched off completely using a toothbrush, tea spoon, spatula or similar device and transferred

Page 27: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

23

into a labelled wide neck sampling container with a volume of at least 100 ml. Due to the potentially high risk of contamination toothbrushes should only be used once or be sonicated thoroughly between two sampling occasions. The amount of epilithon can vary considerably in different water types, sometimes no growth is recognisable macroscopically, but it can be felt when touching the substrate surface (slimy!). In any case, a relatively large amount of epilithon should be collected – after settlement there should be at least 5 ml diatomaceous sediment in the sampling jar.

For slow flowing waters KELLY et al. (1998) recommend to sample vertical exposed hard substrates, like bridge piers or quays, for the assessment of various pressures using indices. For investigations aiming to capture water body specific biocoenoses, this approach is not applicable. In contrast, the natural bottom substrate is to be preferred. It usually consists of sand, gravel or fine sediments. In wadable areas the upper millimetres of bottom substrate should be carefully removed with a spoon. In areas of higher flow velocity this can be problematic as the material on the spoon is often washed away by the flow.

Due to lack of experience, a standardised method for such water bodies is not yet available. To gain the upper layers of the sediment one could, for example, also use sediment cores or grabs. The possibility of pipetting off the periphyton still remains to be tested.

For sampling soft sediment in lakes in Northern Germany various procedures were developed and suggested. A detailed description of these methods can be found in the final report to project 10.09 from LAWA (SCHAUMBURG et al. 2011). Under suitable conditions these methods can be transferred to sampling in flowing waters. The following procedures are suggested:

• Sampling per hand: Well developed diatom associations can catch one’s eyes by their brown pigmentation (e.g. Geissleria spp. or Gomphonema spp.) or by their structure which can be like jelly (e.g. Fragilara pulchella), slightly cohesive (Mastogloia spp.) to loosely flaky (without cohesion) but then mostly highly voluminous (Fragilaria brevistriata, F. construens). These well developed epipsammic associations can best be brought into the palm of a hand by a scissor like closing movement of middle and ring finger of the horizontally over the substrate gliding hand. It can then be taken out of the flat water with the hand and transferred into a sampling jar. To sample epipsammic diatoms a spoon or something similar can be used, if enough material can be collected in this way (at least 5 ml sand free, fine mud after 10 min settlement). Therefore, when using tools, the number of aliquots might have to be increased. This method is suitable for sampling at depths of up to about 1 m (depending on body size and arm length of the person carrying out the sampling).

• Sampling with suction devices: For the collection of benthic diatoms from sediment suction- or pump systems are also suitable. Using a large syringe, sometimes with an attached tube, it is possible to suck off the upper diatoms without disturbing the sediment. Under good conditions it is possible when using the syringe with a tube extension to sample in depths of 50-100 cm. In Southern Germany hand vacuum pumps with intercalated filter chambers were used successfully for the collection of epipsammic diatom associations.

Page 28: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

24

• Sampling with sediment corer: At sites where sampling has to be carried out in a depth over 1m, e.g. in front of a closed Phragmites stand, it is recommended to use a boat and a sediment corer. Only the upper millimetres of the retained sediment are needed. To remove these upper millimetres from the corer a suction device, as described above, is ideal.

Sampling deep low land streams and rivers is problematic if it is difficult to get to the water due to the steepness of the banks. Here, the priority when selecting the sampling site has to be given to accessibility even if the selected site is, in the end, less representative for the water body.

Samples are best preserved in the field or at the latest in the evening of the sampling day using Ethanol. Samples should be kept in a store room until further processing.

2.2.2.1 Labelling of a sampling jar:

For reasons of quality control the sampling jar containing the diatom suspension has to be labelled clearly. The following information is necessary:

• Code (unambiguous identifier relating to all accompanying information and the processed sample)

• Water body (unambiguous identifier) • Sampling site / transect (unambiguous identifier) • Substrate samples were taken from • Date of sampling • Name/ID of person who carried out the sampling

2.2.3 Sampling Equipment for Running Waters • Topographical maps 1:25.000 or 1:50.000 • GPS • Field protocol • Copy of the instruction manual • Writing utensils • Chest waders • Wide neck bottles or vials • Waterproof pen for labelling sampling jars • Toothbrush, tea spoon, spatula or similar • Ethanol • Camera • Safety equipment

Page 29: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

25

2.2.4 Preparation

2.2.4.1 Material and Equipment

Chemicals

• Hydrochloric acid 25% p.a. • Sulphuric acid 95-97% p.a. • Potassium nitrate p.a. • Ethanol

Further Equipment

• Fume hood • Hot plate • Protective clothing (lab coat, goggles, if necessary chemical proof lab gloves) • Beakers (volume 100 ml or more) • Watch glasses with a diameter corresponding to beakers • Beaker tongs • Boiling stick • If necessary, mortar and pistil to pulverize potassium nitrate • Spatula • Small plastic sieve with diameter corresponding to diameter of beakers • Universal indicator paper for pH determination • Distilled water • Wash bottle • Screw cap vials with gasket

2.2.4.2 Acid Treatment

The here described boiling procedures have to be carried out with great caution in a powerful fume hood in compliance with health and safety regulations. Protective clothing and eye protection are obligatory.

Identification of diatoms at species level is based on the structures of the silica valves and requires the preparation of permanent mounts. Especially species with small frustules can only be identified with certainty in cleaned preparations after removal of all organic cell components and any other, disturbing organic matter. The suitability of the various for sample preparation existing methods depends on the properties of the sample material. The most commonly used preparation techniques are described in KRAMMER & LANGE-BERTALOT (1986). For the preparation of periphyton samples from bottom substrates (stones, gravel, mud), possibly with a high proportion of organic, not diatomaceous material, the oxidation with strong acids (recommended is the use of sulphuric acid) might be a useful method.

Page 30: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

26

An aliquot of each sample should be retained. Thereby it is sensible to mix the whole sample very well by shaking vigorously, then to pour an aliquot into a beaker and retain the rest in the labelled sampling jar.

2.2.4.3 Treatment with Hydrochloric Acid

The sample is firstly boiled with hydrochloric acid to prevent the formation of gypsum (calcium sulphate) during the following treatment with sulphuric acid. If the water content of the samples is high it is advisable to leave the sample to settle for 24 h and then to decant any surplus water carefully. Alternatively, the samples can be heated for most of the water to evaporate. To mix the remaining sample it is shaken vigorously and about 20 ml of the material is transferred into a labelled beaker (volume 100 ml or more). Then 20 to 40 ml of 25% hydrochloric acid is added. If the sample is very calcareous the hydrochloric acid has to be added slowly and in small aliquots before heating to prevent extensive foam formation. By heating the sample in the beaker with a boiling stick and covered with a watch glass for 30 min the carbonates, the stalks and other extracellular polysaccharides of the diatoms are dissolved and the frustules dislodged from the substratum. If the sand content of the sample is high, strong movement of the beaker has to be expected and it might become necessary to correct the position of the beaker on the hotplate. Therefore beaker tongs are used which are washed in or under tap water to prevent contamination between samples. The boiling sticks have also got to be cleaned thoroughly after each use.

After boiling the samples are left to cool, then any larger particles, if there are any left, are removed using a small kitchen sieve and the beaker is filled up with tap water. To remove any remaining sand, gravel or smaller stones as far as possible, the suspension is strongly agitated, allowed to settle for about one minute and then the diatom containing supernatant can be decanted. In the following, the samples are carefully reduced several times to about one third of the volume and the beaker filled with tap water again. Usually about four rinses with at least 24 h time in between for settlement are adequate. Alternatively, the samples can be centrifuged for about 10 min at maximal 2000 rpm and the supernatant decanted to about one third or removed using a vacuum pump. This procedure allows for a quicker preparation. However, in the end it is more labour intensive and diatoms with long frustules might get broken.

2.2.4.4 Treatment with Sulphuric Acid

The water content of the sample is reduced by decanting before 20 to 30 ml of concentrated sulphuric acid is added and the sample is brought to the boil. About every 30 min a pinch of potassium nitrate is added with a spatula until the sample loses colour or becomes slightly yellow. If there are only small amounts of organic material in the sample, only few doses of potassium nitrate will suffice, otherwise the boiling procedure might take up to eight hours. After the colour change the samples should remain on the hotplate for another 20 min. After cooling and settlement of the diatom frustules these form a white to slightly greyish deposit. The samples are then rinsed until they are neutral (indicator paper!). Great care has to be taken at the first rinse as the sample might show strong reactions. Experience shows that about eight rinses are necessary and again the time for settlement between rinses should be at least 24 h. For the last rinse distilled water should be used. The prepared sample is then ready and

Page 31: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

27

should be mixed well and transferred into a labelled screw cap vial with gasket. The screw cap vials are to be kept in a storage room for documentation.

Labelling of screw top vials:

The minimum information to be put on a screw top vial with prepared diatom suspension is as follows:

• Code (unambiguous identifier relating to all accompanying information and the permanent mount)

• Water body (unambiguous identifier) • Sampling site / transect (unambiguous identifier) • Substrate samples were taken from • Date of sampling • Laboratory where samples were prepared/Name/ID of person who prepared the sample

2.2.5 Preparation of Permanent Mounts

2.2.5.1 Materials

• Microscope slides • Cover slips (recommended are round cover slips with a diameter of 18 mm) • Tweezers with rounded tips or cover slip tweezers • Naphrax • Storage box • Labels

The cover slips have to be cleaned before the diatom suspension is put on. It is suitable to dip it into a concentrated solution with washing-up liquid to remove any remaining fat and to reduce surface tension. The diatom suspension in the screw top vial is then agitated by shaking and immediately afterwards a small amount is taken out using a clean pipette and dripped onto the cover slip. To prevent convection the drop has to be kept as flat as possible. If the diatom suspensions are highly concentrated it is often necessary to dilute them with distilled water in a watch glass. The degree of dilution depends on the density of frustules in the preparation which in turn depends on the amount of inorganic components left. Problems can occur if samples contain high amounts of minerals (clay and silt particles) which can’t be removed from the sample and are indistinguishable from the diatom frustule in the screw top vials. Therefore it is advisable to make mounts with differently diluted diatom suspension.

The optimal frustule density is achieved if, at a magnification of 1000 x, the necessary number of 400 frustules (see below) is reached after screening one or more whole transects due to the partly demixing of the diatom frustules in the drop on the cover slip caused by convection leading to an uneven distribution with small, light forms concentrating in the middle of the cover slip and over proportional high amounts of larger, heavier forms at the edge. To counter this phenomenon whole transects are evaluated.

Page 32: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

28

To prevent contamination, used pipettes have to be cleaned thoroughly between uses under running water. After the diatom material has been air-dried over night the cover slip is, with tweezers, carefully put up-side-down on a labelled fat-free microscope slide with one drop of Naphrax. To remove the solvent the mount is heated over a Bunsen burner until bubbles form for about 5 seconds. Immediately thereafter the mount has to be stored vibration-free on a flat, cold surface until it is cooled. Naphrax contains toluol which vaporises during heating. Therefore great care has to be taken when handling it. The toluol can also be vaporised by placing the slide on a hotplate. Using tweezers it has to be checked whether the cover slip is connected tightly to the slide. Otherwise the procedure has to be repeated.

Now the preparation can immediately be examined under the light microscope and is stable for decades if stored appropriately. It is very important to build up an archive with detailed labelled slides with information regarding water body, position of the sampling site (if available with coordinates), substrate type, date and, if available, codes allowing to relate to other information sources.

After preparation of the permanent mounts the remaining diatom suspension in the screw top vials is preserved by adding ethanol. To prevent the sample from drying, five to ten drops of glycerine are added before final storage.

Labelling of microscope slides:

At least the following information has to be contained on the microscope slides:

• Code (unambiguous identifier relating to all accompanying information and the prepared sample)

• Water body (unambiguous identifier) • Sampling site / transect (unambiguous identifier) • Date of sampling • Name/ID of the person who has analysed the slide

Page 33: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

29

2.2.6 Microscopic Evaluation

To obtain representative distributions on the strew mounts at a magnification of 1000x to 1200x 400 diatom objects are identified to species, in some cases a differentiation of varieties is required (see Chapter 4.2.1). During a count, frustules in valve view and in girdle view are to be included. Because it is not always possible to tell single valves from whole frustules with two valves when dealing with Naviculaceae in valve view, principally no distinction is made between single valves and whole frustules, but “objects” are recorded. Frustules not separated into valves during preparation are therefore counted as one object. Not identifiable girdle bands are allocated to genus, if possible grouped and divided into size classes. After the count these are, according to their relative abundance, allocated to and divided up between the most likely identified species. Broken valves are only considered if more than half of the valve is available. The frequencies are given as relative abundances. The results are to be documented, together with the DV-numbers according to MAUCH et al. (2003), in form of Excel or Access files or alternatively in specific databases.

Only benthic and benthic/planktic taxa are included in the counts. Exclusively planktic living organisms are not taken into consideration. As reliable information to the way of life of centric taxa is not available for all taxa or sometimes even contradictory, Centrics except Melosira varians are not included during counts. The same is true for pennate taxa with an obligatory planktonic way of life. To ensure comparability of the results of different workers, planktic, pennate taxa to be excluded during microscopic analysis are summarised in Table 2. For completeness marine and brackish water species are also included. Samples with more than 5% planktic taxa are excluded during calculations with the evaluation software PHYLIB.

The inclusion of Centrics leads to changes in the relative abundance values of benthic taxa. This can have consequences for the assessment of a transect and reduce the comparability of the results of different workers. In addition, one of the “criteria for reliable assessment” of the DV-Tool (98%< total frequency<102%) ensures that records with a high number of Centrics are assigned an unsupported assessment result. Reason for the unsupported assessment is in these cases the procedural method during microscopic analysis.

Absolutely necessary for an assessment is a sufficient depth of identification. In some cases this exceeds the species level and sometimes varieties and subspecies have to be determined. In individual cases, the required depth of identification is given in the indicator lists (compare also to the latest software version).

Page 34: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

30

Table 2: List of pennate diatom taxa with a planktic way of life to be excluded during microscopic analysis (D = distribution, m = marine, b = brackish water, No = serial number)

No DV-No Taxon Author D

1 6142 Asterionella HASSALL 2 6050 Asterionella formosa HASSALL 3 6863 Asterionella formosa var. acaroides LEMMERMANN 4 16820 Asterionellopsis ROUND M 5 16797 Asterionellopsis glacialis (CASTRACANE) ROUND M 6 16819 Asterionellopsis kariana (GRUNOW) ROUND M 7 26929 Cylindrotheca closterium (EHRENBERG) REIMANN & J.C.LEWIN m, b 8 16831 Delphineis surirella (EHRENBERG) G.W.ANDREWS M 9 6075 Fragilaria crotonensis KITTON 10 6215 Fragilaria reicheltii (VOIGT) LANGE-BERTALOT 11 6410 Fragilaria ulna angustissima-Sippen sensu KRAMMER & LANGE-BERT. 12 6023 Nitzschia acicularis (KUETZING) W.SMITH 13 16856 Nitzschia acicularis-Formenkreis 14 16600 Nitzschia acicularis var. closterioides GRUNOW 15 16394 Nitzschia behrei HUSTEDT B 16 16398 Nitzschia closterium (EHRENBERG) W.SMITH m, b 17 6806 Nitzschia fruticosa HUSTEDT 18 16847 Pseudo-nitzschia H.PERAGALLO M 19 16659 Rhaphoneis EHRENBERG M 20 16812 Rhaphoneis amphiceros (EHRENBERG) EHRENBERG M 21 6695 Surirella splendida (EHRENBERG) KUETZING 22 6074 Tabellaria fenestrata (LYNGBYE) KUETZING 23 16849 Thalassionema nitzschioides (GRUNOW) GRUNOW ex HUSTEDT M

Standard identification guide is the key from HOFMANN et al. (2011). In addition, further literature should be referred to. Important are:

• KRAMMER (2000, 2002, 2003) • KRAMMER (1997 a & b) • KRAMMER & LANGE-BERTALOT (1986-1991, 2004) • LANGE-BERTALOT & METZELTIN (1996) • LANGE-BERTALOT & MOSER (1994) • LANGE-BERTALOT (1993, 2001) • LEVKOV (2009) • REICHARDT (1999)

For water bodies influenced by salt water in the Northern German Lowlands WITKOWSKI &

LANGE-BERTALOT (2000) has to be used.

2.2.7 Criteria for Reliable Evaluation and Assessment

As far as possible, diatoms are to be identified to the level given in the indicator lists (see Chapter 4.2 or lists from PHYLIB software). Samples can’t be used for assessment if they contain more than 5% taxa only identifiable to genus level, not identifiable (sp., spp.) and/or not unambiguously identifiable (cf., aff.). In most cases, the ecological preferences of taxa are different at species level, but sometimes also at subspecies or variety level. Therefore it is impossible to assign indicator values to genera or groupings of taxa. If a larger number of diatoms could not be identified to the required level, a distortion of the assessment result has to be assumed.

If there are, even after maximal concentration of the sample material, only very few diatoms, this might indicate a mistake during sampling or a bad selection of sampling time (Chapter 2.2.1). As criterion for evaluability a minimum of 50 diatom objects in one transect are suggested using a

Page 35: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

31

magnification of 1000x and a diameter of the cover slip of 18 mm. Even if it is assumed that the slide can’t be evaluated, the diatom density has to be determined by a test count of one transect. Even with a very careful approach, experience shows that an evaluation of up to 3% of samples might not be possible.

A further criterion for exclusion is a high number of aerophilic taxa in the sample which can e.g. be found when sampling an only recently flooded area in times of rising runoff. If there are more than 5% aerophilic taxa (Table 3) in a sample, a strong aeric influence has to be assumed, which superimposes, or at least strongly influences, the assessment. Additional information to the aerophilic character of taxa can be found in KRAMMER & LANGE-BERTALOT (1986–1991).

Page 36: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

32

Table 3: Aerophilic taxa according to LANGE-BERTALOT (1996) and HILDEBRAND (1991)

No DV-No Name Author1 6247 Achnanthes coarctata (BREBISSON) GRUNOW 2 6286 Amphora Montana KRASSKE 3 6287 Amphora normannii RABENHORST 4 16692 Denticula creticola (OESTRUP) LANGE-BERTALOT & KRAMMER 5 6344 Diploneis minuta PETERSEN 6 16264 Hantzschia abundans LANGE-BERTALOT 7 6084 Hantzschia amphioxys (EHRENBERG) GRUNOW 8 6802 Hantzschia elongate (HANTZSCH) GRUNOW 9 16267 Hantzschia graciosa LANGE-BERTALOT

10 16271 Hantzschia subrupestris LANGE-BERTALOT 11 16276 Hantzschia vivacior LANGE-BERTALOT 12 6805 Melosira dickiei (THWAITES) KUETZING 13 6449 Navicula aerophila KRASSKE 14 6458 Navicula brekkaensis PETERSEN 15 6467 Navicula cohnii (HILSE) LANGE-BERTALOT 16 6858 Navicula contenta GRUNOW 17 16003 Navicula egregia HUSTEDT 18 6489 Navicula gallica var. perpusilla (GRUNOW) LANGE-BERTALOT 19 6492 Navicula gibbula CLEVE 20 6504 Navicula insociabilis KRASSKE 21 6028 Navicula mutica KUETZING 22 16020 Navicula nivalis EHRENBERG 23 16021 Navicula nivaloides BOCK 24 16022 Navicula nolensoides BOCK 25 16025 Navicula paramutica BOCK 26 16026 Navicula parsura HUSTEDT 27 6013 Navicula pelliculosa (BREBISSON) HILSE 28 6528 Navicula pseudonivalis BOCK 29 16360 Navicula pusilla var. incognita (KRASSKE) LANGE-BERTALOT 30 16366 Navicula saxophila BOCK 31 16036 Navicula subadnata HUSTEDT 32 16375 Navicula suecorum var. dismutica (HUSTEDT) LANGE-BERTALOT 33 6569 Neidium minutissimum KRASSKE 34 6574 Nitzschia aerophila HUSTEDT 35 16393 Nitzschia bacillariaeformis HUSTEDT 36 6921 Nitzschia debilis ARNOTT 37 16407 Nitzschia epithemoides var. disputata (CARTER) LANGE-BERTALOT 38 16050 Nitzschia harderi HUSTEDT 39 16053 Nitzschia modesta HUSTEDT 40 6614 Nitzschia terrestris (PETERSEN) HUSTEDT 41 16453 Nitzschia valdestriata ALEEM & HUSTEDT 42 16460 Orthoseira dendroteres (EHRENBERG) CRAWFORD 43 16060 Orthoseira roeseana (RABENHORST) O'MEARA 44 6148 Pinnularia borealis EHRENBERG 45 6635 Pinnularia frauenbergiana REICHARDT 46 6645 Pinnularia krookii (GRUNOW) CLEVE 47 16473 Pinnularia lagerstedtii (CLEVE) CLEVE-EULER 48 6654 Pinnularia obscura KRASSKE 49 6225 Simonsenia delognei (GRUNOW) LANGE-BERTALOT 50 6679 Stauroneis agrestis PETERSEN 51 16081 Stauroneis borrichii (PETERSEN) LUND 52 16558 Stauroneis gracillima HUSTEDT 53 16083 Stauroneis lundii HUSTEDT 54 16084 Stauroneis muriella LUND 55 6685 Stauroneis obtuse LAGERSTEDT 56 16095 Surirella terricola LANGE-BERTALOT & ALLES

Page 37: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

33

2.3 Phytobenthos without Diatoms For phytobenthos without diatoms an alternatively applicable simplified procedure was developed besides the complete and detailed assessment method to minimise time and effort. The detailed procedure is based on a, as complete as possible, recording of all existing phytobenthic algae, including microscopic forms of all running water sites to be assessed according to the module macrophytes and phytobenthos. The simplified procedure is limited to macroscopically visible phytobenthos. The application of the simplified procedure, however, results in some water body types in a considerably reduced number of reliable assessments (SCHAUMBURG et al. 2005).

Another time saving method is the use of a shortened indicator list reducing sampling and identification effort considerably. This shortened list was developed by Dr. Foerster, LfU Bayern, and tested using Bavarian upland data. However, the assessment results diverge in up to 45% of the water bodies from the results using the complete list (former type MGkar). For the former type MGsil there was a difference on 25% of the investigated sites (meeting protocol “Projektbegleitender Fachbeirat Makrophyten & Phytobenthos”, November 2008). This shortened list is given in Table 35.

In the following the simplified procedure is described. Any differences to the detailed method are pointed out explicitly, so both procedures can be carried out using this manual. Partly directions were taken from the draft CEN standard for sampling of phytobenthos in shallow running waters (DIN-EN15708). An additional, detailed description of the sampling procedure and many photographs of the taxa identifiable in the field can be found in the field guide “Benthische Algen – ohne Diatomeen und Characeen” (LANUV, GUTOWSKI AND FOERSTER, 2009).

2.3.1 Sampling

2.3.1.1 Phytobenthos sampling equipment

• Safety equipment • Topographical maps 1:25 000 or 1:50 000 or GPS • Camera • Chest waders or high wellington boots • Viewing aid • Rubber gloves • Hand lens • Sometimes useful: rake, pliers or similar grabbing instruments • If necessary, white plastic dish (2 to 3 l) for sorting of material • Spoons, tweezers and spatulas • Scalpel or knife (stainless steel) • Pipettes • Clean small (15-20 ml) and larger glass vials with screw top • Petri dishes (plastic) • Freezer bags, different sizes • Prepared water proof labels or duct tape and waterproof marker for labelling samples

Page 38: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

34

• Coolbox with ice packs or ventilator • Big bucket for transport of larger substrate • Acidic Lugol’s solution or neutralised formaldehyde • Waterproof lab book or field protocol and appropriate pen or pencil • Plastic storage containers

The method is based on a single sample per year. Sampling should take place when the water level is as low as possible and after a period of stable runoff. There should be at least four weeks between the last spade and sampling. The length of the sampling section should be about 20 m for streams and about 50 m for rivers. To ensure reproducibility of the investigation, the position of the sampling site should be determined by GPS as accurately as possible. The sampling site should be documented by upstream and downstream photographs. All data to the sampling sites and to the in this section collected subsamples incl. their abundances (see Table 7 and Table 8) are recorded in the field protocol (Figure 12).

Sampling follows the procedure of multi habitat sampling (MHS) for both simplified and detailed procedure.

The aim of sampling is to record the macroscopically visible flat films and larger growth of benthic algae as completely as possible considering all in the reach available habitats with differences mainly in substrate, flow velocity, depth and light conditions. The sampling reach is waded through lengthwise and, as far as possible with chest waders, also across. The stream bed is investigated using a viewing box. Sites which can’t be waded through and investigated completely can only be sampled approximately representatively. In these cases tools like a rake or pliers with long handles can be helpful (see Chapter “Phytobenthos sampling equipment, page 33). At each site several samples are taken reflecting the various aspects of the site and these samples are called “subsamples”.

Note: Sampling is identical for the detailed and simplified procedure.

At first, all macroscopically visible growth forms and films are recorded as separate subsamples in the field protocol. The covered substrate and the estimated abundances according to Table 7 or Table 8 are noted. Colour and growth form are described as exactly as possible and if doable, documented photographically. The following list contains some conspicuous growth forms.

Page 39: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

35

• Fine, floating filaments and tufts (e.g. Zygnema, Stigeoclonium) • Green, filamentous tufts on stones or plants (e.g. Cladophora, Oedogonium, Microspora) • Green cushion (e.g. Vaucheria) • Green or red filaments on stones in an area of wave action (e.g. Ulothrix, Bangia) • Light green, “slimy”, floating filaments (e.g. Spirogyra, Mougeotia) • Light green to yellowish net-like, floating form (e.g. Hydrodictyon) • Dark green to brown, rough, hard thalli (e.g. Lemanea) • Dark red, blue, violet or blackish, small tufts on stones (e.g. Audouinella, Chantransia) • Black spots or crusts on stones (e.g Chamaesiphon) • Felts or mats in different colours (blue-black, turquoise, dark blue, grey, black, greenish,

golden) (e.g. Phormidium, Phaeodermatium) • Large dark red or blackish crusts (e.g. Hildenbrandia), sometimes calcified (e.g. Homoeothrix

crustacea) • Gelatinous colonies or thalli (e.g. Tetraspora, Hydrurus, Batrachospermum, Nostoc) • Leaf- or tube-like thalli (e.g. Enteromorpha) • Leathery or felty mats (e.g. Phormidium) • Attached sub-spherical or hemisperical colonies, sometimes calcified (e.g. Rivularia) • Epiphytic algae (e.g. Chamaesiphon, Coleochaete) • Metaphytic algae (growing between aquatic plants) (e.g. Closterium, Chroococcus) • On or in sand, mud or silt living algae (e.g. Euglena, Closterium)

Filamentous, thalloid or gelatinous forms are collected in small amounts and with a little bit of water transferred into a suitable container (small glass vial). If there are conspicuous covers on stones it is recommended to take the whole stone and pack them in plastic bags (freezer bags). This way the different forms can later be analysed individually under a stereo microscope. If, in contrast, the covers are scratched off in the field already, one gains a mixture of different, epilithic algae. This makes the microscopic identification more difficult. Growth on sand, mud and clay or similar can be sampled with a spoon, tweezers or a pipette. In some cases it might also be possible to cover the sediment with a petri dish and collect the sediment by sticking a spatula under the dish.

The collected sub-samples are numbered beginning with number 2 (number 1 is later assigned to the overall result, see below) and labelled unambiguously (number of sampling site, water body name, position, date, number of subsamples). In the field protocol the percentage cover is noted to each sub-sample (percentage in relation to the whole sampling site). Additionally, the mean thickness of the growth (in mm or cm) can be recorded.

Secondly, samples are collected from all available substrates:

From immovable, large substrates (bolder, bedrock, trees, roots) small pieces are broken off or some of the cover is scraped off (spatula, scalpel). These samples are packed in plastic bags (freezer bags) or with some water transferred into small glass vials (15-20 ml).

Movable hard substrates (stones of different sizes, small pieces of wood) are collected and transferred into small plastic bags (freezer bags).

From vegetation (mosses, macroalgae, vascular plants, mats of roots) small tufts are collected from different locations within the sampling site, transferred into a plastic bag with some river water and squeezed thoroughly. From the resulting mixture, an as dense as possible sample is

Page 40: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

36

transferred into a glass vial. This is then a composite sample of epiphyton from plant substrates of different locations within the sampling site.

From conspicuous filamentous or floating forms, small parts are transferred with some water into larger glass vials. It is useful to clean the sampled algae carefully, but thoroughly from attached detritus and mud.

Fine sediments (sand, mud, fine organic particulate material, clay) can be collected with a spoon, tweezers or a pipette. It might also be possible to cover the sediment with a petri dish and collect the sediment by sticking a spatula beneath. Fine sediment is only collected if algal cover is macroscopically visible.

At least five sub-samples should be taken to achieve a reliable assessment. In the first instance, macroscopically visible forms should be recorded. Moreover, samples from stony material and a squeeze sample are especially important.

2.3.2 Transport, Fixation, Storage and Shipment of Samples • Fixative: see recipe in Chapter 7.2 • For transport: cool box and ice packs • Short term storage (2-3 days): fridge • Longer term storage of stones: freezer (about –20°C)

If the samples can be analysed immediately after sampling, the fresh samples are transported to the laboratory in a cool box and analysed there as quickly as possible. During storage in the fridge (5-8 C) the tops of the sampling vials should be opened slightly to allow gas exchange. Every day the samples should receive some light. Hard substrates can be stored in the fridge for 2-3 days.

If microscopic analysis can’t take place until a later date, samples have to be preserved and stored (fixative see Chapter 7.2).

Liquid samples are, if possible, fixed immediately with a few drops of acidic Lugol’s solution. Usually, 5-10 drops are sufficient for a sample of 15-20 ml. Samples with a high proportion of organic material (e.g. high algal density; sand, mud, clay) require a higher concentration of Lugol’s solution (visual inspection: colour similar to that of Cognac). Samples conserved like that should not be stored longer than a year in a cool, dark and well ventilated room until analysis (if preservation is checked regularly). Preservation with neutralised formaldehyde is also possible. With formaldehyde samples can be stored longer.

Hard substrate is conserved by cryoconservation, i.e. they are frozen in a deep freezer until analysis. Frequent freezing and thawing of the material is to be avoided.

A combination of the procedures for preservation and conservation of the samples is advisable: Lugol’s solution alters the colours of the material, but it preserves the structures of the cell organelles, cryopreservation preserves the colours, but affects the structures of the cell organelles considerably. For taxa identification, however, all characteristics are important.

Page 41: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

37

If samples are sent to an expert for microscopic analysis, they have to be packed break-proof. Stones can be packed in thermo bags for frozen goods (super market) with ice packs. The samples should not be in transit for more than 1 day.

2.3.3 Microscopic Analysis and Documentation

2.3.3.1 Materials

• White plastic bowls • Petri dishes (diameter about 10 and 20 cm) • Scalpel • Tweezers in different sizes • Brushes • Preparation needles • Pasteur pipettes • Camera with macro • Stereo microscope (magnification 6,7 to 40-fold) with external light source and camera

adapter • Compound light microscope with stage and 40- to 1000-fold magnification. An eyepiece

micrometer for measuring cells is required. For documentation of the taxa found camera and adapter are essential. Optical contrasting methods, like DIC, are helpful for the identification of the organisms.

• Microscope slides and cover slips • Cellulose tissues • Tap water • Lens tissue and lens cleaning agent • Glycerine and clear nail polish (for the preparation of permanent mounts) • Sample boxes or other storage devices for permanent mounts • Dye for detection of storage products (see identification guides) • Clean, small (15-20 ml) glass vials with screw tops for storage • Labels or duct tape and pens for labelling samples • Acidic Lugol’s solution or neutralised formaldehyde for preservation

Page 42: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

38

2.3.3.2 Microscopy

For sample evaluation a stereo microscope (magnification 6.7- to 40 x) and a microscope (magnification 40- to 1000 x) are required. Camera adapter and camera for the microscope are necessary for documentation of the taxa (see below). The same is desirable for the stereo microscope.

Aim of the microscopic analysis is the identification of all taxa from the representative sub-samples to species level, if possible. At the current state of method development it is not recommended to limit the analysis to the, in this manual included, indicator species. For clarification of taxonomic problems each taxon should be photographed.

Preserved liquid samples can be analysed without further pre-treatment. If the material of a sample proves very inhomogeneous, it is recommended to put the material (if necessary, with some tap water) in a petri dish and investigate it at low magnification under the stereo microscope. If different growth forms can be distinguished, they should be documented and then examined under the microscope one by one. Special care should be taken when handling samples fixed with Formalin.

Frozen stones have to be thawed first. If there are different growth forms visible (investigate with the stereo microscope), they have to be analysed separately.

From coloured covers, films, spots or crusts on a stone, parts are removed using a scalpel or a brush and transferred onto a microscope slide with some water.

From filaments, tufts or cushions parts are removed using tweezers and transferred to a microscope slide with some water. For identification it might be necessary to include the attachment structures in the analysis. The same applies to leathery or felty mats. In this way epiphytic algae can be captured as well.

Gelatinous colonies (e.g. Nostoc) can be squashed on the microscope slide with a cover slip for a more detailed analysis.

Thalloid red algae and leave- or tube-like thalli of other algal classes have to be prepared for species identification to be able to see reproductive organs and other important morphological characteristics. For documentation it is recommended to make permanent mounts with glycerine.

Epipsammic algae have to be transferred onto the microscope slide with as little sand, mud and silt as possible and some water.

Liquid samples with metaphytic algae can be directly transferred onto a microscope slide using a pipette.

The taxa found in single sub-samples, are recorded in a microscopy protocol (e.g. see Figure 13 and Figure 14). Taxa occurring commonly or en masse are included. The abundance of each taxon is given in accordance with the abundance estimate given in Table 4. In contrast to the detailed procedure of phytobenthos analysis, using the simplified method only taxa occurring microscopically en masse (abundance 3) are recorded. Microscopically “rare” (abundance 1) or “common” (abundance 2) taxa are not included.

Page 43: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

39

Table 4: Estimation of abundance

Abundance Description

3 Macroscopic rare, just visible (note in field protocol: “single specimen” or coverage 5%) or microscopically en

masse 2 Microscopically common 1 Microscopically rare

Note: For the detailed procedure all taxa present in a sample are, wherever possible, identified to species level, even at low abundances. Microscopically rare corresponds to abundance 1.

Regarding the required effort the following recommendations are made for the simplified method (Table 5):

• For samples from boulders, gravel, sand and mud as well as floating material, 3 to 5 cover slips should be prepared and analysed.

• For samples from stones and plant material it might be necessary to prepare and analyse more than 5 coverslips.

• 30 to 60 min should be spent on samples from stony substrates, about 30 min on samples from plant substrates and about 15 min on samples from the remaining substrate types.

Table 5: Recommendations of work and time required for sub-samples – simplified analysis

Substrate maximal number of cover slips

average time for analysis

sand, mud 3 - 5 15 min pebbles 3 - 5 15 min

gravel, stones possibly more than 5 60 min boulders 3 - 5 15 min

floating material 3 - 5 15 min moss and macrophyte squeeze

sample possibly more than 5 30 min

After investigation the samples should be preserved and stored again. In case the simplified procedure did not yield enough indicative taxa for a reliable assessment, the sub-samples can easily be re-analysed under the microscope using the detailed methodology. A repetition of field sampling is not required.

Page 44: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

40

Note: For the detailed procedure the following recommendations are given regarding necessary effort and time (Table 6):

Table 6: Recommendations of work and time required for sub-samples - detailed procedure

S u b s tra te m a x im a l n um b e r o f

c o v e r s lip s a v e ra g e t im e fo r a n a ly s is

s a n d , m u d m a x 5 3 0 m in

p e b b le s m a x 5 3 0 m in

g ra v e l, s to n e s p o s s ib ly m o re th a n 5 9 0 m in

b o u ld e rs m a x 5 3 0 m in

f lo a t in g m a te r ia l m a x 5 3 0 m in

m o s s a n d m a c ro p h y te s q u e e z e

s am p le p o s s ib ly m o re th a n 5 6 0 m in

Literature for identification

Extensive literature for identification of phytobenthos without diatoms and Charales is available and is consistently being refined. Most of the relevant taxa are included in the identification guide of GUTOWSKI & FOERSTER (LANUV 2009). In addition, for the identification of benthic algae the following guides can be used (most important literature is highlighted by grey background):

Literature covering several algal groups

• Bourrelly, P. (1968) • Bourrelly, P. (1972) • Bourrelly, P. (1970) • Entwisle,T.J., Sonnemann, J.A., Lewis, S.H. (1997) • John, D.M.; Whitton, B.A.; Brook, A.J. (Hrsg.; 2002) • Kann, E. (1978) • Gutowski A. & Foerster, J., LANUV NRW (2009) • Gutowski A. & Foerster, J., LANUV NRW (2009) • Linne von Berg, K.-H. & Melkonian, M. (2004) • Pankow, H. (1990): • Simons, J.; Lokhorst, G.M.; van Beem, A.P. (1999) • Wehr, J.D. & Sheath, R.G. (2003)

Nostocophyceae

• Anagnostidis, K. & Komárek, J. (1988a, b) • Geitler, L. (1932) • Kann, E. & Komárek, J. (1970) • Komárek, J. (1999) • Komárek, J. & Anagnostidis, K. (1989) • Komárek J. & Anagnostidis, K. (1998) • Komárek J. & Anagnostidis, K. (2005) • Komárek, J. & Kann, E. (1973) • Komárek, J. & Kovácik, L. (1987) • Mollenhauer, D., Bengtsson, R. & Lindstrøm, E.-A. (1999) • Starmach, K. (1966)

Bangiophyceae / Florideophyceae / Fucophyceae

Page 45: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

41

• Compère, P. (1991) • Eloranta, P. & Kwandrans, J. (1996) • Friedrich, G. (1966) • Kumano, S. (2002) • Leukart, P. & Knappe, J. (1995) • Necchi, O.; Sheath, R.G.; Cole K.M. (1993a) • Necchi, O.; Sheath, R.G.; Cole K.M. (1993b) • Necchi, O. & Zucchi, M.R. (1993) • Rieth, A. (1979) • Sheath, R.G.; Whittick, A.; Cole K.M. (1994) • Sheath, R.G. & Vis, M.L. (1995) • Starmach, K. (1977) • Vis, M.L.; Sheath, R.G.; Entwisle, T.J. (1995) • Wehr, J.D. & Stein, J.R. (1985)

Otherwise literature covering several algal groups

Chrysophyceae/Synurophyceae

• Kristiansen, J. & Preisig, H.R. (2001) • Starmach, K. (1985)

Cryptophyceae / Dinophyceae

• Fott, B. (1968) • Popovsky, J. & Pfiester, L.A. (1990)

Euglenophyceae

• Huber-Pestalozzi, G. (1955) • Kusel-Fetzmann, E. (2002) • Wołowski, K. (1998) • Wołowski, K. & Hindák, F. (2005)

Tribophyceae

• Christensen, T.A. (1970) • Ettl, H. (1978) • Rieth, A. (1980)

Chlorophyceae / Trebouxiophyceae / Ulvophyceae / Tetrasporales/

• Lockhorst, G.H. (1999) • Ettl, H. (1983) • Ettl, H. & Gärtner, G. (1988) • Fott, B. (1972) • Huber-Pestalozzi, G. (1961) • Komárek, J. & Fott, B. (1983) • Mrozinska, T. (1985) • Printz, H. (1964) • Starmach, K. (1972) • van den Hoek, C. (1963)

Charales without Characeae

• Coesel, P.M. (1982)

Page 46: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

42

• Coesel, P.M. (1983) • Coesel, P.M. (1985) • Coesel, P.M. (1991) • Coesel, P.M. (1994) • Coesel, P.M. (1997) • Croasdale, H. & Flint, E.A. (1986) • Croasdale, H. & Flint, E.A. (1988) • Croasdale, H.; Flint, E.A.; Racine, M.M. (1994) • Förster, K. (1982) • Kadlubowska, J.Z. (1984) • Lenzenweger, R. (1996) • Lenzenweger, R. (1997) • Lenzenweger, R. (1999) • Lenzenweger, R. (2003) • Růžička, J. (1977) • Růžička, J. (1981)

2.3.3.3 Data Processing and Summary

After microscopic analysis the taxa lists of all individual sub-samples are combined to one overall record. This record is assigned sample number 1 and contains all taxa found in the different sub-samples. Each taxon is given a final abundance according to Table 7. For the determination of the final abundance information of the field protocols (percentage cover of sub-samples) and microscopy protocols (microscopically abundance) have to be combined.

For taxa microscopically found en masse, the in the field protocols noted abundance or percentage cover of the films or growth forms have to be taken into consideration when the final abundance is determined. Therefore, first the highest abundance reached in any sub sample is recorded for each taxon. If at least three sub-samples contain a taxon with the same microscopic abundance, the final abundance of this taxon in the overall record is elevated by one level.

Table 7: Abundance estimates - simplified method

Abundance Description

5 en masse, covering more than a third of the river bed (coverage > 33%)

4 common, but covering less than a third of the river bed (coverage 5-33%)

3 macroscopically rare, just visible (note in the field protocol: “single specimen” or “coverage 5%”)or microscopically en

masse

The microscopic analysis results in a taxa list for each sample including details of the abundance of each species. Based on these lists, the sampling site can be assessed for the time of sampling.

Page 47: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

43

Note: Using the detailed methodology the abundance classes “microscopically rare” and “microscopically common” have to be taken into consideration. If a taxon occurs in at least three sub-samples with the same abundance, the abundance in the final record is elevated by one as during application of the simplified procedure. E.g. a taxon found with the microscopical abundance “rare” in four sub-samples (abundance 1), is assigned abundance 2 in the final record. To determine the final abundance of taxa occurring microscopically en masse, information regarding abundances or coverage of the growth forms from the field protocol has to be taken into consideration. Thus the final abundances of the taxa can be determined according to Table 8.

Table 8: Abundance estimates – detailed procedure

A b u n d a n c e D e s c r ip t io n

5 e n m a s s e , c o v e r in g m o re th a n a th ird o f th e r iv e r b e d

( c o v e ra g e > 3 3% )

4 c om m o n , b u t c o v e r in g le s s th a n a th ird o f th e r iv e r b e d

( c o v e ra g e 5 - 3 3 % )

3

m a c ro s c o p ic a lly ra re , ju s t v is ib le ( n o te in th e f ie ld p ro to c o l:

“ s in g le s p e c im e n ” o r “ c o v e ra g e 5 % ”) o r m ic ro s c o p ic a lly e n

m a s s e

2 m ic ro s c o p ic a l ly c om m o n

1 m ic ro s c o p ic a lly ra re

Page 48: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

44

3 Determination of Running Water Type

For application of the assessment procedure the sampled water bodies have to be correctly assigned to the, for the organism group macrophytes and phytobenthos determined, biocoenotic types. The nationwide LAWA type map can aid the type determination, but not form the sole basis. Any relevant additional information must always be considered.

If relevant parameters for the determination of macrophyte- or phytobenthos-type are strongly influenced by anthropogenic factors, for type assignment values should be used as expected in the original state (reference state) of this site. This might especially concern water depth, flow velocity, mean width and also acid capacity or total hardness. If such an impairment is recognised (e.g. backwaters, ramps) or known (e.g. potash mining in the headwaters, discharge of limed water from sewage treatment plants into siliceous areas), their impact (e.g. changed flow velocity or increased total hardness) has to be ignored for type determination. Sometimes this information can be deduced from the attribution of the site according to the LAWA typology.

Macrophytes react, independent of species, strongly to mechanic stress. A rapid, turbulent run off destroys plants without sclerenchymatic tissue. Under such rhithral flow conditions only flow resistant taxa with strong shoots or very small taxa can exist. Under more laminar, potamal flow conditions longer, more tender plants or plants with floating leaves occur. The classification according to the length zones of the LAWA typology can’t demonstrate these different flow regimes. Parameters like water depth, mean width and flow velocity form the basis for the distinction.

The LAWA water body typology according to POTTGIEßER & SOMMERHÄUSER (2008) describes for some types different geochemical forms (base-poor and base-rich or siliceous and calcareous) in the reference state. If a water body is assigned a macrophyte and phytobenthos type with the help of the LAWA water body type, the distinction of these forms has to be kept in mind.

If for macrophytes the type MRK is determined and the measured acid capacity or total hardness is only little above the limit of 1.4 mmol/l, and the sampling site is on siliceous geology, then for the macrophytes in addition to the calculation for the type MRK the calculation should also be performed for the parallel siliceous type MRS and the results should be discussed.

If no values for acid capacity and total hardness are available, then, in the case of the types MRS and MRK, the results have to be thoroughly checked for plausibility and possibly the parallel type has to be calculated as well. Both results have to be discussed. The same is true for the type assignment of the module PoD regarding the differentiation siliceous/calcareous or base-rich/ base-poor.

Page 49: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

45

Whenever the assignment to a type is doubtful, the parallel type has to be determined as well and the ecological status calculated for both. Problems can be caused e.g. by missing information or due to the position of the sampling site or if its chemical-physical characteristics are borderline. Both results have to be discussed.

To aid the assignment of the macrophyte types, profiles were compiled. These can be found in Appendix, Chapter 7.1. Information to depth classes and flow velocity relate to the details from the field protocol (Appendix, Chapter 7.3).

Problems with the assignment of the biocoenotic diatom type can occur at the transition between ecoregions and if the catchment geology is heterogeneous. The latter is especially true for water bodies with siliceous and calcareous areas in the catchment and there are differences in the assessment of the module “trophic index” for siliceous and calcareous catchments (SCHAUMBURG et al. 2005). In such a case the typology has to follow the in the catchment prevailing geology (siliceous or calcareous) and discussed appropriately. As decision aid a total hardness or acid capacity of 1.4 mmol/l can be used. Mixed geology has no influence on the module “species composition and abundance” because in that case siliceous as well as calcareous reference taxa can be used (see Chapter 4.2.1).

Each determined type has to be checked for plausibility using all available information.

Page 50: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

46

Alps

The biocoenotic water body types within the ecoregion Alps are determined according to Table 9 to Table 11.

Table 9: Key to the macrophyte types in the ecoregion Alps

Macrophytes

1a depth class = 1.............................................................................................................. type MRK 1b depth class ≥ 2 .............................................................................................................. 2

2a mean width ≥ 40m........................................................................................................ 5 2b mean width < 40m........................................................................................................ 3

3a flow velocity > III .......................................................................................................... type MRK 3b flow velocity ≤ III........................................................................................................... 4

4a ground water influence ................................................................................................. type MPG 4b no ground water influence ............................................................................................ type MP

5a flow velocity > III .......................................................................................................... type MRK 5b flow velocity ≤ III........................................................................................................... 6

6a depth class = 3.............................................................................................................. type Mg 6b depth class < 3.............................................................................................................. 4

Table 10: Key to the diatom types in the ecoregion Alps. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008)

Diatoms

LAWA-type 1.1 .............................................................................................................................. D 1.1

LAWA-type 1.2 .............................................................................................................................. D 1.2

Table 11: Key to the phytobenthos types within the ecoregion Alps. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008)

Phytobenthos without diatoms

LAWA-type 1.1 ............................................................................................................................... PB 1

LAWA-type 1.2 ............................................................................................................................... PB 1

Alpine Foothills The running waters of the tertiary uplands, fluvial terraces and old drift of the Alpine Foothills are considered slightly calcareous, but also siliceous, the ones of the young drift mostly calcareous (BRIEM 2003). This difference affects the diatom communities, but during this investigation no macrophyte communities’ characteristic of siliceous geology were found. This means that theoretically the conditions for a macrophyte type MRS can be found, but this is very unlikely. If, after type determination, these conditions are found, all measured parameters should be checked thoroughly for plausibility and the results should only be used conditionally. It is impossible for diatoms typical for calcareous water bodies to occur together with macrophytes indicating siliceous geology in the catchment.

The biocoenotic water types of the Alpine Foothills are determined according to Table 12 to Table 14.

Page 51: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

47

Table 12: Key to the macrophyte types in the Alpine Foothills

Macrophytes

1a depth class = 1.............................................................................................................. 2 1b depth class ≥ 2 .............................................................................................................. 3

2a maximal total hardness or median acid capacity 4,3 < 1,4 mmol/l................................. type MRS 2b maximal total hardness and median acid capacity 4,3 ≥ 1,4 mmol/l .............................. type MRK

3a mean width ≥ 40m........................................................................................................ 6 3b mean width < 40m ....................................................................................................... 4

4a flow velocity > III .......................................................................................................... 2 4b flow velocity ≤ III .......................................................................................................... 5

5a ground water influence ................................................................................................. type MPG 5b no ground water influence ............................................................................................ type MP

6a flow velocity > III .......................................................................................................... 2 6b flow velocity ≤ III .......................................................................................................... 7

7a depth class = 3.............................................................................................................. type Mg 7b depth class < 3.............................................................................................................. 5

Table 13: Key to diatom types in the ecoregion Alpine Foothills. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008)

Diatoms

LAWA-type 2 ................................................................................................................................ D 2

LAWA-type 3 ................................................................................................................................ D 3

LAWA-type 11 and ecoregion Alpine Foothills.................................................................................. D 3

LAWA-type 12 and ecoregion Alpine Foothills.................................................................................. D 3

LAWA-type 19 and ecoregion Alpine Foothills.................................................................................. D 3

LAWA-type 4 ................................................................................................................................ D 4

Table 14: Key to phytobenthos types in the ecoregion Alpine Foothills. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008)

Phytobenthos without diatoms

LAWA-type 2 ............................................................................................................................... PB 2

LAWA-type 3 ............................................................................................................................... PB 2

LAWA-type 11 and ecoregion Alpine Foothills ................................................................................ PB 2

LAWA-type 12 and ecoregion Alpine Foothills................................................................................. PB 2

LAWA-type 19 and ecoregion Alpine Foothills................................................................................. PB 2

LAWA-type 4 ............................................................................................................................... PB 2

Page 52: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

48

Central German Upland The in the Central German Upland common areas with variegated sandstones and volcanoes as well as areas with gneiss, granite and slate are siliceous just like the waters flowing through them. However, in a catchment with calcareous and siliceous areas, calcareous water can enter a siliceous area and then the siliceous character is largely lost. Because the diatom type is based on the predominant catchment geology, but the macrophyte type according to total hardness and acid capacity, a combination of a siliceous diatom type with a calcareous macrophyte or phytobenthos type is indeed possible. In that case it has to be checked whether the elevated total hardness or acid capacity causing the assignment to the calcareous type is not caused by influxes, e.g. of industrial sewage or limed water. Then evaluation has to be based on the according siliceous type.

Only very rarely a siliceous macrophyte and phytobenthos type is observed in combination with a calcareous diatom type. Should the type assignment result in such a combination, all relevant parameters should be double checked. It might become necessary to repeat the measurements or chose another sampling site.

The biocoenotic water types for the Central German Upland are determined according to Table 15, Table 16 and Table 17.

Table 15: Key to the macrophyte type in the Central German Upland

Macrophytes

1a depth class = 1.............................................................................................................. 2 1b depth class ≥ 2 .............................................................................................................. 3

2a maximal total hardness or median acid capacity 4,3 < 1,4 mmol/l ................................. type MRS 2b maximal total hardness and median acid capacity 4,3 ≥ 1,4 mmol/l .............................. type MRK

3a mean width ≥ 40m........................................................................................................ 6 3b mean width < 40m........................................................................................................ 4

4a flow velocity > III .......................................................................................................... 2 4b flow velocity ≤ III........................................................................................................... 5

5a ground water influence ................................................................................................. type MPG 5b no ground water influence ............................................................................................ type MP

6a flow velocity > III .......................................................................................................... 2 6b flow velocity ≤ III........................................................................................................... 7

7a depth class = 3.............................................................................................................. type Mg 7bc depth class < 3.............................................................................................................. 5

Page 53: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

49

Table 16: Key to diatom types in the ecoregion Central German Upland. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008)

Diatoms

LAWA-type 5 excl. Subtype 5.2 (Vulcanite) ................................................................................... D 5

LAWA-type 5.1 ................................................................................................................................ D 5

LAWA-Type 11 and ecoregion Central German Upland..................................................................... D 5

LAWA-type 5.2 ................................................................................................................................ D 6

LAWA-type 9 ................................................................................................................................ D 7

LAWA-type 6 …………………………………………………………………………………………….. D 8.1

LAWA-type 19 and ecoregion Central German Upland................................................................... D 8.1

LAWA-type 9.1 and loess-, keuper- and cretaceous regions excl. shell limestone-, .......................... D 8.2 Jura-, Malm-,Lias-, Dogger- and other calcareous regions

LAWA-type 7 .............................................................................................................................. D 9.1

LAWA-type 9.1 and shell limestone-, Jura-, Malm-, Lias-, Dogger- and other ................................ D 9.2 calcareous regions excl. loess-, keuper- and cretaceous regions

LAWA-type 9.2 ............................................................................................................................. D 10.1

LAWA-type 10 ............................................................................................................................. D 10.2

Table 17: Key to phytobenthos types in the ecoregion Central German Upland. LAWA-Typ according to POTTGIEßER & SOMMERHÄUSER (2008)

Phytobenthos without diatoms

LAWA-type 5 ............................................................................................................................... PB 3

LAWA-type 5.1 ............................................................................................................................... PB 3

LAWA-type 5.2 ............................................................................................................................... PB 3

LAWA-type 9 ............................................................................................................................... PB 3

LAWA-type 6 ............................................................................................................................... PB 4

LAWA-type 9.1 and loess-, keuper- and cretaceous regions excl. shell limestone-, ........................... PB 4 Jura-, Malm-,Lias-, Dogger- and other calcareous regions

LAWA-type 19 and ecoregion Central German Upland.................................................................... PB 4

LAWA-type 7 ............................................................................................................................... PB 5

LAWA-type 9.1 and shell limestone-, Jura-, Malm-, Lias-, Dogger- and other ................................. PB 6 calcareous regions excl. loess-, keuper- and cretaceous regions

LAWA-type 9.2 ............................................................................................................................... PB 6

LAWA-type 10 ............................................................................................................................... PB 6

Page 54: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

50

North German Lowland The biocoenotic water body types of the ecoregion North German Lowland are determined according to Table 18, Table 21 and Table 22. The terms “base-poor character” and “base-rich character” or “siliceous character” and “calcareous character” equal the terms “base-poor” and “base-rich” or “siliceous” and “calcareous” in the profiles of the German running water types according to POTTGIEßER & SOMMERHÄUSER (2008).

For the, for type determination necessary, parameters mean width, depth class and flow velocity it has to be considered that these are mean, the sampling section representing values relating to the mean water level. All type assignments should represent the type in the potential reference state. If a parameter important for type determination shows anthropogenic influences, the value of this parameter has to be transformed into the, for the reference state to be expected, value.

A water body of a type with suffix “k” is a small water body of its type and indicates stream character. The suffix “m” describes a water body of a small to larger river. A type with the suffix “g” stands for a large water body of its type and should show according characteristics.

Table 18: Key to macrophyte type in ecoregion North German Lowland

Macrophytes

1a mean width ≥ 30 m....................................................................................................... type TNg 1b mean width < 30 m....................................................................................................... 2

2a flow velocity > III .......................................................................................................... 7 2b flow velocity ≤ III........................................................................................................... 3

3a flow velocity = III .......................................................................................................... 4 3b flow velocity < III .......................................................................................................... 5

4a depth class = 1.............................................................................................................. 7 4b depth class ≥ 2 .............................................................................................................. 5

5a mean width ≥ 5 m......................................................................................................... TNm 5b mean width < 5 m......................................................................................................... 6

6a depth class = lll ............................................................................................................. TNm 6b depth class ≤ ll .............................................................................................................. TNk

7a mean width ≥ 5 m......................................................................................................... 8 7b mean width < 5 m......................................................................................................... TRk

8a mean width ≥ 20 m....................................................................................................... TRg 8b mean width < 20 m....................................................................................................... TRm

Another possible way for assignment of the macrophyte type using the LAWA-type and the valley bottom gradient was suggested by van de Weyer. This suggestion is described in detail in the Appendix (Chapter 7.4), together with an instruction for the determination of the valley bottom gradient (Chapter 7.5). Following the decision of the project advisory board this approach can be consulted as decision aid (SCHAUMBURG et al. 2012, Chapter 3.4). The criteria for the distinction of the flow conditions “potamal” or “rhithral” and a comparison of the LAWA-types with the macrophyte types according to this approach are given in Table 19 and Table 20.

Page 55: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

51

Table 19: Criteria for the differentiation of rhithral and potamal running waters or water body sections (Extract from van de Weyer, see Appendix, chapter 7.4, slightly modified)

Catchment area (km²) Valley bottom gradient*

Proportion of Central German Upland and other

hilly areas within the catchment

< 100 <= 1‰ potamal

> 1‰ rhithral

100-10.000 <= 0,5‰ potamal

> 0,5‰-1‰ < 50% potamal

> 0,5‰-1‰ > 50% rhithral

> 1‰ rhithral

> 10.000 <= 0,5‰ potamal

> 0,5‰ rhithral

* under consideration of the potential natural degree of meandering rhithral: mainly fast flowing, potamal: mainly slow flowing

Table 20: Suggestion for a macrophyte running water type adjustment: LAWA-PHYLIB for the North German Lowland (according to van de Weyer, included are only the most probable types, see Appendix, chapter 7.4, modified)

LAWA-type LAWA-type Macrophyte-type 11, lowland Lowland streams with organic matter TNk

12, lowland Lowland rivers with organic matter TNm

14, rhithral Rhithral, lowland streams with sand TRk

14, potamal Potamal, lowland streams with sand TNk

15, rhithral Rhithral, lowland rivers with sand and clay TRm

15, potamal Potamal, lowland rivers with sand and clay TNm 15g, rhithral Large, rhithral, lowland rivers with sand and clay TRg 15g, potamal Large, potamal lowland rivers with sand and clay TNg

16 Lowland streams with gravel TRk

17, rhithral Rhithral lowland rivers with gravel TRm 17, potamal Potamal lowland rivers with gravel TNm 18, rhithral Rhithral, lowland streams with silt and clay TRk

18, potamal Potamal, lowland streams with silt and clay TNk 19, lowland, rhithral Rhithral low-lying lowland flowing waters

(Niederungsfließgewässer) TRk

19, lowland, potamal Potamal low-lying lowland flowing waters (Niederungsfließgewässer) TN

20 Very large rivers with sand TNg

21, rhithral Rhithral flowing waters influenced by lake outflow TRm/TRk/TRg

21, potamal Potamal flowing waters influenced by lake outflow TNm/TNk/TNg

rhithral: predominantly fast flowing, potamal: predominantly slow flowing

Page 56: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

52

Table 21: Key to diatom types in the ecoregion North German Lowland. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008)

Diatoms

LAWA-type 11 and ecoregion North German Lowland, base-poor ..................................................D 11.1

LAWA-type 14 and siliceous ............................................................................................................D 11.1

LAWA-type 16 and siliceous ............................................................................................................D 11.1

LAWA-type 12 and ecoregion North German Lowland, base-poor ..................................................D 11.2 EZG < 1.000 km²

LAWA-type 15 and exclusively loess region...................................................................................... D. 8.1

LAWA-type 18 ................................................................................................................................ D. 8.1

LAWA-type 11 and ecoregion North German Lowland, base-rich ....................................................D 12.1

LAWA-type 14 and calcareous..........................................................................................................D 12.1

LAWA-type 16 and calcareous..........................................................................................................D 12.1

LAWA-type 19 and ecoregion North German Lowland ....................................................................D 12.1

LAWA-type 15 and catchment < 1.000 km², excl. loess region ........................................................D 12.2

LAWA-type 17 and catchment < 1.000 km² ....................................................................................D 12.2

LAWA-type 12 and catchment < 1.000 km², ...................................................................................D 12.2 ecoregion North German Lowland, base-rich

LAWA-type 15 and catchment > 1.000 km², excl. loess region ........................................................D 13.1

LAWA-type 17 and catchment > 1.000 km² ....................................................................................D 13.1

LAWA-type 12 and catchment > 1.000 km², ecoregion North German Lowland. Base-rich .............D 13.1

LAWA-type 20 ................................................................................................................................D 13.2

Table 22: Key to phytobenthos types in the ecoregion North German Lowland. LAWA-type according to POTTGIEßER & SOMMERHÄUSER (2008)

Phytobenthos

LAWA-type 11 and ecoregion North German Lowland, base-poor .................................................. PB 9

LAWA-type 12 and catchment < 1.000 km2 ................................................................................... PB 9 ecoregion North German Lowland, base-poor

LAWA-type 14 and siliceous ............................................................................................................ PB 9

LAWA-type 16 and siliceous ............................................................................................................ PB 9

LAWA-type 11 and ecoregion North German Lowland, base-rich ................................................... PB 10

LAWA-type 12 and ecoregion North German Lowland, base-rich ................................................... PB 10

LAWA-type 14 and calcareous ........................................................................................................ PB 10

LAWA-type 15 ................................................................................................................................ PB 10

LAWA-type 16 and calcareous ........................................................................................................ PB 11

LAWA-type 17 ................................................................................................................................ PB 11

LAWA-type 18 ................................................................................................................................ PB 10

LAWA-type 19 ................................................................................................................................ PB 10

LAWA-type 20 ................................................................................................................................ PB 12

Page 57: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

53

4 Assessment

4.1 Macrophytes

4.1.1 Calculation of the Reference Index

Only submerged or floating taxa found at a sampling site are used for the calculation of the reference index. Submerged growth of amphiphytic taxa is also included, but helophytic taxa are only considered for the additional criterion “helophyte dominance”.

4.1.1.1 Conversion of Plant Abundances to Quantities

Prior to any calculations, the nominally scaled values of the plant abundance scale are converted into metric quantity levels (Equation 1):

Equation 1: Conversion of plant abundance in quantities

Abundance³ = Quantity

4.1.1.2 Assignment of Taxa to Species Groups

Taxa occurring at a sampling site are assigned to type specific indicator groups (Table 23).

Table 23: Type specific indicator groups for macrophyte evaluations (No = serial number)

No DV-No Name MRK MRS MP(G) TN TR

1 2893 Agrostis canina B B B A 2 2258 Agrostis stolonifera B B B B B 3 2881 Alopecurus geniculatus B B B B B 4 2301 Amblystegium fluviatile A A B B A 5 2299 Amblystegium tenax B B B B A 6 2322 Amblystegium varium B B B B B 7 12270 Andreaea rothii A 8 2300 Aneura pinguis A 9 2878 Angelica sylvestris B B B B B 10 2332 Apium nodiflorum B B B B B 11 2231 Azolla filiculoides - - - C C 12 2008 Berula erecta B B B B A 13 12254 Blindia acuta A 14 2043 Brachythecium plumosum A A A B A 15 2995 Brachythecium rivulare A A B B A 16 2335 Brachythecium rutabulum A A B B A

Page 58: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

54

No DV-No Name MRK MRS MP(G) TN TR

17 12292 Bryum gemmiparum A 18 2950 Bryum pseudotriquetrum A A 19 12277 Bryum schleicheri A 20 2012 Butomus umbellatus C C C B C 21 2160 Callitriche brutia var. hamulata A A A A A 22 2171 Callitriche cophocarpa B B B B B 23 2964 Callitriche obtusangula C C C C C 24 2173 Callitriche platycarpa B B B B B 25 2263 Callitriche stagnalis B B B B B 26 2013 Cardamine amara B B B B B 27 2840 Catabrosa aquatic B B B B B 28 2014 Ceratophyllum demersum C C C C C 29 2015 Ceratophyllum submersum C C 30 7486 Chara aspera A A A A 31 7170 Chara contraria A A A A 32 7467 Chara globularis A A A A A 33 7948 Chara hispida A A A A 34 7468 Chara intermedia A A A A 35 7470 Chara rudis A A A A 36 7473 Chara tomentosa A A A A 37 7488 Chara virgate A A A A A 38 7947 Chara vulgaris A A A A 39 2962 Chiloscyphus pallescens A A A A A 40 2339 Chiloscyphus polyanthos A A B A 41 2067 Cinclidotus aquaticus B - B B B 42 2948 Cinclidotus danubicus B B B B 43 2947 Cinclidotus fontinaloides B B B B A 44 2238 Cinclidotus riparius B B B B B 45 2963 Conocephalum conicum B B B B B 46 12299 Crassula helmsii C C 47 2240 Cratoneuron filicinum B C B B B 48 12302 Ctenidium molluscum A A 49 12304 Dialytrichia mucronata B B B 50 12306 Dichodontium flavescens A 51 2344 Dichodontium pellucidum A A A A 52 2946 Dicranella palustris A 53 12308 Didymodon nicholsonii A B B 54 12309 Didymodon tophaceus A B B 55 2241 Drepanocladus aduncus A B B B B 56 2311 Egeria densa C C 57 2977 Eleocharis acicularis B B B 58 2011 Elodea Canadensis C C C B C 59 2270 Elodea nuttallii C C C C C 60 2976 Equisetum fluviatile B B B B B 61 2787 Equisetum palustre B B B B B 62 12311 Equisetum x litorale B B B B B 63 2242 Eucladium verticillatum A 64 2944 Eurhynchium praelongum B 65 2942 Fissidens arnoldii B B B 66 2080 Fissidens crassipes B B B B 67 12293 Fissidens exiguous A A 68 2303 Fissidens grandifrons A 69 12257 Fissidens gymnandrus A A A 70 2244 Fissidens pusillus A 71 2304 Fissidens rivularis A A 72 2941 Fissidens rufulus B B B 73 2000 Fontinalis antipyretica A B B B A 74 2229 Fontinalis hypnoides A A A A A 75 2230 Fontinalis squamosal A A - A 76 2768 Galium palustre B B B B B 77 2763 Glyceria declinata B B B B 78 2975 Glyceria fluitans B B B B B 79 2064 Glyceria maxima B B B B B

Page 59: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

55

No DV-No Name MRK MRS MP(G) TN TR

80 2355 Glyceria notata B B B B B 81 2009 Groenlandia densa A A A A 82 2016 Hippuris vulgaris B A A A 83 2406 Hookeria lucens A 84 2755 Hottonia palustris - A A A A 85 2753 Hydrocharis morsus-ranae C C B B C 86 12419 Hydrocotyle ranunculoides C C 87 2752 Hydrocotyle vulgaris B B B 88 2245 Hygrohypnum duriusculum A 89 2407 Hygrohypnum eugyrium A A 90 2997 Hygrohypnum luridum A B A B A 91 12429 Hygrohypnum ochraceum f. obtusifolia C C C C 92 12430 Hygrohypnum ochraceum f. ochraceum A A 93 12433 Hygrophila polysperma C C 94 2246 Hymenostylium recurvirostrum A 95 2247 Hyocomium armoricum A 96 12317 Hyophila involuta B 97 12318 Hypericum elodes A 98 2227 Isolepis fluitans A A 99 12319 Isothecium holtii A 100 2744 Juncus acutiflorus B B B B 101 2742 Juncus articulatus B B B B B 102 2740 Juncus bulbosus A A A 103 2733 Juncus subnodulosus A A 104 2248 Jungermannia atrovirens A A 105 2408 Jungermannia exsertifolia A 106 2249 Jungermannia obovata A 107 12320 Jungermannia pumila A 108 2250 Jungermannia sphaerocarpa A 109 2272 Lagarosiphon major C C C C 110 2019 Lemna gibba C C C C C 111 2018 Lemna minor C C C C C 112 2356 Lemna minuta C C 113 2029 Lemna trisulca C C B B B 114 12321 Lemna turionifera C C C C C 115 2068 Leptodictyum riparium C C C B C 116 2081 Leskea polycarpa B B B B B 117 12259 Lunularia cruciata B B C 118 2312 Luronium natans A A 119 2716 Lysimachia nummularia B B B B B 120 2055 Marchantia polymorpha B B B B B 121 2959 Marsupella emarginata A 122 2252 Marsupella sphacelata A 123 2710 Mentha aquatica B B B B B 124 2069 Montia fontana A A A A A 125 12355 Myosotis laxa B B B 126 2070 Myosotis scorpioides B B B B B 127 2991 Myriophyllum alterniflorum A A A A A 128 12358 Myriophyllum aquaticum C C 129 2275 Myriophyllum heterophyllum C C 130 2005 Myriophyllum spicatum B B B B B 131 2699 Myriophyllum verticillatum B B B B 132 2071 Najas marina B B B B 133 2984 Nardia compressa A 134 2697 Nasturtium microphyllum B B 135 2020 Nasturtium officinale B B B B B 136 7474 Nitella capillaris A 137 7475 Nitella flexilis A A A A 138 7952 Nitella mucronata B B B B B 139 7905 Nitella opaca A A A A A 140 7478 Nitella syncarpa A 141 7480 Nitella translucens A 142 7481 Nitellopsis obtuse A A A

Page 60: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

56

No DV-No Name MRK MRS MP(G) TN TR

143 2021 Nuphar lutea C C C B B 144 2072 Nymphaea alba C B B C 145 2073 Nymphoides peltata B B C 146 12260 Octodiceras fontanum B B B B B 147 2695 Oenanthe aquatic B B B B 148 2694 Oenanthe fistulosa B 149 2409 Oenanthe fluviatilis A 150 12297 Orthotrichum cupulatum var. riparium B B C C 151 2308 Orthotrichum rivulare 152 12298 Oxystegus tenuirostris A 153 12261 Palustriella commutate A A A 154 2958 Pellia endiviifolia A B B B 155 2410 Pellia epiphylla - A B A 156 12325 Pellia neesiana B B B 157 2688 Peplis portula A 158 2358 Persicaria amphibian B B B B C 159 2361 Persicaria hydropiper B B B B B 160 2074 Phalaris arundinacea B B B B B 161 12396 Philonotis caespitosa B B 162 2938 Philonotis calcarea A 163 2937 Philonotis Fontana B B 164 12327 Philonotis seriata A 165 2683 Pilularia globulifera A 166 12434 Pistia stratiotes C C 167 2419 Platyhypnidium lusitanicum A 168 2040 Platyhypnidium riparioides B B B B B 169 12431 Pohlia wahlenbergii var. glacialis A A 170 12265 Porella cordaeana A A 171 2672 Potamogeton acutifolius A B 172 2671 Potamogeton alpinus A A A A A 173 2973 Potamogeton berchtoldii C C B B C 174 2929 Potamogeton coloratus A A A A 175 2669 Potamogeton compressus A A 176 2002 Potamogeton crispus C C C C C 177 2061 Potamogeton filiformis A A A A A 178 2668 Potamogeton friesii B B B B B 179 2667 Potamogeton gramineus A A A 180 2313 Potamogeton helveticus C C 181 2041 Potamogeton lucens B B B A B 182 2010 Potamogeton natans B B B B B 183 2982 Potamogeton nodosus C C B B C 184 2666 Potamogeton obtusifolius B B B B B 185 2001 Potamogeton pectinatus C C C C C 186 2023 Potamogeton perfoliatus B B A A B 187 2212 Potamogeton polygonifolius A A A A 188 2213 Potamogeton praelongus A 189 2664 Potamogeton pusillus C C B B C 190 2663 Potamogeton trichoides C C B B C 191 2670 Potamogeton x angustifolius B B 192 2284 Potamogeton x nitens A A A 193 2416 Potamogeton x salicifolius B B B 194 2414 Potamogeton x schreberi B B B 195 12369 Potamogeton x spathulatus A A A 196 2965 Racomitrium aciculare A A 197 12266 Racomitrium aquaticum A 198 2052 Ranunculus aquatilis B B B B B 199 2024 Ranunculus circinatus B B B B B 200 2655 Ranunculus flammula A A A A 201 2003 Ranunculus fluitans B B B B A 202 2286 Ranunculus fluitans x trichophyllus B B B B A 203 2215 Ranunculus hederaceus A A 204 2872 Ranunculus peltatus B B B B A 205 2217 Ranunculus penicillatus B B B B A

Page 61: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

57

No DV-No Name MRK MRS MP(G) TN TR

206 2652 Ranunculus sceleratus C C C C C 207 12377 Ranunculus trichophyllus ssp. trichophyllus A B B B A 208 12376 Ranunculus trichophyllus ssp.rionii A B B B A 209 2289 Ranunculus x glueckii B B B B B 210 12330 Rhynchostegiella curviseta A 211 12331 Rhynchostegiella teneriffae A 212 2957 Riccardia chamedryfolia A A 213 12332 Riccardia multifida A 214 2063 Riccia fluitans C C B A C 215 2955 Riccia rhenana C C A A C 216 2954 Ricciocarpos natans C C A A C 217 12378 Ruppia cirrhosa A 218 12379 Ruppia maritima A 219 2219 Sagittaria latifolia C C B C 220 2054 Sagittaria sagittifolia C C C B C 221 12380 Sagittaria subulata B 222 2952 Scapania paludosa A 223 12333 Scapania subalpina A 224 12334 Scapania uliginosa A 225 2062 Scapania undulata A A A A 226 12335 Schistidium platyphyllum B B C 227 2082 Schistidium rivulare A B C 228 2025 Schoenoplectus lacustris B B B B B 229 12336 Scleropodium cespitans B B B 230 2254 Scorpidium scorpioides A 231 12435 Shinnersia rivularis C C 232 2967 Sium latifolium B B B 233 2600 Sparganium angustifolium A B 234 2992 Sparganium emersum C C C B C 235 2075 Sparganium erectum C C C B C 236 2374 Sparganium natans A B 237 12340 Sphagnum cuspidatum A 238 2255 Sphagnum denticulatum A A 239 2331 Sphagnum fallax A 240 12432 Sphagnum inundatum A A 241 2031 Spirodela polyrhiza C C C C C 242 2076 Stratiotes aloides A 243 2256 Thamnobryum alopecurum B B A A A 244 7482 Tolypella glomerata A A 245 7483 Tolypella intricata A A 246 7484 Tolypella prolifera A A 247 12346 Tortula latifolia B B B 248 2057 Trapa natans B C 249 2951 Trichocolea tomentella A 250 2571 Utricularia australis A A A B 251 2572 Utricularia minor A 252 2226 Utricularia ochroleuca A 253 2077 Utricularia vulgaris A A A 254 12388 Vallisneria spiralis B C 255 2032 Veronica anagallis-aquatica B B B B B 256 2028 Veronica beccabunga B B B B B 257 2566 Veronica catenata B B B B B 258 12267 Warnstorfia exannulata A A 259 12268 Warnstorfia fluitans A A 260 2078 Wolffia arrhiza B 261 2007 Zannichellia palustris C C C C C

Page 62: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

58

4.1.1.3 Calculation of total quantities

For each sampling site the sum of the quantities of the taxa (calculated from the plant abundances) for each indicator group as well as the total quantity of all submerged taxa found at a sampling site is calculated.

Taxa found during new surveys and not mentioned in the taxa list above are not considered for index calculation. As one might expect the index value to be falsified if a larger proportion of taxa is not included (= not indicative) in the calculation, the result should be seen as not reliable if the proportion of non-indicative taxa is ≥ 25 %.

4.1.1.4 Criteria for a Reliable Assessment

To get a reliable assessment

• the total quantity of all at a sampling site found, submerged taxa has to be at least 17 and at the same time

• the number of submerged and indicative taxa has to be 2 and • the proportion of indicative taxa has to be more than 75%.

If less macrophytes are found, the from the index value deduced ecological quality class is considered unreliable. Such a result can only be used as a supporting tendency for the overall assessment. For sites where the minimum quantity is not reached, it has to be checked whether that is due to natural causes or due to macrophyte eradication. Macrophyte eradication is defined as the absence of macrophytes due to anthropogenic influences. Macrophytes can be missing at a site naturally. Reasons therefore might be, for example, strong shading. Notes to a possibly existing macrophyte eradication and its reasons have already to be made during the field survey (Figure 15). It is not always possible to name the reasons for macrophyte eradication. In that case, macrophyte eradication is not assumed.

At sampling sites with few or no macrophytes without evidence of anthropogenic influence that could be the reason for the non-existence of macrophytes, macrophytes are not assumed eradicated.

If macrophyte eradication can be proved, the assessment of the component macrophyte is considered reliable, the RI value is set to -100, the module macrophyte index therefore receives the value 0.0 and is then combined with other available reliable results from other components. This way, the negative, anthropogenic influence is directly reflected in the result of the assessment.

The presence of a, for a reliable assessment sufficient, macrophyte population can be influenced by factors given in Table 1. In the column “macrophyte eradication” it is mentioned whether the pressure results in eradication (yes) or natural absence (no) of macrophytes. The presence of several pressures is possible.

In PHYLIB only the factors causing eradication are included (see column input PHYLIB-tool). In the import table only the main reason is given; the entry of several reasons is here not possible.

Page 63: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

59

4.1.1.5 Calculation of the Reference Index

The reference index for the all types (MRK, MRS, MP(G), TRk, TRm, TRg, TNk, TNm and TNg) is calculated using the following equation (Equation 2).

Equation 2: Calculation of reference index

100

1

11 ∗−

=

∑∑

=

==g

CA

n

igi

n

iCi

n

iAi

Q

QQRI

RI = reference index QAi = quantity of the i-th taxon of group A QCi = quantity of the i-th taxon of group C Qgi = quantity of the i-th taxon of all groups nA = total number of taxa of group A nC = total number of taxa of group C ng = total number of taxa of all groups

4.1.2 Type Specific Particularities of the Assessment Procedure

When the reference index is determined, the following type specific particularities and prerequisites have to be adhered to.

4.1.2.1 Type MRK

The assessment of the macrophyte type MRK shows no peculiarities.

The reference index is calculated according to Equation 2.

No additional criteria are calculated.

4.1.2.2 Type MRS

The reference index for type MRS is calculated according to Equation 2.

In addition to possible macrophyte eradicationit has to be checked for moss eradication.

4.1.2.3 Type MP(G)

Type MPG is found in areas with increased ground water influence. Running water with an increased ground water inflow exhibit, in comparison to not ground water influenced water bodies, a smaller temperature amplitude, i.e. they are warmer during winter and cooler during summer (POTT & REMY 2000). They often show relatively high CO2 concentrations (SCHWOERBEL 1994) and are oligotrophic in their natural state.

The reference index for types MP and MPG are calculated according to Equation 2.

The additional criterion “minimum number of species” is applied for sub-types MP and MPG in connection with the RI-value.

• If the RI-value is > –70 and there are less than four submerge taxa, the RI value is reduced by 30.

Page 64: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

60

4.1.2.4 Type TRk

The reference index for type TRk is calculated according to Equation 2.

The additional criterion “helophyte dominance” is fulfilled, if the river bed of a section is continuously and densely covered with one or more of the following emerged growing taxa:

• Glyceria maxima • Phalaris arundinacea • Phragmites australis • Sagittaria sagittifolia • Sparganium emersum • Sparganium erectum • Urtica dioica

Additional criteria for type TRk are:

• if RI ≥ 0 and helophyte dominance, RI is reduced by 80

4.1.2.5 Type TRm

The reference index for type TRm is calculated according to Equation 2.

The additional criterion “helophyte dominance” is fulfilled if the river bed of a section is continuously and densely covered with one or more of the following emerged growing taxa:

• Glyceria maxima • Phalaris arundinacea • Phragmites australis • Sagittaria sagittifolia • Sparganium emersum • Sparganium erectum • Urtica dioica

Additional criteria for type TRm are:

• if RI ≥ -20 and helophyte dominance, RI is reduced by 80

Page 65: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

61

4.1.2.6 Type TRg

The reference index for type TRg is calculated according to Equation 2.

The additional criterion “helophyte dominance” is fulfilled, if the river bed of a section is continuously and densely covered with one or more of the following emerged growing taxa:

• Glyceria maxima • Phalaris arundinacea • Phragmites australis • Sagittaria sagittifolia • Sparganium emersum • Sparganium erectum • Urtica dioica

Additional criteria for type TRg are:

• if RI ≥ -40 and helophyte dominance, RI is reduced by 80

4.1.2.7 Type TNk

The reference index for type TNk is calculated according to Equation 2.

For the assessment of the additional criteria minimum number of taxa, total quantity of Myriophyllum spicatum and Ranunculu ssp., helophyte dominance and evenness are considered.

The additional criterion “helophyte dominance” is fulfilled if the river bed of a section is continuously and densely covered with one or more of the following emerged growing taxa:

• Glyceria maxima • Phalaris arundinacea • Phragmites australis • Sagittaria sagittifolia • Sparganium emersum • Sparganium erectum • Urtica dioica

The criterion “evenness” (Equation 4) is based on the diversity index according to SHANNON &

WEAVER (1949) (Equation 3).

Equation 3: Diversity index

∑=

−=s

iiis NNH

1

ln* Hs = diversity index Ni = quantity of taxon i/total quantity of all taxa s = total number of taxa of the biocoenosis

Equation 4: Evenness

ln sH

E s= E = evenness Hs = diversity index according to SHANNON-WEAVER s = total number of taxa

Page 66: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

62

Additional criteria for type TNk are:

• if RI ≥ 0 and there are less than five submerged taxa, RI is reduced by 20 • if RI ≥ 0 and evenness < 0,75, RI is reduced by 30 • if RI ≥ 0 and total quantity of Myriophyllum spicatum and Ranunculus spp. > 60 %, RI is

reduced by 80 • if RI ≥ 0 and helophyte dominance, RI is reduced by 80 • should the resulting RI be < -100 due to the application of several criteria, it is set to -100

4.1.2.8 Type TNm

The reference index for type TNm is calculated according to Equation 2.

For the assessment of the additional criteria minimum number of taxa, total quantity of Myriophyllum spicatum and Ranunculu ssp., helophyte dominance and evenness are considered.

The additional criterion “helophyte dominance” is fulfilled if the river bed of a section is continuously and densely covered with one or more of the following emerged growing taxa:

• Glyceria maxima • Phalaris arundinacea • Phragmites australis • Sagittaria sagittifolia • Sparganium emersum • Sparganium erectum • Urtica dioica

The criterion “evenness” (Equation 4) is based on the diversity index according to SHANNON &

WEAVER (1949) (Equation 3).

Additional criteria for type TNm are:

• if RI ≥ -20 and there are less than five submerged taxa, RI is reduced by 20 • if RI ≥ -20 and evenness < 0,75, RI is reduced by 30 • if RI ≥ -20 and total quantity of Myriophyllum spicatum and Ranunculus spp. > 60 %, RI is

reduced by 80 • if RI ≥ -20 and helophyte dominance, RI is reduced by 80 • should the resulting RI be < -100 due to the application of several criteria, it is set to -100

Page 67: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

63

4.1.2.9 Type TNg

The reference index for type TNg is calculated according to Equation 2.

For the assessment of the additional criteria minimum number of taxa, total quantity of Myriophyllum spicatum and Ranunculu ssp. and evenness are considered.

The criterion “evenness” (Equation 4) is based on the diversity index according to SHANNON &

WEAVER (1949) (Equation 3).

Additional criteria for type TNg are:

• if RI ≥ -40 and ther are less than five submerged taxa, RI is reduced by 20

• if RI ≥ -40 and evenness < 0,75, RI is reduced by 30

• if RI ≥ -40 and total quantity of Myriophyllum spicatum and Ranunculus spp. > 60 %, RI is reduced by 80

• should the resulting RI be < -100 due to the application of several criteria, it is set to -100

4.2 Diatoms

4.2.1 Assessment Module “Species Composition and Abundance”

Assessment is based on the cumulative frequencies (in %) of the reference taxa found at a site. A distinction is made between general reference taxa and type specific reference taxa. General reference taxa are mainly oligotrophic and oligo-mesotrophic diatoms, but this group also contains some, regarding the trophic situation, euryoecious taxa. Most taxa show a clear geochemical preference and are either characteristic for siliceous or calcareous areas. A small number of taxa is indifferent towards calcium carbonate content and can be found in both geochemical types of water. All 442 general reference taxa and their geochemical preferences can be found in Table 31. The application of the siliceous and calcareous reference taxa groups for the different diatom types is summarised in Table 24.

The list of general reference taxa cannot represent very well for all biocoenotic types the in very good status actually to be expected taxa. It rather is an open “pool of taxa” with room for future additions of reference taxa of the different diatom types (see SCHAUMBURG et al. 2005), which can be expected with increasing knowledge due to a higher number of water bodies in very good condition. For most taxa, the geochemical preferences are known and sufficiently supported by literature data. If the geochemical preference cannot be characterised reliably at the moment, this is shown in Table 31. This can be the case for rare and/or taxa occurring usually with only few individuals.

Page 68: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

64

Table 24: Application of siliceous and calcareous groups of reference taxa for the different diatom types. In this table, sub-types are combined to types of higher order.

Diatom type Siliceous reference taxa Calcareous reference taxa

1 x 2 X x 3 x 4 X x 5 X 6 X 7 X x 8 x 9 x

10 X x 11 x x 12 x x 13 x x

The so called type specific reference taxa (Table 30) are neither limited to the respective type nor can they be considered reference taxa sensu strictu. These taxa are wide spread and can also occur in certain water body types at high or good ecological status in high numbers.

For the assessment the cumulative frequencies (in %) of the general and type specific reference taxa at a sampling site is used. High ecological status is characterised by cumulative frequencies between 76% and 100%. Values between 51% and 75% characterise good ecological status and values between 26% and 50% reflect moderate ecological status.

In addition, for evaluation of the types of the Central German Uplands and the North German Lowland (type D 5 to D 13, including sub-types) the diversity of the community is also considered (SCHAUMBURG et al. 2005). If in a water body of one of these types the relative abundance of one of the type specific reference taxa is higher than 40% (mass occurrence), the sum of all in this sample occurring reference taxa is, depending on the severity of the mass occurrence, reduced as shown in Table 25. To verify the assessment in case of a mass occurrence of a general reference taxon in any diatom type of the Central German Uplands and the North German Lowland, a second field sampling is recommended.

Table 25: Reduction of the sum of reference taxa in the case of mass occurrences of a type specific reference taxon (>40%) in running waters of the Central German Uplands and the North German Lowland (diatom type D 5 to D 13, including sub-types)

Total of type specific reference taxa (in %)

Reduction by:

76 bis 100 - 30 51 bis 75 - 25 41 bis 50 - 20

Page 69: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

65

4.2.2 Assessment Module “Trophic Index and Saprobic Index”

The biocoenotic running water types 1 to 12 are assessed according to the trophic index (ROTT et al., 1999) (Equation 5). The taxon specific parameters are given in Table 32.

The assessment of water bodies of diatom type 13 (large rivers of the North German Lowland) is based on the saprobic index (Equation 6, Table 32).

The importance of trophy and saproby in the respective water types is detailed in SCHAUMBURG et al. 2005.

Equation 5: Trophic index according to ROTT et al. (1999)

=

== n

iii

ii

n

ii

HG

HGTWTI

1

1

*

** TI : Trophic index TWi : Trophic value of taxon i Gi : Weighting of taxon i Hi : Relative abundance of taxon i (in%)

Equation 6: Saprobic index according to ROTT et al. (1997)

=

== n

iii

ii

n

ii

HG

HGSWSI

1

1

*

** SI : Saprobic index SWi : Saprobic value of taxon i Gi : Weighting of taxon i Hi : Relative abundance of taxon i

4.2.3 Assessment Module “Indicators of Acidification”

The consideration of signs of acidification in streams of the siliceous Central German Upland, especially in areas with variegated sandstone and bedrock, forms an essential component investigated by the occurrence of the quantitatively most important indicators of anthropogenic acidification (Table 26). These taxa are typical for undisturbed biocoenoses and are therefore also included in the list of general indicator species. At high ecological status, however, they are only found in low to moderate numbers. Only on the onset of acidification their relative abundance increases and extremely high abundances are characteristic for communities of permanently strongly acidic water bodies.

Depending on the abundance of the indicators of acidification the ecological status class determined from the whole component macrophytes and phytobenthos is reduced according to Table 27 (see Chapter: Combination of Results with Additional Criteria, page 129). This easy way of inclusion of degradation from acidification is suitable for assessment according to the requirements of the EU-WFD, however, it cannot replace existing procedures serving exclusively the indication of acidification (e.g. CORING 1999). In its application this module is restricted to the siliceous water bodies of the Central German Upland.

Page 70: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

66

Table 26: Indicators of anthropogenic acidification

DV-No Name Author

6253 Achnanthes helvetica (HUSTEDT) LANGE-BERTALOT

6975 Eunotia exigua (BREBISSON) RABENHORST

6214 Eunotia incisa GREGORY

6375 Eunotia rhomboidea HUSTEDT

6383 Eunotia tenella (GRUNOW) HUSTEDT

6513 Navicula mediocris KRASSKE

6543 Navicula soehrensis KRASSKE

16074 Pinnularia silvatica PETERSEN

6126 Pinnularia subcapitata var. subcapitata GREGORY

6665 Pinnularia subcapitata var. hilseana (JANISCH) O.MUELLER

Table 27: Assessment module “indicators of acidification”

Total relative abundance of acidification indicators

Reduction by

10% to 25% one ecological status class

26% to 50% two ecological status classes

51% to 99% three ecological status classes

100% four ecological status classes

4.2.4 Assessment Module “Halobic Index”

To show different degrees of salinization in limnic water bodies the Halobic Index based on a classification of species according to their occurrences in areas of different salinities has proven useful (ZIEMANN 1971, 1999). Haloxenic or halophobic taxa are distinguished from halophilic taxa. The collective group of halophilic taxa includes halophilic, mesohalobic and polyhalobic taxa, which are altogether and without weighting included into index calculation (Equation 7). These groups of taxa are included in Table 33. Not included are, however, the limnic (oligohalobic-indifferent) taxa, but these are considered in the calculation as part of the sum in the denominator.

Halobic indices around 0 are characteristic for freshwater, negative indices for water bodies with low salinity – mostly also with low conductivity and/or low pH. Values between +10 and +30 indicate an increased salt content. +30 is the start of moderate salinization and values of +50 and more are typical for zones of strong salinization. For assessment the definition of these zones according to ZIEMANN (1999) is applied and is given in Table 29: if the halobic index is higher than 15, the ecological status class, determined from the whole biocomponent macrophytes and phytobenthos, is reduced by one. This module can be used, if necessary, to plan remedial actions.

In water bodies affected by salinization often mass occurrences of halophilic and/or mesohalobic taxa can be found. If the halobic index is calculated on the basis of relative abundances, indicative taxa occurring with low numbers are underrepresented. Thus for the calculation of the halobic index abundances are used (ZIEMANN et al. 1999). Therefore the relative abundances resulting from diatom counts have to be converted in absolute abundance classes according to Table 28.

Page 71: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

67

In the naturally saline influenced types 14 and 15 the halobic index is not valid. In other naturally saline running water, e.g. influenced by brine springs, the halobic index is also not valid and has to be omitted from assessment.

The module “salinization” is only supplementary for the assessment of degraded water bodies of moderate to bad status and is an, in comparison, only little differentiated criterion as type specificity is not taken into consideration.

Equation 7: Halobic index

100*∑

∑ ∑−=h

hhH

xH Σ hH = Total of abundances of halophilic, mesohalobic and polyhalobic taxa Σ hhx = Total of abundances of haloxenic taxa Σ h = Total of abundances of all in the sample occurring taxa

Table 28: Conversion of relative abundance to abundance class

Relative abundance Abundance class

< 1,0 % 2 > 1,0 % und < 2,5 % 3 > 2,5 % und < 10,0 % 5 > 10,0 % und < 25,0 % 7 > 25,0 % 9

Table 29: Assessment module “Salinization”

Halobic index Reduction by > 15 one ecological status class

4.2.5 Determination of Ecological Quality by Combination of Modules

4.2.6 Module Diatoms

For the overall assessment of the component diatoms the module “species composition and abundance” and “trophic index and saprobic index” are combined to the diatom index Fließgewässer (DIFG, diatom index running waters). For this combination the calculated values for both individual modules have to be converted (Equation 8, Equation 9 and Equation 10) and the arithmetic mean of the resulting values determined (Equation 11 and Equation 12). This average, the diatom index

running waters (DIFG), is used for the calculation of the ecological status class for macrophytes and phytobenthos.

If two samples were taken, the higher diatom index or the worse ecological status class forms the basis of assessment.

Page 72: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

68

Equation 8: Conversion of total of reference taxa

1001∑==

n

ii

ASR

RAM

MASR : Module cumulated abundances of reference taxa RAi : Relative abundance of reference taxon i n : Total number of all general and type-specific reference taxa present a sample

Equation 9: Conversion of diatom index (diatom types 1 to 12)

)6,3/)3,0((1 −−= TIM TI MTI : Module trophic index TI: Calculated trophic index

Equation 10: Conversion of saprobic index (diatom type 13)

)8,2/)1((1 −−= SIM SI MSI : Module saprobic index SI : Calculated saprobic index

Equation 11: Calculation of DIFG for diatom types 1 to 12

2MMDI TIASR

FG

+= MASR : Module cumulated abundances of reference taxa

MTI : Module calculated trophic index

Equation 12: Calculation of DIFG for diatom type 13

2MMDI SIASR

FG

+= MASR : Module cumulated abundances of reference taxa

SI : Module calculated saprobic index

4.2.7 Additional Metrics

In addition to the three modules relevant for assessment, further evaluations of the community structure can give supportive information about the ecological quality of the water body section under investigation and aid interpretation. This is especially true for the abundance of planktonic taxa, the occurrence of red data book species and the heterogeneity of a community in view of autecological aspects. However, for the time being, due to insufficient data, the mentioned aspects cannot be incorporated into the assessment.

4.2.7.1 Abundance of Planktonic Taxa in Streams and Small Rivers

The occurrence of planktonic taxa in streams (catchment < 100 km2) has to be seen as a direct consequence of structural degradation due to impoundments. In extreme cases, the planktonic diatoms influence the benthic community (e.g. by shading, competition for nutrients or nutrient release) significantly and, by its seasonal dynamic, also the natural environmental conditions of the benthic community. To answer the question whether the development of planktonic diatoms can be expected naturally in small rivers (catchment > 100 km2 and < 1.000 km2), there is not sufficient data available at the moment. According to MISCHKE (2005), small rivers with Chlorophyll a content of more than 20 µg/l should not be seen as water body types with plankton. The abundance of planktonic taxa can be estimated using abundance classes or quantified by counting 100 objects. Information to the live forms can be found in KRAMMER & LANGE-

Page 73: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

69

BERTALOT (1986-1991). An identification of the planktonic taxa is generally not necessary, but it can turn out to be useful additional information.

4.2.7.2 Abundance of Red Data Book Species

For comparative inspection of the inventory and abundance of endangered taxa, a red data book index (RLI, SCHAUMBURG et al. 2004) was developed, which calculation corresponds to the Rheo index by BANNING (1990). The basis is the red data book of diatoms for Germany by LANGE-BERTALOT (1996) comprising 535 taxa. The taxonomy was adjusted to “Diatomeen im Süßwasser-Benthos von Mitteleuropa” (HOFMANN et al. 2011). Nearly all taxa reported as endangered require oligotrophic or dystrophic habitats and these are extremely endangered too. During the past decades their number decreased drastically due to eutrophication by point and diffuse nutrient inputs or by acidification due to atmospheric deposition of sulphur dioxide. The different degrees of endangerment of the red data book taxa are accounted for by a weighting (Equation 13).

Equation 13: Red data book index (RLI)

∑∑ ∑ ∑ ∑ ∑∑ ∑ ∑ ∑ ∑

+++++++++

=)6;(*1)5;(*2)4;(*3)3;(*4)2;(*5)1;(*6

)5;(*2)4;(*3)3;(*4)2;(*5)1;(*6RLAiRLAiRLAiRLAiRLAiRLAi

RLAiRLAiRLAiRLAiRLAiRLI

RLI = Red data book index Ai = Relative abundance of taxon i in % RLx = Category of endangerment according to LANGE-BERTALOT (1996) RL1 = “threatened by extinction” RL2 = “strongly endangered or nearly threatened by extinction”

RL3 = “endangered” RL4 = “endangerment assumed” RL5 = “extremely rare” RL6 = not categorised or not endangered taxa

4.2.7.3 Autecological Heterogeneity

If the variance of autecological characteristics of the taxa present is large, spatial and/or temporal limited disturbances of the communities have to be expected. Very unsteady conditions can, for example, occur under the influence of punctual or short saprobic or trophic pressures or be the consequence of surges of acidification. In such cases a second sampling is strongly recommended. An exception are tidal wetlands (diatom type 14), where usually marine taxa coexist with taxa typical for siliceous waters and waters characterised by organics.

Table 30: Type specific reference taxa (if no varieties are mentioned, the type variety is concerned) Synonyms are incorporated in the evaluation software

Diatom type DV-No Taxon

1 2 3 4 5 6 7 8 9 10 11 12 13

6180 Achnanthes clevei x x x 6855 Achnanthes conspicua x x x x 6703 Achnanthes kolbei x 6260 Achnanthes lanceolata ssp. frequentissima x x x 16127 Achnanthes lanceolata ssp. lanceolata x x x x 6263 Achnanthes lauenburgiana x x 6984 Achnanthes ploenensis x x x 6983 Amphora pediculus x x x x x x x x 6306 Cocconeis neothumensis x x x 6020 Cocconeis pediculus x 6726 Cocconeis placentula var. euglypta x x x x x x x x x x x 6728 Cocconeis placentula var. lineata x x x x x x x x x x x

Page 74: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

70

Diatom type DV-No Taxon

1 2 3 4 5 6 7 8 9 10 11 12 13

6021 Cocconeis placentula var. placentula x x x x x x x x x x x 6307 Cocconeis pseudothumensis x 6891 Cymbella caespitosa x 6059 Cymbella cistula x 6323 Cymbella helvetica var. compacta x 6334 Cymbella reichardtii x 6898 Cymbella silesiaca x x x x x x x 6065 Cymbella sinuate x x x x x x x x x x x x 6006 Diatoma vulgaris x 6385 Fragilaria bicapitata x x x 6388 Fragilaria brevistriata x x x 6390 Fragilaria capucina var. capucina x x x x x x x x 16571 Fragilaria capucina distans-Sippen x x 6393 Fragilaria capucina var. mesolepta x x x 6034 Fragilaria construens f. construens x x x x 6397 Fragilaria construens f. binodis x x x x 6828 Fragilaria construens f. venter x x x x x x x x 6915 Fragilaria famelica x x 167888 Fragilaria sp. (KRAMMER & LANGE-BERTALOT,

1991, 3. Teil, Tafel 112: 10, 11) x x

6774 Fragilaria leptostauron var. dubia x x 6076 Fragilaria leptostauron var. leptostauron x x 6078 Fragilaria pinnata x x x x x x x x 6079 Frustulia vulgaris x x x 16594 Gomphonema grovei var. lingulatum x 6912 Gomphonema minutum x 6867 Gomphonema olivaceum x x x x x x x 6158 Gomphonema parvulum (excl. f. saprophilum) x x x x 6437 Gomphonema pumilum x x x x x x x x x x 6897 Gomphonema tergestinum x x x x x x x 6910 Navicula capitatoradiata x 6010 Navicula cryptocephala x 6889 Navicula cryptotenella x x x x x x x x 6473 Navicula decussis x 6507 Navicula joubaudii x 6221 Navicula reichardtiana x 6022 Navicula rhynchocephala x x x x x 6106 Navicula subhamulata x 6831 Navicula tripunctata x 6008 Nitzschia dissipata x 6025 Nitzschia fonticola x x x x 6603 Nitzschia palea var. debilis x x x 6918 Nitzschia pura x x 6029 Nitzschia recta x 6224 Rhoicosphenia abbreviate x

Table 31: General reference taxa Geochemistry: blue: = reference taxon of siliceous water bodies, yellow: = reference taxon of calcareous water bodies, grey = to be considered as reference taxon due to trophic sensitivity (data of geochemical preference still insufficient). If no varieties are mentioned, the type variety is concerned. Synonyms are incorporated in the evaluation software.

DV-No Taxon Author Geochemistry 6699 Achnanthes altaica (PORETZKY) CLEVE-EULER S 6139 Achnanthes biasolettiana GRUNOW S K 16106 Achnanthes biasolettiana var. subatomus LANGE-BERTALOT S K 6835 Achnanthes bioretii GERMAIN S K 6246 Achnanthes calcar CLEVE S K 16108 Achnanthes carissima LANGE-BERTALOT S 6700 Achnanthes chlidanos HOHN & HELLERMANN S 16111 Achnanthes daonensis LANGE-BERTALOT S 6701 Achnanthes daui FOGED S 16113 Achnanthes delicatula ssp. hauckiana LANGE-BERTALOT K 16114 Achnanthes didyma HUSTEDT S 16116 Achnanthes distincta MESSIKOMMER S

Page 75: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

71

DV-No Taxon Author Geochemistry 6249 Achnanthes exilis KUETZING K 6250 Achnanthes flexella (KUETZING) BRUN S K 6251 Achnanthes flexella var. alpestris BRUN S K 6252 Achnanthes grischuna WUTHRICH S K 6253 Achnanthes helvetica (HUSTEDT) LANGE-BERTALOT S 16118 Achnanthes impexiformis LANGE-BERTALOT S 6255 Achnanthes joursacense HERIBAUD S K 6256 Achnanthes kranzii LANGE-BERTALOT S 6257 Achnanthes kryophila PETERSEN S K 16119 Achnanthes kuelbsii LANGE-BERTALOT S 16121 Achnanthes lacus-vulcani LANGE-BERTALOT & KRAMMER S 6258 Achnanthes laevis OESTRUP S K 16122 Achnanthes laevis var. austriaca (HUSTEDT) LANGE-BERTALOT S K 6259 Achnanthes laevis var. quadratarea (OESTRUP) LANGE-BERTALOT S K 6262 Achnanthes lapidosa KRASSKE S 6705 Achnanthes laterostrata HUSTEDT S K 6264 Achnanthes levanderi HUSTEDT S 16683 Achnanthes linearioides LANGE-BERTALOT S 6706 Achnanthes lutheri HUSTEDT S K 6265 Achnanthes marginulata GRUNOW S 16529 Achnanthes microscopica (CHOLNOKY) LANGE-B. & KRAMMER S 6014 Achnanthes minutissima KUETZING S K 6240 Achnanthes minutissima var. gracillima (MEISTER) LANGE-BERTALOT K 6267 Achnanthes minutissima var. scotica (CARTER) LANGE-BERTALOT S K 6709 Achnanthes nodosa CLEVE S 6268 Achnanthes oblongella OESTRUP S 6270 Achnanthes peragalli BRUN & HERIBAUD S 6271 Achnanthes petersenii HUSTEDT S K 16140 Achnanthes pseudoswazi CARTER S 6272 Achnanthes pusilla (GRUNOW) DE TONI S 6711 Achnanthes rechtensis LECLERCQ S 6273 Achnanthes rosenstockii LANGE-BERTALOT K 16143 Achnanthes rossii HUSTEDT S 6275 Achnanthes silvahercynia LANGE-BERTALOT S 6276 Achnanthes subatomoides (HUSTEDT) LANGE-B. & ARCHIBALD S 16146 Achnanthes subexigua HUSTEDT S 6277 Achnanthes suchlandtii HUSTEDT S 6279 Achnanthes trinodis (W.SMITH) GRUNOW K 6713 Achnanthes ventralis (KRASSKE) LANGE-BERTALOT S 6283 Amphora fogediana KRAMMER S K 6171 Amphora inariensis KRAMMER S K 6288 Amphora thumensis (A.MAYER) CLEVE-EULER K 6289 Amphora veneta var. capitata HAWORTH K 6172 Asterionella ralfsii W.SMITH S 6291 Brachysira brebissonii ROSS S 6292 Brachysira calcicola LANGE-BERTALOT K 16165 Brachysira follis (EHRENBERG) ROSS S 16166 Brachysira garrensis (LANGE-B. & KRAMMER) LANGE-B. S 6293 Brachysira hofmanniae LANGE-BERTALOT K 6294 Brachysira liliana LANGE-BERTALOT K 6295 Brachysira neoexilis LANGE-BERTALOT S K 16167 Brachysira procera LANGE-BERTALOT & MOSER S K 6296 Brachysira serians (BREBISSON) ROUND & MANN S 6297 Brachysira styriaca (GRUNOW) ROSS S K 6298 Brachysira vitrea (GRUNOW) ROSS K 16168 Brachysira wygaschii LANGE-BERTALOT S 6299 Brachysira zellensis (GRUNOW) ROUND & MANN S K 6300 Caloneis aerophila BOCK S 6166 Caloneis alpestris (GRUNOW) CLEVE K 16690 Caloneis bottnica CLEVE K 6301 Caloneis latiuscula (KUETZING) CLEVE S K 6721 Caloneis lauta CARTER & BAILEY-WATTS S 16169 Caloneis lepidula (GRUNOW) CLEVE S 6174 Caloneis leptosoma (GRUNOW) KRAMMER S 6302 Caloneis obtusa (W.SMITH) CLEVE S K 6304 Caloneis schumanniana (GRUNOW) CLEVE K 6810 Caloneis tenuis (GREGORY) KRAMMER K 6175 Caloneis undulata (GREGORY) KRAMMER S 6058 Cymbella affinis KUETZING K

Page 76: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

72

DV-No Taxon Author Geochemistry 6310 Cymbella alpina GRUNOW K 6311 Cymbella amphicephala NAEGELI S K 6739 Cymbella amphicephala var. hercynica (SCHMIDT) CLEVE S K 6740 Cymbella amphioxys (KUETZING) CLEVE S 6312 Cymbella ancyli CLEVE K 6741 Cymbella angustata (W.SMITH) CLEVE S 6313 Cymbella austriaca GRUNOW K 16195 Cymbella austriaca var. erdobenyiana (PANTOCSEK) KRAMMER K 6314 Cymbella brehmii HUSTEDT S K 6183 Cymbella cesatii (RABENHORST) GRUNOW S K 6979 Cymbella cymbiformis J.G.AGARDH S K 6315 Cymbella delicatula KUETZING K 6316 Cymbella descripta (HUSTEDT) KRAMMER & LANGE-B. S K 6317 Cymbella elginensis KRAMMER S 6318 Cymbella falaisensis (GRUNOW) KRAMMER & LANGE-B. S K 6319 Cymbella gaeumannii MEISTER S 6320 Cymbella gracilis (EHRENBERG) KUETZING S 6321 Cymbella hebridica (GRUNOW) CLEVE S 6184 Cymbella Helvetica KUETZING K 6978 Cymbella hustedtii KRASSKE K 6324 Cymbella hybrid GRUNOW K 16581 Cymbella hybrida var. lanceolata KRAMMER K 6325 Cymbella incerta (GRUNOW) CLEVE S K 6327 Cymbella laevis NAEGELI K 6328 Cymbella lapponica GRUNOW S K 6331 Cymbella mesiana CHOLNOKY S 6895 Cymbella microcephala GRUNOW S K 6909 Cymbella minuta HILSE S K 16196 Cymbella naviculacea GRUNOW S K 6063 Cymbella naviculiformis AUERSWALD S 6747 Cymbella norvegica GRUNOW S 6332 Cymbella obscura KRASSKE S K 16197 Cymbella paucistriata CLEVE-EULER S K 6977 Cymbella perpusilla CLEVE-EULER S 6333 Cymbella proxima REIMER K 6749 Cymbella reinhardtii GRUNOW S K 6335 Cymbella rupicola GRUNOW S 16199 Cymbella schimanskii KRAMMER K 6337 Cymbella similis KRASSKE K 6336 Cymbella simonsenii KRAMMER K 6338 Cymbella stauroneiformis LAGERSTEDT S K 6150 Cymbella subaequalis GRUNOW S K 6067 Cymbella tumidula GRUNOW K 6339 Cymbella tumidula var. lancettula KRAMMER K 6340 Denticula kuetzingii GRUNOW K 6068 Denticula tenuis KUETZING K 6185 Diatoma anceps (EHRENBERG) KIRCHNER S 6208 Diatoma ehrenbergii KUETZING K 6167 Diatoma hyemalis (ROTH) HEIBERG S 6949 Diatoma mesodon (EHRENBERG) KUETZING S K 16208 Diatomella balfouriana GREVILLE S 16209 Didymosphenia geminata (LYNGBYE) M.SCHMIDT K 6341 Diploneis alpine MEISTER S K 6807 Diploneis elliptica (KUETZING) CLEVE K 6345 Diploneis modica HUSTEDT K 6346 Diploneis oblongella (NAEGELI) CLEVE-EULER K 6070 Diploneis ovalis (HILSE) CLEVE K 6348 Diploneis parma CLEVE S 6349 Diploneis petersenii HUSTEDT S 6754 Entomoneis ornate (BAILEY) REIMER S K 6351 Epithemia goeppertiana HILSE K 6352 Epithemia smithii CARRUTHERS K 16666 Eunotia angusta (GRUNOW) BERG S 6354 Eunotia arcubus NOERPEL & LANGE-BERTALOT K 16221 Eunotia arculus (GRUNOW) LANGE-B. & NOERPEL S 6886 Eunotia arcus EHRENBERG S 6213 Eunotia bilunaris (EHRENBERG) MILLS S K 16222 Eunotia bilunaris var. linearis (OKUNO) LANGE-B. & NOERPEL S 6355 Eunotia bilunaris var. mucophila LANGE-BERTALOT & NOERPEL S

Page 77: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

73

DV-No Taxon Author Geochemistry 6761 Eunotia botuliformis WILD et al. S 16223 Eunotia circumborealis LANGE-BERTALOT & NOERPEL S 6356 Eunotia denticulata (BREBISSON) RABENHORST S 6357 Eunotia diodon EHRENBERG S 16224 Eunotia elegans OESTRUP S 6975 Eunotia exigua (BREBISSON) RABENHORST S 16225 Eunotia exigua var. undulata MAGDEBURG S 6358 Eunotia faba EHRENBERG S 6359 Eunotia fallax A.CLEVE S 6360 Eunotia flexuosa (BREBISSON) KUETZING S 6362 Eunotia glacialis MEISTER S 6363 Eunotia hexaglyphis EHRENBERG S 6364 Eunotia implicata NOERPEL et al. S 6214 Eunotia incisa GREGORY S 6365 Eunotia intermedia (KRASSKE) NOERPEL & LANGE-B. S 16226 Eunotia islandica OESTRUP S 16104 Eunotia jemtlandica (FONTELL) BERG S 16228 Eunotia major (W.SMITH) RABENHORST S 6367 Eunotia meisteri HUSTEDT S 6368 Eunotia microcephala KRASSKE S 6369 Eunotia minor (KUETZING) GRUNOW S K 6885 Eunotia monodon EHRENBERG S 6370 Eunotia muscicola var. tridentula NOERPEL & LANGE-BERTALOT S 6371 Eunotia naegelii MIGULA S 16695 Eunotia neofallax NOERPEL S 6372 Eunotia nymanniana GRUNOW S 6373 Eunotia paludosa GRUNOW S 6884 Eunotia paludosa var. trinacria (KRASSKE) NOERPEL S 6168 Eunotia pectinalis (DILLWYN) RABENHORST S 6766 Eunotia pectinalis var. undulata (RALFS) RABENHORST S 6851 Eunotia praerupta EHRENBERG S 6374 Eunotia praerupta var. bigibba (KUETZING) GRUNOW S 6768 Eunotia praerupta var. curta GRUNOW S 6769 Eunotia praerupta var. inflata GRUNOW S 16229 Eunotia pseudopectinalis HUSTEDT S 6375 Eunotia rhomboidea HUSTEDT S 16230 Eunotia rhynchocephala HUSTEDT S 6376 Eunotia septentrionalis OESTRUP S 6850 Eunotia serra EHRENBERG S 6770 Eunotia serra var. diadema (EHRENBERG) PATRICK S 6377 Eunotia serra var. tetraodon (EHRENBERG) NOERPEL S 6378 Eunotia silvahercynia NOERPEL et al. S 6379 Eunotia soleirolii (KUETZING) RABENHORST S 6380 Eunotia steineckei PETERSEN S 6381 Eunotia subarcuatoides ALLES et al. S 6382 Eunotia sudetica O.MUELLER S 6383 Eunotia tenella (GRUNOW) HUSTEDT S 6771 Eunotia triodon EHRENBERG S 16233 Fragilaria acidoclinata LANGE-BERTALOT & HOFMANN S 6077 Fragilaria arcus (EHRENBERG) CLEVE S K 6908 Fragilaria capucina var. amphicephala (GRUNOW) LANGE-BERTALOT K 6389 Fragilaria capucina var. austriaca (GRUNOW) LANGE-BERTALOT K 6392 Fragilaria capucina var. gracilis (OESTRUP) HUSTEDT S K 6396 Fragilaria capucina var. rumpens (KUETZING) LANGE-BERTALOT S K 16234 Fragilaria constricta EHRENBERG S 6399 Fragilaria delicatissima (W.SMITH) LANGE-BERTALOT K 6401 Fragilaria exigua GRUNOW S 6405 Fragilaria nanana LANGE-BERTALOT S K 6407 Fragilaria pseudoconstruens MARCINIAK S 6409 Fragilaria tenera (W.SMITH) LANGE-BERTALOT S K 6169 Fragilaria virescens RALFS S 6187 Frustulia rhomboids (EHRENBERG) DE TONI S 6412 Frustulia rhomboides var. crassinervia (BREBISSON) ROSS S 6413 Frustulia rhomboides var. saxonica (RABENHORST) DE TONI S 6414 Frustulia rhomboides var. viridula (BREBISSON) CLEVE S 6417 Gomphonema acutiusculum (O.MUELLER) CLEVE-EULER S K 16246 Gomphonema amoenum LANGE-BERTALOT S 6819 Gomphonema angustum J.G.AGARDH K 6419 Gomphonema auritum A.BRAUN S K

Page 78: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

74

DV-No Taxon Author Geochemistry 6420 Gomphonema bavaricum REICHARDT & LANGE-BERTALOT K 6421 Gomphonema bohemicum REICHELT & FRICKE S 6423 Gomphonema dichotomum KUETZING S K 6424 Gomphonema hebridense GREGORY S 6425 Gomphonema helveticum BRUN K 16661 Gomphonema lacus-vulcani REICHARDT & LANGE-BERTALOT S 6426 Gomphonema lagerheimii A.CLEVE S 6427 Gomphonema lateripunctatum REICHARDT & LANGE-BERTALOT K 6429 Gomphonema occultum REICHARDT & LANGE-BERTALOT K 6430 Gomphonema olivaceum v. minutissimum HUSTEDT S 6431 Gomphonema olivaceum v. olivaceoides (HUSTEDT) LANGE-B. & REICHARDT S K 6433 Gomphonema parvulum var. exilissimum GRUNOW S K 16258 Gomphonema parvulum var. parvulius LANGE-BERTALOT & REICHARDT S K 6434 Gomphonema procerum REICHARDT & LANGE-BERTALOT K 6435 Gomphonema productum (GRUNOW) LANGE-B. & REICHARDT S 16586 Gomphonema rhombicum FRICKE S 6440 Gomphonema subtile EHRENBERG S K 6441 Gomphonema tenue FRICKE K 6999 Gomphonema ventricosum GREGORY S K 6442 Gomphonema vibrio EHRENBERG K 6804 Mastogloia grevillei W.SMITH K 6445 Mastogloia smithii var. lacustris GRUNOW K 6446 Meridion circulare var. constrictum (RALFS) VAN HEURCK S K 6448 Navicula absoluta HUSTEDT S K 16717 Navicula adversa KRASSKE S 6809 Navicula angusta GRUNOW S 16289 Navicula aquaedurae LANGE-BERTALOT K 6460 Navicula brockmannii HUSTEDT S 6461 Navicula bryophila PETERSEN S K 6464 Navicula catalanogermanica LANGE-BERTALOT & HOFMANN S K 16300 Navicula cataractarheni LANGE-BERTALOT K 6969 Navicula cocconeiformis GREGORY S K 6468 Navicula concentrica CARTER S K 6472 Navicula dealpina LANGE-BERTALOT K 16308 Navicula declivis HUSTEDT S 6474 Navicula densilineolata (LANGE-B.) LANGE-BERTALOT K 6475 Navicula detenta HUSTEDT S 16000 Navicula digitulus HUSTEDT S 6478 Navicula diluviana KRASSKE K 16001 Navicula disjuncta HUSTEDT S 6482 Navicula evanida HUSTEDT S 6917 Navicula exilis KUETZING S 6485 Navicula festiva KRASSKE S 6489 Navicula gallica var. perpusilla (GRUNOW) LANGE-BERTALOT S 6493 Navicula gotlandica GRUNOW K 6496 Navicula heimansioides LANGE-BERTALOT S 16324 Navicula hoefleri CHOLNOKY S 6501 Navicula ignota var. acceptata (HUSTEDT) LANGE-BERTALOT S K 6502 Navicula ignota var. palustris (HUSTEDT) LUND S 6505 Navicula jaagii MEISTER S K 6506 Navicula jaernefeltii HUSTEDT K 6509 Navicula krasskei HUSTEDT S 6882 Navicula laevissima KUETZING S K 16010 Navicula lapidosa KRASSKE S 16334 Navicula laticeps HUSTEDT K 16335 Navicula leistikowii LANGE-BERTALOT K 6923 Navicula lenzii HUSTEDT K 16011 Navicula leptostriata JOERGENSEN S 16337 Navicula levanderii HUSTEDT S 6511 Navicula lundii REICHARDT S K 16012 Navicula maceria SCHIMANSKI S 16342 Navicula mediocostata REICHARDT K 6513 Navicula mediocris KRASSKE S 6515 Navicula minuscula GRUNOW S 16349 Navicula notha WALLACE S 6521 Navicula oligotraphenta LANGE-BERTALOT & HOFMANN K 16356 Navicula porifera var. opportuna (HUSTEDT) LANGE-BERTALOT S 6524 Navicula praeterita HUSTEDT K 6527 Navicula pseudobryophila (HUSTEDT) HUSTEDT S

Page 79: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

75

DV-No Taxon Author Geochemistry 6529 Navicula pseudoscutiformis HUSTEDT S K 16028 Navicula pseudosilicula HUSTEDT S 6530 Navicula pseudotuscula HUSTEDT K 6533 Navicula pusio CLEVE S 6536 Navicula rotunda HUSTEDT S 6538 Navicula schadei KRASSKE K 6539 Navicula schmassmannii HUSTEDT S 6926 Navicula schoenfeldii HUSTEDT K 6543 Navicula soehrensis KRASSKE S 16034 Navicula soehrensis var. hassiaca (KRASSKE) LANGE-BERTALOT S 6544 Navicula soehrensis var. muscicola (PETERSEN) KRASSKE S 16035 Navicula stankovicii HUSTEDT K 6546 Navicula stroemii HUSTEDT K 6547 Navicula subalpina REICHARDT K 6549 Navicula submolesta HUSTEDT S 6878 Navicula subtilissima CLEVE S 6551 Navicula suchlandtii HUSTEDT S 6554 Navicula tridentula KRASSKE S 6989 Navicula tuscula (EHRENBERG) GRUNOW K 6556 Navicula utermoehlii HUSTEDT K 16037 Navicula variostriata KRASSKE S 16736 Navicula ventraloconfusa LANGE-BERTALOT S 6560 Navicula vulpina KUETZING K 6561 Navicula wildii LANGE-BERTALOT K 6820 Neidium affine (EHRENBERG) PFITZER S K 6562 Neidium affine var. longiceps (GREGORY) CLEVE S K 6563 Neidium alpinum HUSTEDT S 6564 Neidium ampliatum (EHRENBERG) KRAMMER S K 6566 Neidium bisulcatum (LAGERSTEDT) CLEVE S 6567 Neidium carterii KRAMMER S 16383 Neidium densestriatum (OESTRUP) KRAMMER S 6568 Neidium hercynicum A.MAYER S 6109 Neidium iridis (EHRENBERG) CLEVE S 16386 Neidium ladogensis (CLEVE) FOGED S 6110 Neidium productum (W.SMITH) CLEVE S 6571 Neidium septentrionale CLEVE-EULER S 6573 Nitzschia acidoclinata LANGE-BERTALOT S K 6575 Nitzschia alpine HUSTEDT S 16100 Nitzschia alpinobacillum LANGE-BERTALOT S K 6577 Nitzschia bacilliformis HUSTEDT K 16396 Nitzschia bryophila (HUSTEDT) HUSTEDT S 16579 Nitzschia dissipata ssp. oligotraphenta LANGE-BERTALOT S K 6586 Nitzschia dissipata var. media (HANTZSCH) GRUNOW S K 6587 Nitzschia diversa HUSTEDT K 6589 Nitzschia fibulafissa LANGE-BERTALOT K 16749 Nitzschia garrensis HUSTEDT S 6592 Nitzschia gessneri HUSTEDT K 6593 Nitzschia Gisela LANGE-BERTALOT K 6931 Nitzschia hantzschiana RABENHORST S K 16051 Nitzschia homburgiensis LANGE-BERTALOT S 6597 Nitzschia lacuum LANGE-BERTALOT S K 16433 Nitzschia paleaeformis HUSTEDT S 6605 Nitzschia perminuta (GRUNOW) M.PERAGALLO S K 6607 Nitzschia radicula HUSTEDT K 6608 Nitzschia regula HUSTEDT K 16455 Nupela rhetica (WUETHRICH) LANGE-BERTALOT S K 16456 Nupela tenuicephala (HUSTEDT) LANGE-BERTALOT S 6619 Peronia fibula (BREBISSON) ROSS S 6620 Pinnularia acoricola HUSTEDT S 6877 Pinnularia acuminate W.SMITH S 6621 Pinnularia anglica KRAMMER S 6622 Pinnularia angusta (CLEVE) KRAMMER S 16543 Pinnularia bacilliformis KRAMMER S 16461 Pinnularia balfouriana GRUNOW S K 6624 Pinnularia brandeliformis KRAMMER S 6625 Pinnularia brandelii CLEVE S 16463 Pinnularia brauniana (GRUNOW) MILLS S 6881 Pinnularia braunii (GRUNOW) CLEVE S 6627 Pinnularia brevicostata CLEVE S

Page 80: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

76

DV-No Taxon Author Geochemistry 16062 Pinnularia cardinalis (EHRENBERG) W.SMITH S 16544 Pinnularia carminata BARBER & CARTER S 6629 Pinnularia cleveiformis KRAMMER S 6632 Pinnularia divergens W.SMITH S 16466 Pinnularia divergens var. decrescens (GRUNOW) KRAMMER S 6633 Pinnularia divergentissima (GRUNOW) CLEVE S 6845 Pinnularia episcopalis CLEVE S 16063 Pinnularia esox EHRENBERG S 16546 Pinnularia esoxiformis FUSEY S 16547 Pinnularia esoxiformis var. eifeliana KRAMMER S 6636 Pinnularia gentilis (DONKIN) CLEVE S 6121 Pinnularia gibba EHRENBERG S K 6638 Pinnularia gibbiformis KRAMMER S K 16065 Pinnularia gigas EHRENBERG S 6223 Pinnularia hemiptera (KUETZING) RABENHORST S K 6642 Pinnularia infirma KRAMMER S K 6643 Pinnularia intermedia (LAGERSTEDT) CLEVE S 6844 Pinnularia interrupta W.SMITH S 6853 Pinnularia lata (BREBISSON) RABENHORST S 6958 Pinnularia legume EHRENBERG S K 6648 Pinnularia macilenta (EHRENBERG) EHRENBERG S K 6123 Pinnularia maior (KUETZING) RABENHORST S 6124 Pinnularia mesolepta (EHRENBERG) W.SMITH S K 16475 Pinnularia mesolepta var. gibberula (HUSTEDT) KRAMMER S K 6125 Pinnularia microstauron (EHRENBERG) CLEVE S 6651 Pinnularia neomajor KRAMMER S 6111 Pinnularia nobilis (EHRENBERG) EHRENBERG S 6652 Pinnularia nodosa (EHRENBERG) W.SMITH S 6653 Pinnularia notabilis KRAMMER S 6654 Pinnularia obscura KRASSKE S K 6655 Pinnularia oriunda KRAMMER S K 6656 Pinnularia parallela BRUN S K 16070 Pinnularia platycephala (EHRENBERG) CLEVE S 6842 Pinnularia polyonca (BREBISSON) W.SMITH S 6658 Pinnularia pseudogibba KRAMMER S 16552 Pinnularia renata KRAMMER S 6659 Pinnularia rupestris HANTZSCH S 6660 Pinnularia schoenfelderi KRAMMER S 16074 Pinnularia silvatica PETERSEN S 16075 Pinnularia similiformis KRAMMER S 6662 Pinnularia sinistra KRAMMER S 6663 Pinnularia stomatophora (GRUNOW) CLEVE S 16479 Pinnularia stomatophora var. triundulata (FONTELL) HUSTEDT S 6664 Pinnularia streptoraphe CLEVE S 16480 Pinnularia streptoraphe var. parva KRAMMER S 6126 Pinnularia subcapitata GREGORY S 16481 Pinnularia subcapitata var. elongata KRAMMER S 6665 Pinnularia subcapitata var. hilseana (JANISCH) O.MUELLER S 6667 Pinnularia subgibba KRAMMER S K 16482 Pinnularia subgibba var. hustedtii KRAMMER S K 16483 Pinnularia subgibba var. undulata KRAMMER S K 6670 Pinnularia subrupestris KRAMMER S 16557 Pinnularia subrupestris var. parva KRAMMER S 6671 Pinnularia suchlandtii HUSTEDT S 6673 Pinnularia transversa (A.SCHMIDT) MAYER S 6674 Pinnularia viridiformis KRAMMER S 6128 Pinnularia viridis (NITZSCH) EHRENBERG S K 6676 Pinnularia woerthensis (MAYER) KRAMMER S 6678 Rhopalodia gibba var. parallela (GRUNOW) H.ET M.PERAGALLO K 16495 Rhopalodia rupestris (W.SMITH) KRAMMER S 6129 Stauroneis anceps EHRENBERG S 6680 Stauroneis anceps var. gracilis (EHRENBERG) BRUN S 6681 Stauroneis kriegerii PATRICK S K 6840 Stauroneis nobilis SCHUMANN S 6688 Stauroneis thermicola (PETERSEN) LUND S K 6689 Stauroneis undata HUSTEDT S 16087 Stenopterobia curvula (W.SMITH) KRAMMER S 6690 Stenopterobia delicatissima (LEWIS) BREBISSON S 16503 Stenopterobia densestriata (HUSTEDT) KRAMMER S

Page 81: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

77

DV-No Taxon Author Geochemistry 16507 Surirella barrowcliffia DONKIN S 6691 Surirella bifrons EHRENBERG S K 6135 Surirella linearis W.SMITH S K 16091 Surirella linearis var. helvetica (BRUN) MEISTER S K 6694 Surirella roba LECLERCQ S 6137 Surirella robusta EHRENBERG S 6097 Surirella spiralis KUETZING S K 16092 Surirella tenera GREGORY S K 16518 Surirella turgida W.SMITH S K 16519 Tabellaria binalis (EHRENBERG) GRUNOW S 6091 Tabellaria flocculosa (ROTH) KUETZING S K 16096 Tabellaria quadriseptata KNUDSON S 6698 Tabellaria ventricosa KUETZING S 16521 Tetracyclus emarginatus (EHRENBERG) W.SMITH S 16522 Tetracyclus glans (EHRENBERG) MILLS S 16097 Tetracyclus rupestris (BRAUN) GRUNOW S

Table 32: Taxon specific parameters for calculation of trophic index and saprobic index according to ROTT et al. (1997, 1999) TW = trophic value; SW = saprobic value; G = weighting. If no varieties are mentioned, the nominat variety is concerned. This table corresponds with the publication of ROTT et al. Not all taxa included here are also part of the phytobenthos as in PHYLIB (e.g. centrics) and are relevant for assessment (see also Chapter 2.2.6 and 2.2.7). Synonyms are incorporated in the evaluation software.

DV-No Taxon Author TW G SW G

6699 Achnanthes altaica (PORETZKY) CLEVE-EULER 1,7 2 1,0 5 6139 Achnanthes biasolettiana GRUNOW 1,3 1 1,4 3 6835 Achnanthes bioretii GERMAIN 1,2 4 6180 Achnanthes clevei GRUNOW 1,6 3 6247 Achnanthes coarctata (BREBISSON) GRUNOW 0,9 2 6855 Achnanthes conspicua A.MAYER 1,5 2 16110 Achnanthes curtissima CARTER 0,6 2 16111 Achnanthes daonensis LANGE-BERTALOT 1,1 4 6248 Achnanthes delicatula (KUETZING) GRUNOW 2,9 3 2,6 3 16112 Achnanthes delicatula ssp. engelbrechtii (CHOLNOKY) LANGE-BERTALOT 2,0 3 6249 Achnanthes exilis KUETZING 1,2 3 1,3 4 6250 Achnanthes flexella (KUETZING) BRUN 0,3 3 1,0 5 6251 Achnanthes flexella var. alpestris BRUN 1,0 5 6253 Achnanthes helvetica (HUSTEDT) LANGE-BERTALOT 0,6 3 1,0 5 6047 Achnanthes hungarica (GRUNOW) GRUNOW 3,4 2 2,7 3 6703 Achnanthes kolbei HUSTEDT 3,9 2 6258 Achnanthes laevis OESTRUP 1,2 2 1,3 3 6260 Achnanthes lanceolata ssp. frequentissima LANGE-BERTALOT 2,8 3 16127 Achnanthes lanceolata ssp. lanceolata (BREBISSON) GRUNOW 3,3 3 6262 Achnanthes lapidosa KRASSKE 0,7 3 1,0 5 6705 Achnanthes laterostrata HUSTEDT 1,2 2 1,0 5 6263 Achnanthes lauenburgiana HUSTEDT 1,8 3 1,9 4 6264 Achnanthes levanderi HUSTEDT 0,6 3 1,0 5 6045 Achnanthes linearis (W.SMITH) GRUNOW 1,8 1 6265 Achnanthes marginulata GRUNOW 0,6 2 1,0 5 6266 Achnanthes minuscula HUSTEDT 2,3 2 1,9 4 6014 Achnanthes minutissima KUETZING 1,2 1 1,7 1 6173 Achnanthes minutissima var. affinis (GRUNOW) LANGE-BERTALOT 2,3 2 1,3 3 6240 Achnanthes minutissima var. gracillima (MEISTER) LANGE-BERTALOT 0,6 3 1,0 5 6707 Achnanthes minutissima var. jackii (RABENHORST) LANGE-BERTALOT 1,2 3 16135 Achnanthes minutissima var. saprophila KOBAYASI et MAYAMA 2,7 4 3,1 3 6267 Achnanthes minutissima var. scotica (CARTER) LANGE-BERTALOT 1,0 2 1,0 5 6708 Achnanthes Montana KRASSKE 0,6 2 1,0 5 6709 Achnanthes nodosa CLEVE 0,6 2 1,0 5 6268 Achnanthes oblongella OESTRUP 1,0 2 1,0 5 6269 Achnanthes oestrupii (CLEVE-EULER) HUSTEDT 1,2 2 1,3 4 6270 Achnanthes peragalli BRUN et HERIBAUD 0,6 3 1,1 4 6271 Achnanthes petersenii HUSTEDT 0,6 1 1,0 5 6984 Achnanthes ploenensis HUSTEDT 2,6 3 1,9 4 6272 Achnanthes pusilla (GRUNOW) DE TONI 0,6 3 1,0 5 6711 Achnanthes rechtensis LECLERCQ 0,6 2 1,0 5

Page 82: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

78

DV-No Taxon Author TW G SW G

6712 Achnanthes rupestoides HOHN 1,2 3 16144 Achnanthes rupestris KRASSKE 0,6 2 6276 Achnanthes subatomoides (HUST.) LANGE-B. et ARCHIBALD 2,1 2 1,1 4 16148 Achnanthes subsalsa PETERSEN 0,6 2 6277 Achnanthes suchlandtii HUSTEDT 0,6 2 1,0 5 6279 Achnanthes trinodis (W.SMITH) GRUNOW 0,6 2 1,0 5 6048 Amphipleura pellucida (KUETZING) KUETZING 2,1 2 1,3 3 6281 Amphipleura rutilans (TRENTEPOHL) CLEVE 2,9 3 6171 Amphora inariensis KRAMMER 2,1 1 1,2 4 6860 Amphora libyca EHRENBERG 3,5 5 1,6 2 6286 Amphora montana KRASSKE 2,9 2 6044 Amphora ovalis (KUETZING) KUETZING 3,3 2 1,5 2 6983 Amphora pediculus (KUETZING) GRUNOW 2,8 2 2,1 2 6288 Amphora thumensis (A.MAYER) CLEVE-EULER 1,4 3 1,1 4 6181 Amphora veneta KUETZING 3,8 2 3,6 3 6049 Anomoeoneis sphaerophora (EHRENBERG) PFITZER 3,4 3 2,7 3 6050 Asterionella formosa HASSALL 1,8 2 1,5 3 6799 Aulacoseira distans (EHRENBERG) SIMONSEN 1,0 4 6787 Aulacoseira italica (EHRENBERG) SIMONSEN 1,4 2 6716 Aulacoseira lirata (EHRENBERG) ROSS 1,8 2 6143 Bacillaria paradoxa GMELIN 2,9 3 2,3 3 6291 Brachysira brebissonii ROSS 1,1 2 1,0 5 6295 Brachysira neoexilis LANGE-BERTALOT 1,2 2 1,1 5 6296 Brachysira serians (BREBISSON) ROUND et MANN 0,6 1 1,0 5 6298 Brachysira vitrea (GRUNOW) ROSS 0,7 2 1,0 5 6300 Caloneis aerophila BOCK 1,0 5 6166 Caloneis alpestris (GRUNOW) CLEVE 1,3 2 1,0 5 6043 Caloneis amphisbaena (BORY DE SAINT VINCENT) CLEVE 3,9 2 2,3 3 6051 Caloneis bacillum (GRUNOW) CLEVE 2,5 1 2,0 4 6301 Caloneis latiuscula (KUETZING) CLEVE 1,0 5 6302 Caloneis obtusa (W.SMITH) CLEVE 0,6 2 1,0 5 6303 Caloneis pulchra MESSIKOMMER 1,2 1 1,0 5 6304 Caloneis schumanniana (GRUNOW) CLEVE 1,2 4 6052 Caloneis silicula (EHRENBERG) CLEVE 1,2 4 6723 Caloneis sublinearis (GRUNOW) KRAMMER 1,0 5 6810 Caloneis tenuis (GREGORY) KRAMMER 1,1 2 6175 Caloneis undulata (GREGORY) KRAMMER 0,6 2 6053 Campylodiscus noricus EHRENBERG 2,3 1 6981 Cocconeis disculus (SCHUMANN) CLEVE 2,2 3 6306 Cocconeis neothumensis KRAMMER 2,0 2 1,5 3 6020 Cocconeis pediculus EHRENBERG 2,6 2 2,0 3 6021 Cocconeis placentula EHRENBERG 2,6 2 1,8 2 6726 Cocconeis placentula var. euglypta EHRENBERG 2,3 2 6727 Cocconeis placentula var. klinoraphis GEITLER 2,3 2 6728 Cocconeis placentula var. lineata (EHRENBERG) VAN HEURCK 2,3 2 6307 Cocconeis pseudothumensis REICHARDT 1,0 5 6943 Cyclostephanos dubius (FRICKE) ROUND 2,9 3 6002 Cyclotella meneghiniana KUETZING 2,8 5 6936 Cyclotella ocellata PANTOCSEK 1,5 1 6057 Cymatopleura elliptica (BREBISSON) W.SMITH 2,9 3 1,4 3 6031 Cymatopleura solea (BREBISSON) W.SMITH 3,1 3 2,1 3 6738 Cymbella aequalis W.SMITH 0,6 2 6058 Cymbella affinis KUETZING 0,7 4 1,2 4 6310 Cymbella alpina GRUNOW 0,6 3 1,0 5 6311 Cymbella amphicephala NAEGELI 1,1 3 1,1 4 6739 Cymbella amphicephala var. hercynica (SCHMIDT) CLEVE 0,9 2 6740 Cymbella amphioxys (KUETZING) CLEVE 0,6 2 6312 Cymbella ancyli CLEVE 0,9 2 6741 Cymbella angustata (W.SMITH) CLEVE 0,9 2 1,0 5 6092 Cymbella aspera (EHRENBERG) CLEVE 1,7 1 6313 Cymbella austriaca GRUNOW 0,6 1 1,0 5 6891 Cymbella caespitose (KUETZING) BRUN 1,6 2 6183 Cymbella cesatii (RABENHORST) GRUNOW 0,6 4 1,0 5 6059 Cymbella cistula (EHRENBERG) KIRCHNER 2,3 1 1,4 3 6060 Cymbella cuspidate KUETZING 1,1 4 6979 Cymbella cymbiformis J.G.AGARDH 1,8 3 1,0 5 6315 Cymbella delicatula KUETZING 0,3 4 1,0 5 6316 Cymbella descripta (HUSTEDT) KRAMMER et LANGE-B. 0,6 2 1,0 5 6061 Cymbella ehrenbergii KUETZING 2,2 3 1,1 4

Page 83: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

79

DV-No Taxon Author TW G SW G

6317 Cymbella elginensis KRAMMER 0,6 2 6318 Cymbella falaisensis (GRUNOW) KRAMMER et LANGE-B. 0,4 3 1,0 5 6319 Cymbella gaeumannii MEISTER 0,6 2 1,0 5 6320 Cymbella gracilis (EHRENBERG) KUETZING 0,6 4 1,0 5 6321 Cymbella hebridica (GRUNOW) CLEVE 0,6 2 1,0 5 6184 Cymbella helvetica KUETZING 1,4 2 1,1 4 6323 Cymbella helvetica var. compacta (OESTRUP) HUSTEDT 2,6 3 1,8 3 6978 Cymbella hustedtii KRASSKE 1,2 2 6324 Cymbella hybrid GRUNOW 0,6 2 1,0 5 6325 Cymbella incerta (GRUNOW) CLEVE 0,6 2 1,0 5 6327 Cymbella laevis NAEGELI 0,9 2 1,0 5 6062 Cymbella lanceolata (EHRENBERG) KIRCHNER 1,6 4 6330 Cymbella leptoceros (EHRENBERG) KUETZING 1,3 4 6331 Cymbella mesiana CHOLNOKY 1,0 5 6895 Cymbella microcephala GRUNOW 1,2 1 1,2 4 6909 Cymbella minuta HILSE 2,0 1 1,6 2 6063 Cymbella naviculiformis AUERSWALD 1,8 1 1,3 3 6747 Cymbella norvegica GRUNOW 0,6 2 1,0 5 6977 Cymbella perpusilla CLEVE-EULER 0,5 2 1,0 5 6040 Cymbella prostrate (BERKELEY) CLEVE 2,3 1 1,8 3 6333 Cymbella proxima REIMER 1,2 2 1,1 5 6748 Cymbella pusilla GRUNOW 1,2 2 6334 Cymbella reichardtii KRAMMER 2,7 3 1,5 4 6335 Cymbella rupicola GRUNOW 1,0 5 6337 Cymbella similis KRASSKE 0,6 2 1,0 5 6336 Cymbella simonsenii KRAMMER 0,6 2 1,0 5 6065 Cymbella sinuate GREGORY 2,1 1 2,0 2 6150 Cymbella subaequalis GRUNOW 1,0 2 1,0 5 6066 Cymbella tumida (BREBISSON) VAN HEURCK 2,5 2 1,6 4 6067 Cymbella tumidula GRUNOW 0,6 2 1,0 5 6339 Cymbella tumidula var. lancettula KRAMMER 0,3 2 1,0 5 6752 Denticula elegans KUETZING 1,8 2 6340 Denticula kuetzingii GRUNOW 1,0 2 1,0 5 6068 Denticula tenuis KUETZING 1,4 3 1,3 4 6185 Diatoma anceps (EHRENBERG) KIRCHNER 0,3 2 1,0 5 6208 Diatoma ehrenbergii KUETZING 1,6 2 1,3 3 6167 Diatoma hyemalis (ROTH) HEIBERG 1,0 4 1,0 5 6949 Diatoma mesodon (EHRENBERG) KUETZING 0,7 4 1,3 4 6209 Diatoma moniliformis KUETZING 2,0 3 2,2 4 6210 Diatoma tenuis J.G.AGARDH 1,3 4 6006 Diatoma vulgaris BORY DE SAINT VINCENT 2,1 4 16208 Diatomella balfouriana GREVILLE 0,6 2 1,0 5 16209 Didymosphenia geminata (LYNGBYE) M.SCHMIDT 0,6 1 6807 Diploneis elliptica (KUETZING) CLEVE 1,7 2 1,1 4 6346 Diploneis oblongella (NAEGELI) CLEVE-EULER 1,0 2 1,0 5 6347 Diploneis oculata (BREBISSON) CLEVE 1,2 4 6070 Diploneis ovalis (HILSE) CLEVE 1,0 2 1,0 5 6349 Diploneis petersenii HUSTEDT 1,3 2 1,1 4 6754 Entomoneis ornata (BAILEY) REIMER 1,2 2 6212 Epithemia adnata (KUETZING) BREBISSON 2,2 2 1,2 4 6350 Epithemia argus (EHRENBERG) KUETZING 1,1 2 6887 Epithemia sorex KUETZING 2,7 2 1,4 3 6353 Epithemia turgida (EHRENBERG) KUETZING 2,3 2 6354 Eunotia arcubus NOERPEL et LANGE-BERTALOT 0,6 2 1,0 5 16221 Eunotia arculus (GRUNOW) LANGE-B. et NOERPEL 1,1 2 6886 Eunotia arcus EHRENBERG 1,0 5 6213 Eunotia bilunaris (EHRENBERG) MILLS 1,7 2 6357 Eunotia diodon EHRENBERG 0,6 2 1,0 5 6975 Eunotia exigua (BREBISSON) RABENHORST 0,5 3 1,1 4 6359 Eunotia fallax A.CLEVE 0,6 2 1,0 5 6360 Eunotia flexuosa (BREBISSON) KUETZING 0,7 2 1,0 5 6362 Eunotia glacialis MEISTER 0,7 2 1,0 5 6363 Eunotia hexaglyphis EHRENBERG 0,6 2 6364 Eunotia implicata NOERPEL et al. 0,6 2 1,0 5 6214 Eunotia incisa GREGORY 0,6 2 1,0 5 6365 Eunotia intermedia (KRASSKE) NOERPEL et LANGE-B. 0,6 2 6368 Eunotia microcephala KRASSKE 0,6 2 1,0 5 6369 Eunotia minor (KUETZING) GRUNOW 1,5 2 6885 Eunotia monodon EHRENBERG 0,6 2

Page 84: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

80

DV-No Taxon Author TW G SW G

6370 Eunotia muscicola var. tridentula NOERPEL et LANGE-BERTALOT 0,6 2 1,0 5 6371 Eunotia naegelii MIGULA 0,6 2 6372 Eunotia nymanniana GRUNOW 0,6 2 1,0 5 6765 Eunotia parallela EHRENBERG 0,6 2 6168 Eunotia pectinalis (DILLWYN) RABENHORST 1,0 5 6851 Eunotia praerupta EHRENBERG 0,9 2 1,0 5 6767 Eunotia praerupta var. bidens (EHRENBERG) GRUNOW 1,1 2 6374 Eunotia praerupta var. bigibba (KUETZING) GRUNOW 0,9 2 6375 Eunotia rhomboidea HUSTEDT 0,6 2 1,0 5 6850 Eunotia serra EHRENBERG 0,6 2 1,0 5 6377 Eunotia serra var. tetraodon (EHRENBERG) NOERPEL 0,6 2 1,0 5 6382 Eunotia sudetica O.MUELLER 0,6 2 1,0 5 6383 Eunotia tenella (GRUNOW) HUSTEDT 1,0 5 6771 Eunotia triodon EHRENBERG 0,6 2 1,0 5 6384 Fragilaria alpestris KRASSKE 0,6 2 6077 Fragilaria arcus (EHRENBERG) CLEVE 1,0 3 1,5 2 6385 Fragilaria bicapitata A.MAYER 1,1 1 1,6 3 6388 Fragilaria brevistriata GRUNOW 3,0 1 1,3 4 6033 Fragilaria capucina DESMAZIERES 1,8 2 6394 Fragilaria capucina perminuta - Sippen KRAMMER et LANGE-BERTALOT 2,1 4 1,5 3 6395 Fragilaria capucina radians - Sippen KRAMMER et LANGE-BERTALOT 2,0 2 6908 Fragilaria capucina var. amphicephala (GRUNOW) LANGE-BERTALOT 0,9 2 1,0 5 6389 Fragilaria capucina var. austriaca (GRUNOW) LANGE-BERTALOT 0,5 4 1,0 5 6392 Fragilaria capucina var. gracilis (OESTRUP) HUSTEDT 1,1 2 1,3 4 6393 Fragilaria capucina var. mesolepta (RABENHORST) RABENHORST 2,5 1 1,5 3 6396 Fragilaria capucina var. rumpens (KUETZING) LANGE-BERTALOT 1,0 2 1,6 3 6186 Fragilaria capucina var. vaucheriae (KUETZING) LANGE-BERTALOT 1,8 1 2,5 2 16234 Fragilaria constricta EHRENBERG 0,6 3 1,0 5 6034 Fragilaria construens (EHRENBERG) GRUNOW 2,3 2 1,4 3 6397 Fragilaria construens f. binodis (EHRENBERG) HUSTEDT 2,3 2 6828 Fragilaria construens f. venter (EHRENBERG) HUSTEDT 2,3 2 6075 Fragilaria crotonensis KITTON 1,4 3 6399 Fragilaria delicatissima (W.SMITH) LANGE-BERTALOT 1,4 2 1,0 5 6401 Fragilaria exigua GRUNOW 0,6 2 1,0 5 6915 Fragilaria famelica (KUETZING) LANGE-BERTALOT 0,7 4 6234 Fragilaria fasciculate (J.G.AGARDH) LANGE-BERTALOT 3,5 3 2,5 3 6402 Fragilaria incognita REICHARDT 2,2 1 1,1 4 6076 Fragilaria leptostauron (EHRENBERG) HUSTEDT 2,0 1 6405 Fragilaria nanana LANGE-BERTALOT 1,2 2 1,1 4 6237 Fragilaria parasitica (W.SMITH) GRUNOW 2,3 3 2,2 3 6078 Fragilaria pinnata EHRENBERG 2,2 1 1,4 3 6238 Fragilaria pulchella (RALFS) LANGE-BERTALOT 3,5 2 2,8 4 6408 Fragilaria robusta (FUSEY) MANGUIN 1,0 5 6409 Fragilaria tenera (W.SMITH) LANGE-BERTALOT 1,0 2 1,0 5 6239 Fragilaria ulna (NITZSCH) LANGE-BERTALOT 3,5 4 16575 Fragilaria ulna acus - Sippen KRAMMER et LANGE-BERTALOT 1,8 2 6410 Fragilaria ulna angustissima - Sippen KRAMMER et LANGE-BERTALOT 1,8 2 6780 Fragilaria ulna oxyrhynchus - Sippen KRAMMER et LANGE-BERTALOT 2,9 2 6169 Fragilaria virescens RALFS 1,4 1 1,2 4 6187 Frustulia rhomboids (EHRENBERG) DE TONI 0,5 3 1,0 5 6411 Frustulia rhomboides var. amphipleuroides (GRUNOW) DE TONI 0,6 2 1,2 4 6412 Frustulia rhomboides var. crassinervia (BREBISSON) ROSS 0,4 2 1,0 5 6413 Frustulia rhomboides var. saxonica (RABENHORST) DE TONI 0,4 2 1,0 5 6079 Frustulia vulgaris (THWAITES) DE TONI 2,0 2 2,0 3 6080 Gomphonema acuminatum EHRENBERG 2,5 2 1,5 2 6418 Gomphonema affine KUETZING 1,8 3 16246 Gomphonema amoenum LANGE-BERTALOT 0,4 1 6819 Gomphonema angustum J.G.AGARDH 1,0 3 1,6 3 6081 Gomphonema augur EHRENBERG 3,1 1 2,1 3 6419 Gomphonema auritum A.BRAUN 0,6 1 1,1 4 6420 Gomphonema bavaricum REICHARDT et LANGE-BERTALOT 0,6 2 1,1 5 6421 Gomphonema bohemicum REICHELT et FRICKE 0,6 1 1,0 5 6217 Gomphonema clavatum EHRENBERG 1,2 4 6422 Gomphonema clevei FRICKE 1,2 2 6423 Gomphonema dichotomum KUETZING 1,3 2 6883 Gomphonema gracile EHRENBERG 1,2 4 6424 Gomphonema hebridense GREGORY 0,9 2 1,1 4 6427 Gomphonema lateripunctatum REICHARDT et LANGE-BERTALOT 0,7 2 1,0 5 6428 Gomphonema micropus KUETZING 1,9 4

Page 85: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

81

DV-No Taxon Author TW G SW G

6912 Gomphonema minutum (J.G.AGARDH) J.G.AGARDH 2,2 1 2,0 5 6429 Gomphonema occultum REICHARDT et LANGE-BERTALOT 0,6 2 1,0 5 6867 Gomphonema olivaceum (HORNEMANN) BREBISSON 2,9 1 2,1 4 16255 Gomphonema olivaceum var. calcareum (CLEVE) CLEVE 1,8 3 6430 Gomphonema olivaceum var. minutissimum HUSTEDT 1,2 2 1,5 3 6431 Gomphonema olivaceum var. olivaceoides (HUST.) LANGE-B. et REICHARDT 1,5 2 1,5 3 6432 Gomphonema olivaceum v. olivaceolacuum LANGE-BERTALOT et REICHARDT 1,9 3 1,9 4 6158 Gomphonema parvulum (KUETZING) KUETZING 3,6 2 6433 Gomphonema parvulum var. exilissimum GRUNOW 0,7 2 16258 Gomphonema parvulum var. parvulius LANGE-BERTALOT et REICHARDT 0,6 2 6434 Gomphonema procerum REICHARDT et LANGE-BERTALOT 1,2 2 1,0 5 6435 Gomphonema productum (GRUN.) LANGE-B. et REICHARDT 1,3 2 1,2 4 6436 Gomphonema pseudoaugur LANGE-BERTALOT 3,7 3 2,5 3 6437 Gomphonema pumilum (GRUNOW) LANGE-B. et REICH. 1,1 1 1,6 3 16586 Gomphonema rhombicum FRICKE 0,6 1 6438 Gomphonema sarcophagus GREGORY 1,3 2 6439 Gomphonema stauroneiforme GRUNOW 0,3 3 6897 Gomphonema tergestinum FRICKE 1,4 1 1,9 4 6188 Gomphonema truncatum EHRENBERG 1,9 1 1,5 2 6999 Gomphonema ventricosum GREGORY 0,5 5 1,0 5 6036 Gyrosigma acuminatum (KUETZING) RABENHORST 3,7 3 1,9 3 6041 Gyrosigma attenuatum (KUETZING) RABENHORST 2,6 3 6443 Gyrosigma nodiferum (GRUNOW) REIMER 2,7 2 2,0 4 6974 Gyrosigma scalproides (RABENHORST) CLEVE 2,3 1 6084 Hantzschia amphioxys (EHRENBERG) GRUNOW 3,6 3 1,8 1 6005 Melosira varians J.G.AGARDH 2,9 4 2,3 2 6026 Meridion circulare (GREVILLE) J.G.AGARDH 2,5 2 1,9 3 6446 Meridion circulare var. constrictum (RALFS) VAN HEURCK 1,2 2 1,2 4 6448 Navicula absoluta HUSTEDT 1,4 3 1,1 4 6809 Navicula angusta GRUNOW 0,6 2 1,0 5 16292 Navicula arvensis var. major LANGE-BERTALOT 3,9 2 3,5 2 6117 Navicula atomus (KUETZING) GRUNOW 2,8 3 3,4 2 6241 Navicula atomus var. permitis (HUSTEDT) LANGE-BERTALOT 3,1 4 3,4 2 6087 Navicula bacillum EHRENBERG 2,3 3 1,6 4 6461 Navicula bryophila PETERSEN 1,3 2 1,1 4 6462 Navicula canoris HOHN et HELLERMANN 2,9 1 2,0 5 6868 Navicula capitata EHRENBERG 3,4 3 2,7 3 6966 Navicula capitata var. hungarica (GRUNOW) ROSS 2,7 2 6910 Navicula capitatoradiata GERMAIN 3,3 4 2,3 3 6088 Navicula cari EHRENBERG 2,6 1 1,5 3 6089 Navicula cincta (EHRENBERG) RALFS 3,4 2 2,6 2 6968 Navicula citrus KRASSKE 2,9 1 2,3 3 6466 Navicula clementis GRUNOW 2,5 2 1,7 4 6969 Navicula cocconeiformis GREGORY 1,2 2 1,0 5 6467 Navicula cohnii (HILSE) LANGE-BERTALOT 3,5 2 6469 Navicula constans HUSTEDT 2,9 1 1,4 4 6858 Navicula contenta GRUNOW 1,4 3 6470 Navicula costulata GRUNOW 2,9 2 1,5 3 6010 Navicula cryptocephala KUETZING 3,5 4 2,5 2 6471 Navicula cryptofallax LANGE-BERTALOT et HOFMANN 2,1 2 1,9 4 6889 Navicula cryptotenella LANGE-BERTALOT 2,3 1 1,5 2 6038 Navicula cuspidata (KUETZING) KUETZING 3,8 3 2,7 3 6473 Navicula decussis OESTRUP 1,2 1 1,7 3 6475 Navicula detenta HUSTEDT 0,6 2 1,0 5 6826 Navicula elginensis (GREGORY) RALFS 2,1 2 1,5 3 6481 Navicula erifuga LANGE-BERTALOT 2,9 2 2,3 3 6482 Navicula evanida HUSTEDT 1,8 1 1,0 5 6808 Navicula exigua (GREGORY) GRUNOW 2,9 3 1,5 3 6917 Navicula exilis KUETZING 2,0 1 1,1 4 6485 Navicula festiva KRASSKE 0,6 2 1,0 5 6489 Navicula gallica var. perpusilla (GRUNOW) LANGE-BERTALOT 1,2 1 1,2 4 6967 Navicula gastrum (EHRENBERG) KUETZING 2,9 3 1,5 5 6916 Navicula goeppertiana (BLEISCH) H.L.SMITH 3,6 5 3,3 2 6493 Navicula gottlandica GRUNOW 1,5 2 1,0 5 6015 Navicula gregaria DONKIN 3,5 4 2,5 2 6833 Navicula halophila (GRUNOW) CLEVE 3,4 5 3,0 3 6500 Navicula hustedtii KRASSKE 1,8 2 6501 Navicula ignota var. acceptata (HUSTEDT) LANGE-BERTALOT 1,8 2 6812 Navicula integra (W.SMITH) RALFS 2,9 2 2,4 2

Page 86: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

82

DV-No Taxon Author TW G SW G

6505 Navicula jaagii MEISTER 0,9 2 1,0 5 6506 Navicula jaernefeltii HUSTEDT 1,3 2 1,1 4 6507 Navicula joubaudii GERMAIN 3,6 5 1,8 3 16330 Navicula lacunolaciniata LANGE-BERTALOT et BONIK 3,9 3 6882 Navicula laevissima KUETZING 1,1 2 1,1 4 6864 Navicula lanceolata (J.G.AGARDH) EHRENBERG 3,5 4 2,3 3 6156 Navicula laterostrata HUSTEDT 1,4 2 1,0 5 6923 Navicula lenzii HUSTEDT 1,2 2 1,1 4 16337 Navicula levanderi HUSTEDT 1,0 5 6513 Navicula mediocris KRASSKE 0,6 2 1,0 5 6094 Navicula menisculus SCHUMANN 2,7 2 1,1 5 6514 Navicula menisculus var. grunowii LANGE-BERTALOT 2,1 2 2,2 2 16343 Navicula menisculus var. upsaliensis GRUNOW 2,9 2 6095 Navicula minima GRUNOW 2,9 2 6872 Navicula minuscula var. muralis (GRUNOW) LANGE-BERTALOT 2,9 3 3,1 3 6516 Navicula minusculoides HUSTEDT 2,9 2 3,0 2 6219 Navicula molestiformis HUSTEDT 2,9 2 3,1 2 6861 Navicula monoculata HUSTEDT 2,9 2 2,2 4 6028 Navicula mutica KUETZING 2,9 1 2,0 3 6519 Navicula mutica var. ventricosa (KUETZING) CLEVE et GRUNOW 3,1 2 16020 Navicula nivalis EHRENBERG 2,9 1 6073 Navicula oblonga KUETZING 2,7 1 1,4 3 6013 Navicula pelliculosa (BREBISSON) HILSE 2,5 3 16353 Navicula perminuta GRUNOW 3,4 3 2,3 3 6866 Navicula phyllepta KUETZING 2,9 3 2,3 3 6099 Navicula placentula (EHRENBERG) GRUNOW 2,7 3 1,6 4 6524 Navicula praeterita HUSTEDT 0,9 2 1,0 5 6100 Navicula protracta (GRUNOW) CLEVE 2,9 2 2,1 4 6527 Navicula pseudobryophila (HUSTEDT) HUSTEDT 0,6 2 1,0 5 6865 Navicula pseudolanceolata LANGE-BERTALOT 2,5 2 6529 Navicula pseudoscutiformis HUSTEDT 1,4 2 1,0 5 6530 Navicula pseudotuscula HUSTEDT 1,8 2 1,3 4 6101 Navicula pupula KUETZING 3,7 5 2,4 2 6532 Navicula pupula var. mutata (KRASSKE) HUSTEDT 1,2 2 6102 Navicula pygmaea KUETZING 3,7 5 2,6 3 6103 Navicula radiosa KUETZING 0,6 3 1,3 4 6534 Navicula recens (LANGE-BERTALOT) LANGE-B. 2,9 2 2,4 3 6221 Navicula reichardtiana LANGE-BERTALOT 2,3 1 2,1 4 6535 Navicula reichardtiana var. crassa LANGE-BERTALOT et HOFMANN 2,3 1 6104 Navicula reinhardtii GRUNOW 2,8 1 1,9 4 6022 Navicula rhynchocephala KUETZING 2,3 1 1,7 2 6105 Navicula salinarum GRUNOW 2,3 2 6537 Navicula saprophila LANGE-BERTALOT 2,6 1 3,5 2 6539 Navicula schmassmannii HUSTEDT 0,6 2 1,0 5 6926 Navicula schoenfeldii HUSTEDT 1,9 1 1,6 4 6541 Navicula scutelloides W.SMITH 2,7 3 1,6 4 16368 Navicula seibigiana LANGE-BERTALOT 2,3 2 16032 Navicula semen EHRENBERG 0,6 3 6192 Navicula seminulum GRUNOW 3,2 2 3,2 2 6873 Navicula slesvicensis GRUNOW 3,0 2 2,0 5 6543 Navicula soehrensis KRASSKE 0,6 2 1,0 5 16034 Navicula soehrensis var. hassiaca (KRASSKE) LANGE-BERTALOT 0,6 2 1,0 5 6813 Navicula splendicula VAN LANDINGHAM 1,5 2 6546 Navicula stroemii HUSTEDT 1,2 2 1,0 5 6547 Navicula subalpine REICHARDT 1,4 2 1,0 5 6106 Navicula subhamulata GRUNOW 2,5 1 1,9 3 6548 Navicula sublucidula HUSTEDT 2,9 1 1,9 4 6896 Navicula subminuscula MANGUIN 3,5 4 3,4 2 16373 Navicula submuralis HUSTEDT 0,6 2 6550 Navicula subrotundata HUSTEDT 1,8 2 1,4 4 6878 Navicula subtilissima CLEVE 0,5 2 1,0 5 6551 Navicula suchlandtii HUSTEDT 0,6 2 1,0 5 6553 Navicula tenelloides HUSTEDT 2,9 2 6554 Navicula tridentula KRASSKE 0,6 2 6831 Navicula tripunctata (O.F.MUELLER) BORY DE ST. VINC. 3,1 3 2,0 3 6870 Navicula trivialis LANGE-BERTALOT 3,3 1 2,7 3 6989 Navicula tuscula (EHRENBERG) GRUNOW 1,8 1 1,1 4 6556 Navicula utermoehlii HUSTEDT 1,8 2 1,4 4 16037 Navicula variostriata KRASSKE 0,5 2 1,0 5

Page 87: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

83

DV-No Taxon Author TW G SW G

6890 Navicula veneta KUETZING 3,5 5 3,3 2 6557 Navicula ventralis KRASSKE 0,5 3 6037 Navicula viridula (KUETZING) EHRENBERG 3,5 4 2,2 4 6558 Navicula viridula var. rostellata (KUETZING) CLEVE 3,5 4 2,2 4 6559 Navicula vitabunda HUSTEDT 1,3 2 1,2 4 6560 Navicula vulpina KUETZING 1,8 2 1,0 5 6561 Navicula wildii LANGE-BERTALOT 0,3 2 1,0 5 6820 Neidium affine (EHRENBERG) PFITZER 0,6 2 1,0 5 6562 Neidium affine var. longiceps (GREGORY) CLEVE 0,6 2 6563 Neidium alpinum HUSTEDT 0,6 2 1,0 5 6564 Neidium ampliatum (EHRENBERG) KRAMMER 1,5 2 1,0 5 6856 Neidium binodis (EHRENBERG) HUSTEDT 1,8 1 1,3 3 6566 Neidium bisulcatum (LAGERSTEDT) CLEVE 0,6 3 1,0 5 6108 Neidium dubium (EHRENBERG) CLEVE 2,3 2 1,3 3 6568 Neidium hercynicum A.MAYER 0,5 2 1,0 5 6109 Neidium iridis (EHRENBERG) CLEVE 1,3 2 1,0 5 16386 Neidium ladogensis (CLEVE) FOGED 0,8 1 6110 Neidium productum (W.SMITH) CLEVE 1,4 2 1,0 5 6023 Nitzschia acicularis (KUETZING) W.SMITH 3,6 5 2,5 2 6573 Nitzschia acidoclinata LANGE-BERTALOT 2,3 2 1,3 3 6965 Nitzschia acula HANTZSCH 2,7 2 2,0 3 6575 Nitzschia alpina HUSTEDT 0,6 3 1,0 5 6039 Nitzschia amphibia GRUNOW 3,8 5 2,5 2 6991 Nitzschia angustata (W.SMITH) GRUNOW 1,9 1 1,3 4 6576 Nitzschia angustatula LANGE-BERTALOT 2,6 2 1,9 4 16045 Nitzschia angustiforaminata LANGE-BERTALOT 3,9 2 6922 Nitzschia archibaldii LANGE-BERTALOT 2,0 2 1,9 3 6578 Nitzschia bacillum HUSTEDT 1,9 2 1,1 4 6580 Nitzschia brevissima GRUNOW 2,9 2 16048 Nitzschia calida GRUNOW 3,0 2 2,9 4 6964 Nitzschia capitellata HUSTEDT 3,8 5 3,4 2 6193 Nitzschia clausii HANTZSCH 3,9 2 2,9 4 6194 Nitzschia communis RABENHORST 3,9 2 3,3 3 6581 Nitzschia commutata GRUNOW 3,5 2 6242 Nitzschia constricta (KUETZING) RALFS 3,9 5 2,8 4 6584 Nitzschia dealpina LANGE-BERTALOT et HOFMANN 2,3 2 1,1 4 6921 Nitzschia debilis ARNOTT 2,9 2 6008 Nitzschia dissipata (KUETZING) GRUNOW 2,4 2 2,0 3 6586 Nitzschia dissipata var. media (HANTZSCH) GRUNOW 2,6 1 1,3 3 6113 Nitzschia dubia W.SMITH 2,9 2 6195 Nitzschia filiformis (W.SMITH) VAN HEURCK 3,7 2 2,9 4 6025 Nitzschia fonticola GRUNOW 2,1 4 6196 Nitzschia frustulum (KUETZING) GRUNOW 3,3 4 2,2 4 6806 Nitzschia fruticosa HUSTEDT 2,9 2 6594 Nitzschia graciliformis LANGE-BERTALOT et SIMONSEN 3,4 1 1,6 2 6197 Nitzschia gracilis HANTZSCH 2,5 2 1,3 4 6931 Nitzschia hantzschiana RABENHORST 2,0 3 1,6 2 6963 Nitzschia heufleriana GRUNOW 3,3 4 2,0 5 16051 Nitzschia homburgiensis LANGE-BERTALOT 1,4 3 1,3 3 6114 Nitzschia hungarica GRUNOW 3,9 3 2,9 4 6595 Nitzschia inconspicua GRUNOW 3,1 1 2,2 4 6857 Nitzschia intermedia HANTZSCH 2,9 2 6597 Nitzschia lacuum LANGE-BERTALOT 1,2 1 1,2 4 6888 Nitzschia levidensis (W.SMITH) GRUNOW 3,7 2 2,9 4 6024 Nitzschia linearis (J.G.AGARDH) W.SMITH 3,4 4 1,9 2 6599 Nitzschia linearis var. subtilis (GRUNOW) HUSTEDT 3,9 3 6198 Nitzschia microcephala GRUNOW 3,9 3 2,5 2 6198 Nitzschia microcephala GRUNOW 3,9 3 2,5 2 6011 Nitzschia palea (KUETZING) W.SMITH 3,3 3 6603 Nitzschia palea var. debilis (KUETZING) GRUNOW 2,3 1 6199 Nitzschia paleacea GRUNOW 2,3 2 2,7 3 6605 Nitzschia perminuta (GRUNOW) M.PERAGALLO 2,3 1 1,3 3 6918 Nitzschia pura HUSTEDT 1,9 3 1,8 2 6925 Nitzschia pusilla GRUNOW 2,7 2 2,4 3 6029 Nitzschia recta HANTZSCH 3,0 3 1,5 2 16445 Nitzschia reversa W.SMITH 2,9 2 6201 Nitzschia sigma (KUETZING) W.SMITH 2,9 2 2,9 4 6027 Nitzschia sigmoidea (NITZSCH) W.SMITH 3,8 4 2,1 4 6610 Nitzschia sinuata var. delognei (GRUNOW) LANGE-BERTALOT 2,3 2 1,8 2

Page 88: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

84

DV-No Taxon Author TW G SW G

6611 Nitzschia sinuata var. tabellaria (GRUNOW) GRUNOW 1,2 1 6961 Nitzschia sociabilis HUSTEDT 2,8 1 2,1 4 6612 Nitzschia solita HUSTEDT 3,4 2 6613 Nitzschia subacicularis HUSTEDT 2,0 3 6960 Nitzschia sublinearis HUSTEDT 2,7 4 1,6 2 6924 Nitzschia supralitorea LANGE-BERTALOT 2,9 4 2,7 3 6119 Nitzschia tryblionella HANTZSCH 3,8 4 2,4 4 6615 Nitzschia tubicola GRUNOW 3,4 2 2,1 4 6615 Nitzschia tubicola GRUNOW 3,4 2 2,1 4 6118 Nitzschia umbonata (EHRENBERG) LANGE-BERTALOT 3,8 3 3,8 4 6120 Nitzschia vermicularis (KUETZING) HANTZSCH 2,0 3 6616 Nitzschia wuellerstorffii LANGE-BERTALOT 2,1 4 6846 Pinnularia alpine W.SMITH 0,6 2 16461 Pinnularia balfouriana GRUNOW 0,6 2 6148 Pinnularia borealis EHRENBERG 1,9 1 1,4 3 6881 Pinnularia braunii (GRUNOW) CLEVE 0,7 2 6627 Pinnularia brevicostata CLEVE 0,3 2 16062 Pinnularia cardinalis (EHRENBERG) W.SMITH 0,4 2 6631 Pinnularia dactylus EHRENBERG 0,6 2 6632 Pinnularia divergens W.SMITH 0,6 2 6633 Pinnularia divergentissima (GRUNOW) CLEVE 0,6 2 6845 Pinnularia episcopalis CLEVE 0,6 2 6636 Pinnularia gentilis (DONKIN) CLEVE 1,5 2 6121 Pinnularia gibba EHRENBERG 2,5 1 6637 Pinnularia gibba var. linearis HUSTEDT 0,3 2 1,0 5 6639 Pinnularia globiceps GREGORY 1,8 2 6223 Pinnularia hemiptera (KUETZING) RABENHORST 0,6 2 6844 Pinnularia interrupta W.SMITH 0,7 2 1,2 4 16473 Pinnularia lagerstedtii (CLEVE) CLEVE-EULER 0,6 2 6853 Pinnularia lata (BREBISSON) RABENHORST 0,6 2 6958 Pinnularia legume EHRENBERG 0,6 2 6123 Pinnularia maior (KUETZING) RABENHORST 1,4 3 1,0 5 6650 Pinnularia microstauron var. brebissonii (KUETZING) MAYER 2,1 2 6111 Pinnularia nobilis (EHRENBERG) EHRENBERG 0,5 2 6652 Pinnularia nodosa (EHRENBERG) W.SMITH 0,3 2 16071 Pinnularia pulchra OESTRUP 0,6 2 6659 Pinnularia rupestris HANTZSCH 0,6 2 6663 Pinnularia stomatophora (GRUNOW) CLEVE 0,6 2 6126 Pinnularia subcapitata GREGORY 0,9 2 1,0 5 6665 Pinnularia subcapitata var. hilseana (JANISCH) O.MUELLER 0,3 2 1,0 5 6669 Pinnularia subrostrata (A.CLEVE) CLEVE-EULER 0,3 2 6672 Pinnularia sudetica (HILSE) HILSE 1,3 2 6128 Pinnularia viridis (NITZSCH) EHRENBERG 1,3 2 1,2 4 16485 Pleurosigma angulatum QUEKETT 2,9 2 6224 Rhoicosphenia abbreviata (J.G.AGARDH) LANGE-BERTALOT 2,9 2 2,1 4 6677 Rhopalodia gibba (EHRENBERG) O.MUELLER 2,7 2 1,5 3 6678 Rhopalodia gibba var. parallela (GRUNOW) H.et M.PERAGALLO 0,6 3 1,0 5 6225 Simonsenia delognei (GRUNOW) LANGE-BERTALOT 2,9 2 2,2 4 6841 Stauroneis acuta W.SMITH 1,8 1 6679 Stauroneis agrestis PETERSEN 1,0 5 6129 Stauroneis anceps EHRENBERG 1,2 4 16558 Stauroneis gracillima HUSTEDT 1,1 1 6681 Stauroneis kriegerii PATRICK 3,3 2 1,6 2 6683 Stauroneis legumen EHRENBERG 1,9 2 6685 Stauroneis obtusa LAGERSTEDT 0,6 2 1,0 5 6130 Stauroneis phoenicenteron (NITZSCH) EHRENBERG 2,9 1 1,5 2 6131 Stauroneis smithii GRUNOW 3,3 2 1,5 2 6688 Stauroneis thermicola (PETERSEN) LUND 1,4 3 16087 Stenopterobia curvula (W.SMITH) KRAMMER 0,4 2 1,0 5 6690 Stenopterobia delicatissima (LEWIS) BREBISSON 0,5 2 1,0 5 6227 Surirella amphioxys W.SMITH 2,9 2 6133 Surirella angusta KUETZING 3,7 3 2,2 2 6691 Surirella bifrons EHRENBERG 2,3 2 6134 Surirella biseriata BREBISSON 2,1 2 6693 Surirella brebissonii KRAMMER et LANGE-BERTALOT 3,6 5 2,5 2 6994 Surirella capronii BREBISSON 2,5 2 16513 Surirella crumena BREBISSON 2,9 2 6880 Surirella elegans EHRENBERG 2,7 3 6135 Surirella linearis W.SMITH 1,0 2 1,1 4

Page 89: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

85

DV-No Taxon Author TW G SW G

16091 Surirella linearis var. helvetica (BRUN) MEISTER 0,6 2 1,0 5 6229 Surirella minuta BREBISSON 3,8 3 2,4 3 6136 Surirella ovalis BREBISSON 2,9 4 6694 Surirella roba LECLERCQ 0,6 2 1,0 5 6097 Surirella spiralis KUETZING 0,6 2 16518 Surirella turgida W.SMITH 0,6 2 6074 Tabellaria fenestrata (LYNGBYE) KUETZING 1,4 3 6091 Tabellaria flocculosa (ROTH) KUETZING 0,8 2 1,1 4 6698 Tabellaria ventricosa KUETZING 0,9 2 1,0 5 16522 Tetracyclus glans (EHRENBERG) MILLS 0,6 3 1,0 5 16097 Tetracyclus rupestris (BRAUN) GRUNOW 0,5 2 1,0 5

Table 33: Indicator taxa for salinity of inland waters (modified and expanded according to ZIEMANN et al. 1999) HG = halobic group: hx = haloxenic taxa, hmp = halophilic, mesohalobic and polyhalobic taxa Synonymes are incorporated in the evaluation software.

DV-No Taxon Author HG

6699 Achnanthes altaica (PORETZKY) CLEVE-EULER hx 16105 Achnanthes bahusiensis (GRUNOW) LANGE-BERTALOT hmp 16106 Achnanthes biasolettiana var. subatomus LANGE-BERTALOT hx 16107 Achnanthes brevipes J.G.AGARDH hmp 16528 Achnanthes brevipes var. intermedia (KUETZING) CLEVE hmp 16111 Achnanthes daonensis LANGE-BERTALOT hx 6248 Achnanthes delicatula (KUETZING) GRUNOW hmp 16114 Achnanthes didyma HUSTEDT hx 6253 Achnanthes helvetica (HUSTEDT) LANGE-BERTALOT hx 6256 Achnanthes kranzii LANGE-BERTALOT hx 16119 Achnanthes kuelbsii LANGE-BERTALOT hx 6262 Achnanthes lapidosa KRASSKE hx 6705 Achnanthes laterostrata HUSTEDT hx 6264 Achnanthes levanderi HUSTEDT hx 6045 Achnanthes linearis (W.SMITH) GRUNOW sensu auct. Nonnull hx 6265 Achnanthes marginulata GRUNOW hx 6268 Achnanthes oblongella OESTRUP hx 16138 Achnanthes parvula KUETZING hmp 6270 Achnanthes peragalli BRUN & HERIBAUD hx 16139 Achnanthes pseudopunctulata SIMONSEN hmp 16141 Achnanthes punctulata SIMONSEN hmp 6711 Achnanthes rechtensis LECLERCQ hx 16143 Achnanthes rossii HUSTEDT hx 6275 Achnanthes silvahercynia LANGE-BERTALOT hx 6276 Achnanthes subatomoides (HUSTEDT) LANGE-B. & ARCHIBALD hx 6277 Achnanthes suchlandtii HUSTEDT hx 6713 Achnanthes ventralis (KRASSKE) LANGE-BERTALOT hx 6281 Amphipleura rutilans (TRENTEPOHL) CLEVE hmp 16152 Amphora coffeaeformis (J.G.AGARDH) KUETZING hmp 16153 Amphora coffeaeformis var. acutiuscula (KUETZING) RABENHORST hmp 16154 Amphora commutate GRUNOW hmp 16155 Amphora delicatissima KRASSKE hmp 6285 Amphora holsatica HUSTEDT hmp 16156 Amphora lineolata EHRENBERG hmp 16157 Amphora subcapitata (KISSELEV) HUSTEDT hmp 6049 Anomoeoneis sphaerophora (EHRENBERG) PFITZER hmp 6143 Bacillaria paradoxa GMELIN hmp 6291 Brachysira brebissonii ROSS hx 16165 Brachysira follis (EHRENBERG) ROSS hx 16166 Brachysira garrensis (LANGE-B. & KRAMMER) LANGE-B. hx 16167 Brachysira procera LANGE-BERTALOT & MOSER hx 6296 Brachysira serians (BREBISSON) ROUND & MANN hx 16168 Brachysira wygaschii LANGE-BERTALOT hx 6300 Caloneis aerophila BOCK hx 6043 Caloneis amphisbaena (BORY DE SAINT VINCENT) CLEVE hmp 16171 Caloneis permagna (BAILEY) CLEVE hmp 16172 Caloneis westii (W.SMITH) HENDEY hmp 16174 Campylodiscus clypeus EHRENBERG hmp 16175 Campylodiscus echeneis EHRENBERG hmp

Page 90: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

86

DV-No Taxon Author HG

16180 Cocconeis scutellum EHRENBERG hmp 6309 Cylindrotheca gracilis (BREBISSON) GRUNOW hmp 6316 Cymbella descripta (HUSTEDT) KRAMMER & LANGE-B. hx 6317 Cymbella elginensis KRAMMER hx 6319 Cymbella gaeumannii MEISTER hx 6320 Cymbella gracilis (EHRENBERG) KUETZING hx 6321 Cymbella hebridica (GRUNOW) CLEVE hx 6331 Cymbella mesiana CHOLNOKY hx 6747 Cymbella norvegica GRUNOW hx 6977 Cymbella perpusilla CLEVE-EULER hx 6748 Cymbella pusilla GRUNOW hmp 6338 Cymbella stauroneiformis LAGERSTEDT hx 16202 Denticula subtilis GRUNOW hmp 6185 Diatoma anceps (EHRENBERG) KIRCHNER hx 6167 Diatoma hyemalis (ROTH) HEIBERG hx 6949 Diatoma mesodon (EHRENBERG) KUETZING hx 16206 Diatoma moniliformis ssp. ovalis (FRICKE) LANGE-BERTALOT hmp 16207 Diatoma problematica LANGE-BERTALOT hmp 16210 Diploneis didyma (EHRENBERG) EHRENBERG hmp 16211 Diploneis interrupta (KUETZING) CLEVE hmp 16213 Diploneis smithii (BREBISSON) CLEVE hmp 16214 Diploneis smithii var. dilatata (PERAGALLO) TERRY hmp 16215 Diploneis smithii var. pumila (GRUNOW) HUSTEDT hmp 16216 Diploneis smithii var. rhombica MERESCHKOWSKY hmp 16217 Entomoneis alata (EHRENBERG) EHRENBERG hmp 16218 Entomoneis costata (HUSTEDT) REIMER hmp 16219 Entomoneis paludosa (W.SMITH) REIMER hmp 16220 Entomoneis paludosa var. subsalina CLEVE hmp 16221 Eunotia arculus (GRUNOW) LANGE-B. & NOERPEL hx 6886 Eunotia arcus EHRENBERG hx 6213 Eunotia bilunaris (EHRENBERG) MILLS hx 16222 Eunotia bilunaris var. linearis (OKUNO) LANGE-BERTALOT & NOERPEL hx 6355 Eunotia bilunaris var. mucophila LANGE-BERTALOT & NOERPEL hx 6761 Eunotia botuliformis WILD et al. hx 16223 Eunotia circumborealis LANGE-BERTALOT & NOERPEL hx 6356 Eunotia denticulata (BREBISSON) RABENHORST hx 6357 Eunotia diodon EHRENBERG hx 16224 Eunotia elegans OESTRUP hx 6975 Eunotia exigua (BREBISSON) RABENHORST hx 16225 Eunotia exigua var. undulata MAGDEBURG hx 6358 Eunotia faba EHRENBERG hx 6359 Eunotia fallax A.CLEVE hx 6762 Eunotia fallax var. groenlandica (GRUNOW) LANGE-B. & NOERPEL hx 6360 Eunotia flexuosa (BREBISSON) KUETZING hx 6362 Eunotia glacialis MEISTER hx 6363 Eunotia hexaglyphis EHRENBERG hx 6364 Eunotia implicata NOERPEL et al. hx 6214 Eunotia incisa GREGORY hx 6365 Eunotia intermedia (KRASSKE) NOERPEL & LANGE-B. hx 16226 Eunotia islandica OESTRUP hx 16104 Eunotia jemtlandica (FONTELL) BERG hx 16228 Eunotia major (W.SMITH) RABENHORST hx 6367 Eunotia meisteri HUSTEDT hx 6368 Eunotia microcephala KRASSKE hx 6885 Eunotia monodon EHRENBERG hx 6370 Eunotia muscicola var. tridentula NOERPEL & LANGE-BERTALOT hx 6371 Eunotia naegelii MIGULA hx 16695 Eunotia neofallax NOERPEL hx 6372 Eunotia nymanniana GRUNOW hx 6373 Eunotia paludosa GRUNOW hx 6884 Eunotia paludosa var. trinacria (KRASSKE) NOERPEL hx 6168 Eunotia pectinalis (DILLWYN) RABENHORST hx 6766 Eunotia pectinalis var. undulata (RALFS) RABENHORST hx 6851 Eunotia praerupta EHRENBERG hx 6767 Eunotia praerupta var. bidens (EHRENBERG) GRUNOW hx 6374 Eunotia praerupta var. bigibba (KUETZING) GRUNOW hx 6768 Eunotia praerupta var. curta GRUNOW hx 6769 Eunotia praerupta var. inflata GRUNOW hx 16229 Eunotia pseudopectinalis HUSTEDT hx

Page 91: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

87

DV-No Taxon Author HG

6375 Eunotia rhomboidea HUSTEDT hx 16230 Eunotia rhynchocephala HUSTEDT hx 6376 Eunotia septentrionalis OESTRUP hx 6850 Eunotia serra EHRENBERG hx 6770 Eunotia serra var. diadema (EHRENBERG) PATRICK hx 6377 Eunotia serra var. tetraodon (EHRENBERG) NOERPEL hx 6378 Eunotia silvahercynia NOERPEL et al. hx 6379 Eunotia soleirolii (KUETZING) RABENHORST hx 6380 Eunotia steineckei PETERSEN hx 6381 Eunotia subarcuatoides ALLES et al. hx 6382 Eunotia sudetica O.MUELLER hx 6383 Eunotia tenella (GRUNOW) HUSTEDT hx 16668 Eunotia tetraodon EHRENBERG hx 6771 Eunotia triodon EHRENBERG hx 16233 Fragilaria acidoclinata LANGE-BERTALOT & HOFMANN hx 16234 Fragilaria constricta EHRENBERG hx 6401 Fragilaria exigua GRUNOW hx 6234 Fragilaria fasciculate (J.G.AGARDH) LANGE-BERTALOT hmp 6238 Fragilaria pulchella (RALFS) LANGE-BERTALOT hmp 6169 Fragilaria virescens RALFS hx 16245 Frustulia creuzburgensis (KRASSKE) HUSTEDT hmp 6187 Frustulia rhomboids (EHRENBERG) DE TONI hx 6412 Frustulia rhomboides var. crassinervia (BREBISSON) ROSS hx 6413 Frustulia rhomboides var. saxonica (RABENHORST) DE TONI hx 6414 Frustulia rhomboides var. viridula (BREBISSON) CLEVE hx 6421 Gomphonema bohemicum REICHELT & FRICKE hx 6424 Gomphonema hebridense GREGORY hx 6426 Gomphonema lagerheimii A.CLEVE hx 6430 Gomphonema olivaceum var. minutissimum HUSTEDT hx 6435 Gomphonema productum (GRUNOW) LANGE-B. & REICHARDT hx 6999 Gomphonema ventricosum GREGORY hx 16227 Gyrosigma balticum (EHRENBERG) RABENHORST hmp 16262 Gyrosigma parkeri (HARRISON) ELMORE hmp 6996 Gyrosigma peisonis (GRUNOW) HUSTEDT hmp 6042 Gyrosigma spenceri (W.SMITH) CLEVE hmp 16263 Gyrosigma strigilis W.SMITH hmp 16270 Hantzschia spectabilis (EHRENBERG) HUSTEDT hmp 16272 Hantzschia virgate (ROPER) GRUNOW hmp 16277 Hantzschia vivax (W.SMITH) M.PERAGALLO hmp 16279 Mastogloia baltica GRUNOW hmp 16280 Mastogloia braunii GRUNOW hmp 16281 Mastogloia elliptica J.G.AGARDH hmp 6803 Mastogloia elliptica var. dansei (THWAITES) CLEVE hmp 6444 Mastogloia smithii THWAITES hmp 16287 Melosira nummuloides (DILLWYN) J.G.AGARDH hmp 6446 Meridion circulare var. constrictum (RALFS) VAN HEURCK hx 16717 Navicula adversa KRASSKE hx 6809 Navicula angusta GRUNOW hx 16290 Navicula arenaria DONKIN hmp 16297 Navicula bulnheimii GRUNOW hmp 6089 Navicula cincta (EHRENBERG) RALFS hmp 6969 Navicula cocconeiformis GREGORY hx 6901 Navicula crucicula (W.SMITH) DONKIN hmp 16304 Navicula crucigera (W.SMITH) CLEVE hmp 16306 Navicula cryptolyra BROCKMANN hmp 6038 Navicula cuspidate (KUETZING) KUETZING hmp 6475 Navicula detenta HUSTEDT hx 6477 Navicula digitoradiata (GREGORY) RALFS hmp 16000 Navicula digitulus HUSTEDT hx 6479 Navicula duerrenbergiana HUSTEDT hmp 16314 Navicula elegans W.SMITH hmp 6482 Navicula evanida HUSTEDT hx 6917 Navicula exilis KUETZING hx 16316 Navicula flanatica GRUNOW hmp 6489 Navicula gallica var. perpusilla (GRUNOW) LANGE-BERTALOT hx 6833 Navicula halophile (GRUNOW) CLEVE hmp 16321 Navicula halophiloides HUSTEDT hmp 6496 Navicula heimansioides LANGE-BERTALOT hx 16325 Navicula humerosa BREBISSON hmp

Page 92: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

88

DV-No Taxon Author HG

6812 Navicula integra (W.SMITH) RALFS hmp 6509 Navicula krasskei HUSTEDT hx 16010 Navicula lapidosa KRASSKE hx 16011 Navicula leptostriata JOERGENSEN hx 16337 Navicula levanderii HUSTEDT hx 6513 Navicula mediocris KRASSKE hx 16346 Navicula microdigitoradiata LANGE-BERTALOT hmp 16349 Navicula notha WALLACE hx 6098 Navicula peregrina (EHRENBERG) KUETZING hmp 16353 Navicula perminuta GRUNOW hmp 6866 Navicula phyllepta KUETZING hmp 16355 Navicula plicata DONKIN hmp 6100 Navicula protracta (GRUNOW) CLEVE hmp 6527 Navicula pseudobryophila (HUSTEDT) HUSTEDT hx 6102 Navicula pygmaea KUETZING hmp 6534 Navicula recens (LANGE-BERTALOT) LANGE-BERTALOT hmp 16362 Navicula rhynchotella LANGE-BERTALOT hmp 6105 Navicula salinarum GRUNOW hmp 16365 Navicula salinicola HUSTEDT hmp 6539 Navicula schmassmannii HUSTEDT hx 6540 Navicula schroeterii MEISTER hmp 6543 Navicula soehrensis KRASSKE hx 16034 Navicula soehrensis var. hassiaca (KRASSKE) LANGE-BERTALOT hx 6544 Navicula soehrensis var. muscicola (PETERSEN) KRASSKE hx 16370 Navicula soodensis KRASSKE hmp 16371 Navicula spicula (HICKIE) CLEVE hmp 6549 Navicula submolesta HUSTEDT hx 6878 Navicula subtilissima CLEVE hx 6551 Navicula suchlandtii HUSTEDT hx 16376 Navicula tenera HUSTEDT hmp 16037 Navicula variostriata KRASSKE hx 6563 Neidium alpinum HUSTEDT hx 6566 Neidium bisulcatum (LAGERSTEDT) CLEVE hx 6110 Neidium productum (W.SMITH) CLEVE hx 6573 Nitzschia acidoclinata LANGE-BERTALOT hx 16390 Nitzschia agnita HUSTEDT hmp 6575 Nitzschia alpina HUSTEDT hx 16391 Nitzschia amplectens HUSTEDT hmp 6580 Nitzschia brevissima GRUNOW hmp 16048 Nitzschia calida GRUNOW hmp 16397 Nitzschia circumsuta (BAILEY) GRUNOW hmp 6193 Nitzschia clausii HANTZSCH hmp 6581 Nitzschia commutata GRUNOW hmp 6583 Nitzschia compressa var. balatonis (GRUNOW) LANGE-BERTALOT hmp 16049 Nitzschia compressa var. vexans (GRUNOW) LANGE-BERTALOT hmp 6242 Nitzschia constricta (KUETZING) RALFS hmp 16402 Nitzschia dippelii GRUNOW hmp 6113 Nitzschia dubia W.SMITH hmp 16405 Nitzschia elegantula GRUNOW hmp 16406 Nitzschia epithemoides GRUNOW hmp 16408 Nitzschia fasciculata GRUNOW hmp 6195 Nitzschia filiformis (W.SMITH) VAN HEURCK hmp 6196 Nitzschia frustulum (KUETZING) GRUNOW hmp 6591 Nitzschia frustulum var. bulnheimiana (RABENHORST) GRUNOW hmp 6931 Nitzschia hantzschiana RABENHORST hx 16051 Nitzschia homburgiensis LANGE-BERTALOT hx 6114 Nitzschia hungarica GRUNOW hmp 16414 Nitzschia hybrida GRUNOW hmp 6595 Nitzschia inconspicua GRUNOW hmp 6888 Nitzschia levidensis (W.SMITH) GRUNOW hmp 16102 Nitzschia levidensis var. salinarum GRUNOW hmp 16052 Nitzschia levidensis var. victoriae GRUNOW hmp 16423 Nitzschia liebetruthii RABENHORST hmp 6601 Nitzschia littoralis GRUNOW hmp 16427 Nitzschia lorenziana GRUNOW hmp 6198 Nitzschia microcephala GRUNOW hmp 16055 Nitzschia obtuse W.SMITH hmp 6602 Nitzschia ovalis ARNOTT hmp 16437 Nitzschia perspicua CHOLNOKY hmp

Page 93: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

89

DV-No Taxon Author HG

16446 Nitzschia rosenstockii LANGE-BERTALOT hmp 16447 Nitzschia scalaris (EHRENBERG) W.SMITH hmp 16057 Nitzschia scalpelliformis (GRUNOW) GRUNOW hmp 6201 Nitzschia sigma (KUETZING) W.SMITH hmp 6119 Nitzschia tryblionella HANTZSCH hmp 16058 Nitzschia vitrea NORMAN hmp 6619 Peronia fibula (BREBISSON) ROSS hx 6621 Pinnularia anglica KRAMMER hx 6622 Pinnularia angusta (CLEVE) KRAMMER hx 6623 Pinnularia appendiculata (J.G.AGARDH) CLEVE hmp 16543 Pinnularia bacilliformis KRAMMER hx 6625 Pinnularia brandelii CLEVE hx 16463 Pinnularia brauniana (GRUNOW) MILLS hx 6627 Pinnularia brevicostata CLEVE hx 16062 Pinnularia cardinalis (EHRENBERG) W.SMITH hx 6629 Pinnularia cleveiformis KRAMMER hx 6845 Pinnularia episcopalis CLEVE hx 6636 Pinnularia gentilis (DONKIN) CLEVE hx 16065 Pinnularia gigas EHRENBERG hx 6125 Pinnularia microstauron (EHRENBERG) CLEVE hx 6651 Pinnularia neomajor KRAMMER hx 6658 Pinnularia pseudogibba KRAMMER hx 6659 Pinnularia rupestris HANTZSCH hx 6660 Pinnularia schoenfelderi KRAMMER hx 16074 Pinnularia silvatica PETERSEN hx 6663 Pinnularia stomatophora (GRUNOW) CLEVE hx 16479 Pinnularia stomatophora var. triundulata (FONTELL) HUSTEDT hx 6664 Pinnularia streptoraphe CLEVE hx 16480 Pinnularia streptoraphe var. parva KRAMMER hx 6126 Pinnularia subcapitata GREGORY hx 16481 Pinnularia subcapitata var. elongata KRAMMER hx 6665 Pinnularia subcapitata var. hilseana (JANISCH) O.MUELLER hx 6670 Pinnularia subrupestris KRAMMER hx 16485 Pleurosigma angulatum QUEKETT hmp 16486 Pleurosigma elongatum W.SMITH hmp 16078 Pleurosigma salinarum GRUNOW hmp 16487 Pleurosira laevis (EHRENBERG) COMPERE hmp 16492 Rhopalodia constricta (W.SMITH) KRAMMER hmp 6677 Rhopalodia gibba (EHRENBERG) O.MUELLER hmp 16493 Rhopalodia musculus (KUETZING) O.MUELLER hmp 6840 Stauroneis nobilis SCHUMANN hx 16501 Stauroneis salina W.SMITH hmp - Stauroneis simulans (DONKIN) ROSS hmp 16087 Stenopterobia curvula (W.SMITH) KRAMMER hx 6690 Stenopterobia delicatissima (LEWIS) BREBISSON hx 16503 Stenopterobia densestriata (HUSTEDT) KRAMMER hx 16510 Surirella brightwellii W.SMITH hmp 16511 Surirella brightwellii var. baltica (SCHUMANN) KRAMMER hmp 16513 Surirella crumena BREBISSON hmp 6136 Surirella ovalis BREBISSON hmp 6694 Surirella roba LECLERCQ hx 16517 Surirella striatula TURPIN hmp 16519 Tabellaria binalis (EHRENBERG) GRUNOW hx 16520 Tabellaria binalis var. elliptica FLOWER hx 16096 Tabellaria quadriseptata KNUDSON hx 6698 Tabellaria ventricosa KUETZING hx

4.3 Phytobenthos without Diatoms For phytobenthos assessment indicative taxa of comparable ecological states are combined into assessment categories A, B, C and D (Table 34). In the, for each sampling site, compiled taxa list

Page 94: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

90

for each taxon the corresponding assessement category has to be noted. Thereby it has to be kept in mind that the classification of taxa into assessment categories can differ for particular groups of running water (Table 35).

Foerster (LfU Bayern) established a shortened indicator list and tested it for the ecoregion Central German Upland using Bavarian data. It contains a relatively small number of taxa reducing the number of taxa which need to be identified during sampling and leading to an overall quicker assemssment. This shortened list is given Table 35.

Table 34: Classification of PoD taxa in four assessment categories according to SCHAUMBURG et al. (2004)

Category Description

A sensitive taxa, characteristic for certain running waters

B less sensitive taxa, occurrence not as narrowly limited as under A

C indicator of disturbance (indicating eutrophication or a moderate to unsatisfactory saprobic state)

D indicator of disturbance (indicative of very strong eutrophication, unsatisfactory to bad saprobic state or heavy metals)

Page 95: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

91

Table 35: Classification of taxa *: Chantransia-Stages are not included in assessment if at a site species of the genera Batrachospermum, Lemanea, Paralemanea or Thorea are found with an abundance of 3, 4 or 5. **: The taxa Chamaesiphon confervicolus and Chamaesiphon incrustans can be combined to the taxon Chamaesiphon confervicolus/incrustans (DVNr 8342) if assessment is carried out using the shortened indicator list.

Biocoenotic type PoD PB 1 PB 2 PB 3 PB 4 PB 5 PB 6 PB 9 PB 10 PB 11 PB 12

LAWA-type

No

Taxa

of

short

end

indic

ator

list

Class DV-No Taxon

Alps Alpine Foothills

5, 5.1, 9

6, 6K, 9.1K,

19_MG7

9.1, 9.2, 10

14.s, 16.s, 11a, 12a

14.k, 15, 18, 11.r, 12.r,

19_NT

16.k, 17

20

1 Nostocophyceae 8447 Aphanocapsa fonticola A A A 2 Nostocophyceae 8448 Aphanocapsa rivularis A A C A A A 3 Nostocophyceae 8077 Aphanothece stagnina B 4 Nostocophyceae 8046 Calothrix parietina A 5 x** Nostocophyceae 8427 Chamaesiphon confervicolus B B B B B B B B B B 6 Nostocophyceae 8105 Chamaesiphon fuscus A 7 Nostocophyceae 8446 Chamaesiphon geitleri A C 8 x** Nostocophyceae 8056 Chamaesiphon incrustans B B B B B B B B B B 9 Nostocophyceae 8504 Chamaesiphon investiens A A B 10 Nostocophyceae 8866 Chamaesiphon investiens var. roseus A 11 Nostocophyceae 8505 Chamaesiphon minutus B A B 12 Nostocophyceae 8450 Chamaesiphon oncobyrsoides B B B 13 Nostocophyceae 8867 Chamaesiphon polonicus B B B B 14 Nostocophyceae 8085 Chamaesiphon polymorphus C C C C C C C 15 Nostocophyceae 8506 Chamaesiphon rostafinskii A 16 x Nostocophyceae 8086 Chamaesiphon starmachii A A A 17 Nostocophyceae 8451 Chamaesiphon subglobosus A A A A A A 18 Nostocophyceae 8087 Chlorogloea microcystoides B 19 Nostocophyceae 8865 Chondrocystis dermochroa A 20 Nostocophyceae 8864 Chroococcopsis fluviatilis B B 21 Nostocophyceae 8460 Chroococcopsis gigantea B C B B B 22 Nostocophyceae 8062 Chroococcus turgidus B 23 Nostocophyceae 8088 Clastidium rivulare A A A 24 Nostocophyceae 8089 Clastidium setigerum A 25 Nostocophyceae 8711 Cyanodermatium fluminense B

Page 96: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

92

Biocoenotic type PoD PB 1 PB 2 PB 3 PB 4 PB 5 PB 6 PB 9 PB 10 PB 11 PB 12

LAWA-type

No

Taxa

of

short

end

indic

ator

list

Class DV-No Taxon

Alps Alpine Foothills

5, 5.1, 9

6, 6K, 9.1K,

19_MG7

9.1, 9.2, 10

14.s, 16.s, 11a, 12a

14.k, 15, 18, 11.r, 12.r,

19_NT

16.k, 17

20

26 Nostocophyceae 8428 Cylindrospermum C C C C C 27 Nostocophyceae 8898 Cylindrospermum maius C 28 Nostocophyceae 8452 Dichothrix gypsophila A A A 29 Nostocophyceae 8197 Geitlerinema acutissimum D 30 Nostocophyceae 8175 Geitlerinema splendidum D D D 31 Nostocophyceae 8090 Heteroleibleinia kuetzingii C C C C C C 32 Nostocophyceae 8156 Homoeothrix crustacea B A C A A A 33 Nostocophyceae 8457 Homoeothrix gracilis A A 34 Nostocophyceae 8157 Homoeothrix janthina C B A C B C - 35 Nostocophyceae 8453 Homoeothrix juliana A A 36 x Nostocophyceae 8158 Homoeothrix varians B B B B B B B B B B 37 Nostocophyceae 8159 Hydrococcus cesatii B B B B B B 38 Nostocophyceae 8155 Hydrococcus rivularis C C C C C 39 Nostocophyceae 8862 Hydrocoleum homoeotrichum A A 40 Nostocophyceae 8454 Hyella fontana A A A 41 Nostocophyceae 8861 Hyella maxima A A A 42 Nostocophyceae 8423 Komvophoron constrictum C C C 43 Nostocophyceae 8247 Komvophoron minutum C 44 Nostocophyceae 8637 Komvophoron schmidlei B B B B 45 Nostocophyceae 8177 Leptolyngbya foveolarum D D D D D D D D D 46 Nostocophyceae 8860 Leptolyngbya frigida B B 47 Nostocophyceae 8455 Leptolyngbya perforans B B C A A 48 Nostocophyceae 8176 Leptolyngbya tenuis C C 49 Nostocophyceae 8993 Merismopedia elegans B B 50 Nostocophyceae 8026 Merismopedia glauca A A A A A A 51 Nostocophyceae 8822 Merismopedia minima C 52 Nostocophyceae 8456 Microcoleus subtorulosus B B 53 Nostocophyceae 8211 Microcoleus vaginatus B B 54 x Nostocophyceae 8707 Microcrocis obvoluta B 55 Nostocophyceae 8103 Nostoc parmelioides A 56 Nostocophyceae 8902 Nostoc verrucosum A

Page 97: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

93

Biocoenotic type PoD PB 1 PB 2 PB 3 PB 4 PB 5 PB 6 PB 9 PB 10 PB 11 PB 12

LAWA-type

No

Taxa

of

short

end

indic

ator

list

Class DV-No Taxon

Alps Alpine Foothills

5, 5.1, 9

6, 6K, 9.1K,

19_MG7

9.1, 9.2, 10

14.s, 16.s, 11a, 12a

14.k, 15, 18, 11.r, 12.r,

19_NT

16.k, 17

20

57 x Nostocophyceae 8001 Oscillatoria limosa D D D C D D D C D C 58 Nostocophyceae 8132 Oscillatoria princeps C 59 Nostocophyceae 8004 Oscillatoria tenuis D D C D 60 Nostocophyceae 8160 Phormidium aerugineo-coeruleum B B B B 61 Nostocophyceae 8060 Phormidium ambiguum C C 62 x Nostocophyceae 8037 Phormidium autumnale B B B B B B B B B 63 Nostocophyceae 8464 Phormidium autumnale - Gruppe B B B B B B B 64 Nostocophyceae 8161 Phormidium breve D D D 65 Nostocophyceae 8199 Phormidium chalybaeum C C 66 Nostocophyceae 8200 Phormidium chlorinum C C 67 x Nostocophyceae 8346 Phormidium ingrediens B B B A A B 68 Nostocophyceae 8162 Phormidium favosum C B B C 69 Nostocophyceae 8174 Phormidium formosum C C 70 x Nostocophyceae 8042 Phormidium incrustatum C B D B B B C B B 71 Nostocophyceae 8137 Phormidium inundatum A 72 x Nostocophyceae 8974 Phormidium retzii B B B B B B 73 Nostocophyceae Phormidium setchellianum B 74 Nostocophyceae 8061 Phormidium subfuscum B B C B B B B 75 Nostocophyceae 8233 Phormidium tergestinum 76 Nostocophyceae 8891 Phormidium tinctorium B B 77 Nostocophyceae 8874 Plectonema B 78 Nostocophyceae 8673 Plectonema tomasinianum B B 79 Nostocophyceae 8163 Pleurocapsa aurantiaca A 80 x Nostocophyceae 8164 Pleurocapsa minor C C C C C C C C 81 Nostocophyceae 8165 Porphyrosiphon martensianus B B 82 Nostocophyceae 8008 Pseudanabaena catenata C C C C C C 83 Nostocophyceae 8206 Pseudanabaena limnetica C 84 Nostocophyceae 8916 Schizothrix lacustris A 85 Nostocophyceae 8196 Schizothrix semiglobosa A 86 Nostocophyceae 8458 Schizothrix tinctoria A 87 Nostocophyceae 8169 Siphononema polonicum A C

Page 98: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

94

Biocoenotic type PoD PB 1 PB 2 PB 3 PB 4 PB 5 PB 6 PB 9 PB 10 PB 11 PB 12

LAWA-type

No

Taxa

of

short

end

indic

ator

list

Class DV-No Taxon

Alps Alpine Foothills

5, 5.1, 9

6, 6K, 9.1K,

19_MG7

9.1, 9.2, 10

14.s, 16.s, 11a, 12a

14.k, 15, 18, 11.r, 12.r,

19_NT

16.k, 17

20

88 Nostocophyceae 8170 Tolypothrix distorta A 89 Nostocophyceae 8172 Xenotholos kerneri A A 90 x Bangiophyceae 7850 Bangia atropurpurea B C B B A 91 Bangiophyceae Compsopogon D 92 x Florideophyceae 7724 Audouinella - - - B - - B B B B 93 x Florideophyceae Audouinella chalybaea B B B B B B 94 x Florideophyceae 7950 Audouinella hermannii B B B B B B 95 x Florideophyceae 7616 Audouinella pygmaea C C C B C C B B B 96 x Florideophyceae 7012 Batrachospermum B B B B B B B B B A 97 Florideophyceae 7529 Batrachospermum anatinum A B A 98 Florideophyceae Batrachospermum atrum B A 99 Florideophyceae 7530 Batrachospermum confusum A 100 Florideophyceae 7531 Batrachospermum gelatinosum B B B B B B 101 Florideophyceae 7617 Batrachospermum helminthosum A 102 x Florideophyceae 7095 Chantransia – Stadien * C C C B C C B B B B 103 x Florideophyceae 7073 Hildenbrandia rivularis B B B B B B B 104 x Florideophyceae 7074 Lemanea B B 105 Florideophyceae 7117 Lemanea fluviatilis B A B 106 x Florideophyceae 17423 Paralemanea B A - 107 Florideophyceae 17008 Thorea hispida C 108 x Fucophyceae 7559 Heribaudiella fluviatilis B B C B 109 Fucophyceae 7560 Pleurocladia lacustris - - 110 Bicosoecophyceae 7444 Bicosoeca petiolata C 111 x Chrysophyceae 7045 Hydrurus foetidus B B B B A B 112 Chrysophyceae 7611 Phaeodermatium rivulare B B B B A B 113 Euglenophyceae 7101 Anisonema acinus C 114 Euglenophyceae 7854 Euglena ehrenbergii C C 115 Euglenophyceae 7041 Euglena oxyuris C C C C 116 Euglenophyceae 7102 Euglena pisciformis C 117 Euglenophyceae 17230 Euglena spirogyra var. fusca C 118 Euglenophyceae 7503 Euglena texta C C

Page 99: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

95

Biocoenotic type PoD PB 1 PB 2 PB 3 PB 4 PB 5 PB 6 PB 9 PB 10 PB 11 PB 12

LAWA-type

No

Taxa

of

short

end

indic

ator

list

Class DV-No Taxon

Alps Alpine Foothills

5, 5.1, 9

6, 6K, 9.1K,

19_MG7

9.1, 9.2, 10

14.s, 16.s, 11a, 12a

14.k, 15, 18, 11.r, 12.r,

19_NT

16.k, 17

20

119 Euglenophyceae 7043 Euglena tripteris B 120 Euglenophyceae 7046 Lepocinclis C 121 Euglenophyceae 7384 Lepocinclis salina C 122 Euglenophyceae 7083 Phacus acuminatus C C C C 123 Euglenophyceae 7060 Phacus longicauda C C 124 Euglenophyceae 7389 Phacus orbicularis C C C C C 125 Euglenophyceae 7958 Phacus pleuronectes C C C 126 Euglenophyceae 7986 Phacus tortus C C 127 Euglenophyceae 7985 Phacus triqueter C 128 Euglenophyceae 7882 Trachelomonas oblonga C 129 Tribophyceae 17027 Characiopsis minuta B 130 x Tribophyceae 7092 Tribonema - B B B B 131 Tribophyceae 17028 Tribonema regulare B B 132 Tribophyceae 7760 Tribonema viride C B B B C B B B 133 Tribophyceae 7288 Tribonema vulgare C B B B C B B B 134 x Tribophyceae 7002 Vaucheria C C C B / C C C B / C B / C B / C B / C 135 Tribophyceae 17117 Vaucheria aversa A 136 Tribophyceae 7561 Vaucheria bursata C C C B C C 137 Tribophyceae 17119 Vaucheria ornithocephala B B B 138 Chlorophyceae 7238 Bulbochaete B 139 Chlorophyceae 7020 Chaetophora B B 140 Chlorophyceae 17233 Characium acuminatum B B 141 Chlorophyceae 17234 Characium ensiforme C B B B 142 x Chlorophyceae 7098 Draparnaldia A A A 143 Chlorophyceae 7110 Draparnaldia glomerata A A 144 Chlorophyceae 7111 Draparnaldia mutabilis A 145 Chlorophyceae 7935 Gongrosira debaryana B B B B B B B 146 Chlorophyceae 7550 Gongrosira fluminensis C B B 147 x Chlorophyceae 7224 Gongrosira incrustans B B C B B B 148 x Chlorophyceae 7108 Hydrodictyon reticulatum B / C B / C B / C B / C 149 x Chlorophyceae 7096 Microspora amoena B B B B B B B B B B

Page 100: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

96

Biocoenotic type PoD PB 1 PB 2 PB 3 PB 4 PB 5 PB 6 PB 9 PB 10 PB 11 PB 12

LAWA-type

No

Taxa

of

short

end

indic

ator

list

Class DV-No Taxon

Alps Alpine Foothills

5, 5.1, 9

6, 6K, 9.1K,

19_MG7

9.1, 9.2, 10

14.s, 16.s, 11a, 12a

14.k, 15, 18, 11.r, 12.r,

19_NT

16.k, 17

20

150 Chlorophyceae 7998 Microspora floccosa B B B B B B 151 Chlorophyceae 17034 Microspora lauterbornii B 152 Chlorophyceae 7551 Microspora pachyderma B B 153 Chlorophyceae 7112 Microspora quadrata - - 154 Chlorophyceae 17422 Microspora stagnorum C C C 155 Chlorophyceae 17103 Microspora tumidula C C B 156 Chlorophyceae 7671 Microspora wittrockii A A A A A 157 x Chlorophyceae 7052 Oedogonium C C C C C C C C C C 158 Chlorophyceae 7984 Sphaerobotrys fluviatilis C C C C C C 159 Chlorophyceae 7548 Sporotetras pyriformis C C C C 160 x Chlorophyceae 7001 Stigeoclonium D D D D D D D D D D 161 Chlorophyceae 7546 Stigeoclonium farctum D D D D 162 Chlorophyceae 7066 Stigeoclonium tenue D D D 163 Chlorophyceae 7557 Tetraspora gelatinosa A A - 164 Trebouxiophyceae 7082 Microthamnion kuetzingianum A A 165 Trebouxiophyceae 7051 Microthamnion strictissimum B B B B 166 x Ulvophyceae 7000 Cladophora C B / C C B / C B / C B / C C B / C B / C B / C 167 Ulvophyceae 7549 Cladophora fracta C B / C B / C B / C 168 x Ulvophyceae 7114 Cladophora glomerata C B / C C B / C B / C B / C C B / C B / C B / C 169 x Ulvophyceae 7668 Cladophora rivularis C B / C B / C B / C C B / C 170 Ulvophyceae 7034 Enteromorpha intestinalis D 171 Ulvophyceae 17237 Enteromorpha pilifera C 172 Ulvophyceae 7669 Enteromorpha prolifera D C 173 x Ulvophyceae 7115 Rhizoclonium hieroglyphicum C B / C B / C C B / C B / C 174 Ulvophyceae 7556 Ulothrix tenerrima C C C C C C C C C 175 Ulvophyceae 7113 Ulothrix tenuissima C B C B B B B 176 x Ulvophyceae 7069 Ulothrix zonata C B C B B B B B B B 177 Charophyceae 17424 Actinotaenium cruciferum A 178 Charophyceae Bambusina brebissonii A 179 x Charophyceae 7004 Closterium acerosum C C C C C C C C B 180 Charophyceae 7358 Closterium cornu A C C

Page 101: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

97

Biocoenotic type PoD PB 1 PB 2 PB 3 PB 4 PB 5 PB 6 PB 9 PB 10 PB 11 PB 12

LAWA-type

No

Taxa

of

short

end

indic

ator

list

Class DV-No Taxon

Alps Alpine Foothills

5, 5.1, 9

6, 6K, 9.1K,

19_MG7

9.1, 9.2, 10

14.s, 16.s, 11a, 12a

14.k, 15, 18, 11.r, 12.r,

19_NT

16.k, 17

20

181 Charophyceae 7085 Closterium dianae B B 182 Charophyceae 7674 Closterium eboracense B B 183 x Charophyceae 7005 Closterium ehrenbergii B C B B B B B B B 184 Charophyceae 7675 Closterium ehrenbergii var. malinvernianum C 185 Charophyceae 7786 Closterium incurvum B B 186 Charophyceae 7785 Closterium intermedium A 187 Charophyceae 7359 Closterium jenneri A 188 Charophyceae 7843 Closterium kuetzingii B 189 Charophyceae 7025 Closterium leibleinii C B B B C B B 190 Charophyceae 7677 Closterium leibleinii var. boergensenii C B B B C B B 191 Charophyceae 7360 Closterium littorale C B B B B B 192 Charophyceae 7678 Closterium littorale var. crassum B C B B 193 Charophyceae 17107 Closterium lunula B 194 x Charophyceae 7026 Closterium moniliferum C C B C C C B C B 195 Charophyceae 7679 Closterium moniliferum var. concavum C C C 196 Charophyceae 7784 Closterium navicula A 197 Charophyceae 7783 Closterium nilssonii A 198 Charophyceae 7680 Closterium praelongum var. brevius B B B B B B B 199 Charophyceae 7841 Closterium rostratum A C C C A C C C 200 Charophyceae 7009 Closterium strigosum C C C C C C C B 201 Charophyceae 7681 Closterium strigosum var. elegans C B C C B B B 202 Charophyceae 7781 Closterium striolatum A A 203 Charophyceae 7780 Closterium sublaterale C C C C C C C 204 Charophyceae Closterium submoniliferum C B 205 x Charophyceae 7779 Closterium tumidulum C C B C C C B C B 206 Charophyceae 7840 Closterium tumidum A 207 Charophyceae 17041 Closterium tumidum var. nylandicum A 208 Charophyceae 7361 Closterium venus A 209 Charophyceae 17114 Cosmarium botrytis C 210 Charophyceae 7215 Cosmarium formosulum B 211 Charophyceae 7364 Cosmarium laeve C B B C B B B

Page 102: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

98

Biocoenotic type PoD PB 1 PB 2 PB 3 PB 4 PB 5 PB 6 PB 9 PB 10 PB 11 PB 12

LAWA-type

No

Taxa

of

short

end

indic

ator

list

Class DV-No Taxon

Alps Alpine Foothills

5, 5.1, 9

6, 6K, 9.1K,

19_MG7

9.1, 9.2, 10

14.s, 16.s, 11a, 12a

14.k, 15, 18, 11.r, 12.r,

19_NT

16.k, 17

20

212 Charophyceae 7028 Cosmarium margaritiferum C 213 Charophyceae 7682 Cosmarium pachydermum var. aetiopicum A 214 Charophyceae 7707 Hyalotheca dissiliens A 215 Charophyceae 17124 Mesotaenium macrococcum A 216 Charophyceae 7091 Micrasterias A 217 x Charophyceae 7089 Mougeotia B B B B B B B B A 218 Charophyceae 7727 Penium margaritaceum A 219 Charophyceae Penium spirostriolatum A 220 Charophyceae 7684 Pleurotaenium crenulatum A 221 Charophyceae 7768 Pleurotaenium trabecula A 222 Charophyceae 7765 Roya A 223 Charophyceae Roya obtusa A 224 x Charophyceae 7013 Spirogyra B / C B / C B / C B / C B / C B / C B / C B / C B 225 Charophyceae 7275 Staurastrum punctulatum B 226 Charophyceae 7796 Xanthidium antilopaeum A 227 x Charophyceae 7293 Zygnema B B B B 228 Klebsormidiophyceae 7122 Coleochaete A 229 Klebsormidiophyceae 7507 Klebsormidium B B B B B B B C B B 230 Klebsormidiophyceae 7670 Klebsormidium flaccidum B B C 231 Klebsormidiophyceae 7536 Klebsormidium rivulare B B 232 Klebsormidiophyceae 7563 Klebsormidium subtile B B

Page 103: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

99

For calculation of the assessment index the abundances have to be squared. The assessment index is then calculated according to Equation 14. The index can theoretically adopt values between +100 and -100.

A in such a way determined assessment is assumed reliable if at least five indicative taxa were found during sampling or if (with less then five taxa) the total of the squared abunances is more than 16. If a reliable assessment is not possible, this has to be noted accordingly.

Equation 14: Assessment index

100*21

21

1 1 1 1

1 1 1 1

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

= = = =

= = = =

+++

−−+=

A B C D

A B C D

n

i

n

i

n

i

n

iDiCiBiAi

n

i

n

i

n

i

n

iDiCiBiAi

QQQQ

QQQQBI

BI = Assessment index QA = squared abundance of a taxon from assessment category A QB = squared abundance of a taxon from assessment category B QC = squared abundance of a taxon from assessment category C QD = squared abundance of a taxon from assessment category D i = 1 to nA, nB, nC, nD

4.4 Overall Assessment of Running Waters with Macrophytes and Phytobenthos

According to the WFD the entire organism group of the benthic flora, macrophytes and phytobenthos, is one of four biological components for the assessment of the state of a water body. Therefore the three subcomponents have to be seen as modules or metrics for the assessment in terms of the WFD.

4.4.1 Combination of the Metrics Macrophytes, Diatoms and Phytobenthos without Diatoms

For the overall assessment of running waters with the biocomponent macrophytes and phytobenthos it is absolutely necessary that the assessment of the three subcomponents macrophytes, diatoms and phytobenthos without diatoms follows exactly the described methodology. Prerequisites are complete data collection according to the guidelines and the correct determination of the organism dependent biocoenotic type. Thereby contradictions between the different groups of organisms are possible in individual cases. A sampling site can be assigned to a siliceous running water type according to LAWA but, due to the catchment, be influenced by calcareous water. Thereby an assignment to a siliceous diatom type but a calcareous macrophyte or phytobenthos type is possible. In such a case it has to be checked whether the elevated total hardness or acid capacity is due to anthropogenic influences, e.g. discharge of industrial waste. If that is the case, these values have to be seen as a consequence of degradation and the type has to be corrected accordingly. This situation often occurs at strongly degraded water bodies and in water bodies with large catchments. If a sampling section is in an area of, on a small scale, changing geology, if possible a different site should be chosen for investigation.

Any combination of calecareous geology and low total hardness has to be excluded.

Page 104: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

100

The distinction between rhitral and potamal running waters in the sense of the macrophyte typology relates to the possibilities for higher water plants to colonize the water body. The mechanical stress exerted on the plants by current and the resistence of individual taxa against these pressures plays an important role. A broad leaved Potamogeton species, for example, cannot be expected in areas of turbulent flow, but some small, narrow leafed taxa can. Even water bodies with large catchments can, in their natural state, contain stretches with a flow regime only suitable for current resistant taxa.

The nationwide valid LAWA typology or the nationwide LAWA type map cannot be used as sole basis for type determination. Type determination of sampling sites according to the described criteria is a prerequisite for assessment.

To make the results of the three metrics macrophytes, diatoms and phytobenthos without diatoms comparable, all index values have to be rescaled to a single scale from “0” to “1”. The value “1” stands for best possible ecological status according to WFD, i.e. status class 1. In contrast, “0” means the highest degree of degradation, i.e. status class 5. The conversion for the modules “macrophytes” (reference index, RI) and “phytobenthos without diatoms” (assessment index, BI) follows Equation 15 and Equation 16 respectively. The result of the module “diatoms” (diatom index running waters, DIFG) is already on this scale and therefore does not need to be converted.

Equation 15: Equation for conversion of the module RIFG (referenz index running waters macrophytes) on a scale from 0 to 1.

1005,0*)100( +

= FGMP

RIM MMP = Module macrophyte assessment RIFG =Type specific determined reference index

Equation 16: Equation for conversion of the module BI (assessment index phytobenthos without diatoms) on a scale from 0 to 1.

1005,0*100)( +

=BIM PB MPB = Module phytobenthos assessment

BI = Type specific determined assessment index

From these three components the common macrophyte-phytobenthos index for running waters (M&PFG) is calculated according to Equation 17. Even if individual modules have to be considered unreliable, the M&PFG can still be calculated. In case of an unreliable module macrophytes Equation 18 should be used, if the module phytobenthos without diatoms is unreliable Equation 19 is appropriate. Should, in exceptional cases, the assessment of the module diatoms not be reliable, Equation 20 can be applied. If the results of two modules are unreliable, the site is assessed by the remaining, reliable module. However, in that case the overall result has to be checked critically and cannot be compared to an assessment with two or all three modules.

Equation 17: Calculation of the index value M&PFG for determination of the ecological status of a running water with reliable results from three modules

3& MMMPM PBDMPFG

++=

M&PFG = Macrophytes & phytobenthos index for running waters

MMP = Module macrophytes MD = Module diatoms MPB = Module phytobenthos without diatoms

Page 105: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

101

Equation 18: Calculation of the index value M&PFG for determination of the ecological status of a running water with reliable results from the modules diatoms and phytobenthos without diatoms

2& MMPM PBDFG

+=

M&PFG = Macrophytes & phytobenthos index for running waters

MD = Module diatoms MPB = Module phytobenthos without diatoms

Equation 19: Calculation of the index value M&PFG for determination of the ecological status of a running water with reliable results from modules macrophytes and diatoms

2& MMPM DMPFG

+=

M&PFG = Makrophytea & phytobenthos index for running waters

MMP = Module makrophytes MD = Moduld diatoms

Equation 20: Calculation of the index value M&PFG for determination of the ecological status of a running water with reliable results from the modules macrophytes and phytobenthos without diatoms

2& MMPM PBMPFG

+=

M&PFG = Makrophytes & phytobenthos index for running waters

MPB = Module phytobenthos without diatoms MMP = Module makrophytes

4.4.2 Determination of the Ecological Status Class

Separated by ecoregion, Table 36 to Table 108 show the limits for the assignment of the calculated index M&PFG to ecological status classes according to the WFD. If the assessment of one or two modules is unreliable, these results are still used to support the interpretation of the overall result, but they are excluded from the determination of the ecological status class according to WFD.

The index limits for the case of unreliable individual assessments are also included in the above mentioned tables.

“LAWA type” relates to the running water typology according to POTTGIEßER &

SOMMERHÄUSER (2008).

Page 106: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

102

4.4.2.1 Alps

Assessment with modules macrophytes, diatoms and phytobenthos without diatoms

Table 36: Index limits for assignment of ecological status class: Running waters of Limestone Alps with catchment size ≤ 1000 km²; LAWA-type 1.1

Phytobenthos PB 1

Diatoms D 1.1

Running waters of Limestone Alps with catchment ≤ 1000 km2

Macrophytes MRK MP MPG

1 1,00 – 0,70 1,00 – 0,72 1,00 – 0,75

2 0,69 – 0,48 0,71 – 0,43 0,74 – 0,48

3 0,47 – 0,26 0,42 – 0,21 0,47 – 0,26

4 0,25 – 0,09 0,20 – 0,08 0,25 – 0,09

5 0,08 – 0,00 0,07 – 0,00 0,08 – 0,00

Table 37: Index limits for assignment of ecological status class: Running waters of Limestone Alps with catchment size > 1000 km²; LAWA-type 1.2

Phytobenthos PB 1

Diatoms D 1.2 Running waters of Limestone Alps with catchment > 1000 km2

Macrophytes MRK MP MPG

1 1,00 – 0,69 1,00 – 0,71 1,00 – 0,74

2 0,68 – 0,44 0,70 – 0,39 0,73 – 0,44

3 0,43 – 0,26 0,38 – 0,21 0,43 – 0,26

4 0,25 – 0,09 0,20 – 0,08 0,25 – 0,09

5 0,08 – 0,00 0,07 – 0,00 0,08 – 0,00

Page 107: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

103

Assessment with modules macrophytes and diatoms applicable by unreliable module phytobenthos without diatoms

Table 38: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of Limestone Alps with catchment size ≤ 1000 km²; LAWA-type 1.1

Diatoms D 1.1

Running waters of Limestone Alps with catchment area ≤ 1000 km2

Macrophytes MRK MP MPG

1 1,00 – 0,70 1,00 – 0,73 1,00 – 0,78

2 0,69 – 0,50 0,72 – 0,42 0,77 – 0,50

3 0,49 – 0,26 0,41 – 0,19 0,49 – 0,26

4 0,25 – 0,06 0,18 – 0,05 0,25 – 0,06

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00

Table 39: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of Limestone Alps with catchment size > 1000 km²; LAWA-type 1.2

Diatoms D 1.2 Running waters of Limestone Alps with catchment > 1000 km2

Macrophytes MRK MP MPG

1 1,00 – 0,69 1,00 – 0,71 1,00 – 0,76

2 0,68 – 0,45 0,70 – 0,37 0,75 – 0,45

3 0,44 – 0,25 0,36 – 0,18 0,44 – 0,25

4 0,24 – 0,06 0,17 – 0,05 0,24 – 0,06

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00

Assessment with the modules macrophytes and phytobenthos applicable by unreliable module diatoms

Table 40: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Running waters of the Alps LAWA-types 1.1 and 1.2

Phytobenthos PB 1

Macrophytes MRK MP MPG

1 1,00 – 0,70 1,00 – 0,73 1,00 – 0,78

2 0,69 – 0,47 0,72 – 0,40 0,77 – 0,47

3 0,46 – 0,26 0,39 – 0,19 0,46 – 0,26

4 0,25 – 0,09 0,18 – 0,08 0,25 – 0,09

5 0,08 – 0,00 0,07 – 0,00 0,08 – 0,00

Page 108: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

104

Assessment with modules diatoms and phytobenthos without diatoms applicable by unreliable module macrophytes

Table 41: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Running waters of the Alps, LAWA-type 1.1 and 1.2

Phytobenthos PB 1

Diatoms

D 1.1 Running Waters of

Limestone Alps with Catchment ≤

1000 km2

D 1.2 Running Waters of

Limestone Alps with Catchment >

1000 km2

1 1,00 – 0,70 1,00 – 0,69

2 0,69 – 0,47 0,68 – 0,42

3 0,46 – 0,27 0,41 – 0,26

4 0,26 – 0,12 0,26 – 0,12

5 0,11 – 0,00 0,11 – 0,00

Page 109: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

105

Assessment with module diatoms applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms

Table 42: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Running waters of the Alps; LAWA-types 1.1 and 1.2

Diatoms

D 1.1 Running Waters of

Limestone Alps with cathcment ≤ 1000 km2

D 1.2 Running Waters of

Limestone Alps with catchment >

1000 km2

1 1,00 – 0,70 1,00 – 0,67

2 0,69 – 0,49 0,66 – 0,39

3 0,48 – 0,27 0,38 – 0,25

4 0,26 – 0,09 0,24 – 0,09

5 0,08 – 0,00 0,08 – 0,00

Assessemnt with module macrophytes applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms

Table 43: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms: Running waters of Limestone Alps, LAWA-types 1.1 and 1.2

Macrophytes MRK MP MPG

1 1,00 – 0,70 1,00 – 0,75 1,00 – 0,85

2 0,69 – 0,50 0,74 – 0,35 0,84 – 0,50

3 0,49 – 0,25 0,34 – 0,10 0,49 – 0,25

4 0,24 – 0,03 0,09 – 0,01 0,24 – 0,03

5 0,02 – 0,00 0,00 0,02 – 0,00

Assessment with module phytobenthos without diatoms applicable by unreliable module diatoms and unreliable module macrophytes

Table 44: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module macrophytes: Running waters of Limestone Alps, LAWA-types 1.1 and 1.2

Phytobenthos PB 1

1 1,00 – 0,70

2 0,69 – 0,44

3 0,43 – 0,27

4 0,26 – 0,14

5 0,13 – 0,00

Page 110: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

106

4.4.2.2 Alpine Foothills

Assessment with modules macrophytes, diatoms and phytobenthos without diatoms

Table 45: Index limits for assignment of ecological status class: Siliceous running waters of Alpine Foothills with catchment area ≤ 1000 km², LAWA-type 2

Phytobenthos PB 2

Diatoms D 2

Siliceous Running Water with Catchment ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,76 1,00 – 0,78 1,00 – 0,81 1,00 – 0,79

2 0,75 – 0,52 0,77 – 0,47 0,80 – 0,52 0,78 – 0,54

3 0,51 – 0,26 0,46 – 0,21 0,51 – 0,26 0,53 – 0,28

4 0,25 – 0,10 0,20 – 0,10 0,25 – 0,10 0,27 – 0,11

5 0,09 – 0,00 0,09 – 0,00 0,09 – 0,00 0,10 – 0,00

Table 46: Index limits for assignment of ecological status class: Calcareous running waters of Alpine Foothills with catchment area ≤ 1000 km², LAWA-types 3 and 11 and 19 in the ecoregion Alpine Foothills

Phytobenthos PB 2

Diatoms D 3

Calcareous Running Water with Catchment ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,72 1,00 – 0,74 1,00 – 0,77 1,00 – 0,76

2 0,71 – 0,49 0,73 – 0,44 0,76 – 0,49 0,75 – 0,51

3 0,48 – 0,26 0,43 – 0,21 0,48 – 0,26 0,50 – 0,28

4 0,25 – 0,10 0,20 – 0,10 0,25 – 0,10 0,27 – 0,11

5 0,09 – 0,00 0,09 – 0,00 0,09 – 0,00– 0,10 – 0,00–

Table 47: Index limits for assignment of ecological status class: Running waters of Alpine Foothills with catchment area > 1000 km², LAWA-type 4

Phytobenthos PB 2

Diatoms D 4 Running Waters with Catchment > 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,74 1,00 – 0,76 1,00 – 0,79 1,00 – 0,78

2 0,73 – 0,50 0,75 – 0,45 0,78 – 0,50 0,77 – 0,51

3 0,49 – 0,27 0,44 – 0,22 0,49 – 0,27 0,50 – 0,29

4 0,26 – 0,11 0,21 – 0,10 0,26 – 0,11 0,28 – 0,11

5 0,10 – 0,00 0,09 – 0,00 0,10 – 0,00 0,10 – 0,00

Page 111: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

107

Assessment with modules macrophytes and diatoms applicable by unreliable module phytobenthos without diatoms

Table 48: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous running waters of Alpine Foothills with catchment area ≤ 1000 km², LAWA-type 2

Diatoms D 2

Siliceous Running Waters with Catchment ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,74 1,00 – 0,77 1,00 – 0,82 1,00 – 0,79

2 0,73 – 0,51 0,76 – 0,44 0,81 – 0,51 0,78 – 0,54

3 0,50 – 0,24 0,43 – 0,17 0,50 – 0,24 0,53 – 0,27

4 0,23 – 0,06 0,16 – 0,05 0,23 – 0,06 0,26 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Table 49: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of Alpine Foothills with catchment area ≤ 1000 km², LAWA-types 3 and 11 and 19 in ecoregion Alpine Foothills

Diatoms D 3

Calcareous Running Waters with Catchment ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,69 1,00 – 0,71 1,00 – 0,76 1,00 – 0,74

2 0,68 – 0,47 0,70 – 0,39 0,75 – 0,47 0,73 – 0,49

3 0,46 – 0,25 0,38 – 0,17 0,46 – 0,25 0,48 – 0,27

4 0,24 – 0,06 0,16 – 0,05 0,24 – 0,06 0,26 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Table 50: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of Alpine Foothills with catchment area > 1000 km², LAWA-type 4

Diatoms D 4 Running Waters with Catchment > 1000 km2

Macrophyten MRK MP MPG MRS

1 1,00 – 0,72 1,00 – 0,74 1,00 – 0,79 1,00 – 0,77

2 0,71 – 0,47 0,73 – 0,40 0,78 – 0,47 0,76 – 0,50

3 0,46 – 0,26 0,39 – 0,19 0,46 – 0,26 0,49 – 0,29

4 0,25 – 0,06 0,18 – 0,05 0,25 – 0,06 0,28 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Page 112: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

108

Assessment with modules macrophytes and phytobenthos without diatoms applicable by unreliable module diatoms

Table 51: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Running Waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills

Phytobenthos PB 2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,75 1,00 – 0,78 1,00 – 0,83 1,00 – 0,80

2 0,74 – 0,53 0,77 – 0,45 0,82 – 0,53 0,79 – 0,55

3 0,52 – 0,28 0,44 – 0,20 0,52 – 0,28 0,54 – 0,30

4 0,27 – 0,12 0,19 – 0,11 0,27 – 0,12 0,29 – 0,13

5 0,11 – 0,00 0,10 – 0,00 0,11 – 0,00 0,12 – 0,00

Assessment with modules diatoms and phytobenthos without diatoms applicable by unreliable module macrophytes

Table 52: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Running Waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills

Phytobenthos PB 2

Diatoms

D 2 Siliceous Running

Waters with Catchment ≤ 1000

km2

D 3 Calcareous Running

Waters with Catchment ≤ 1000

km2

D 4 Running Waters

with Catchment > 1000 km2

1 1,00 – 0,79 1,00 – 0,74 1,00 – 0,77

2 0,78 – 0,54 0,73 – 0,49 0,76 – 0,50

3 0,53 – 0,27 0,48 – 0,27 0,49 – 0,29

4 0,26 – 0,14 0,26 – 0,14 0,28 – 0,15

5 0,13 – 0,00 0,13 – 0,00 0,14 – 0,00

Page 113: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

109

Assessment with module diatoms applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms

Table 53: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Running Waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills

Diatoms

D 2 Siliceous Running

Waters with Catchment ≤ 1000

km2

D 3 Calcareous Running

Waters with Catchment ≤ 1000 km2

D 4 Running Waters with Catchment

> 1000 km2

1 1,00 – 0,78 1,00 – 0,67 1,00 – 0,73

2 0,77 – 0,52 0,66 – 0,43 0,72 – 0,44

3 0,51 – 0,23 0,42 – 0,24 0,43 – 0,27

4 0,22 – 0,08 0,23 – 0,08 0,26 – 0,09

5 0,07 – 0,00 0,07 – 0,00 0,08 – 0,00

Assessment with module macrophytes applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms

Table 54: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms: Running Waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills

Macrophytes MRK MP MPG MRS

1 1,00 – 070 1,00 – 0,75 1,00 – 0,85 1,00 – 0,80

2 0,69 – 0,50 0,74 – 0,35 0,84 – 0,50 0,79 – 0,55

3 0,49 – 0,25 0,34 – 0,10 0,49 – 0,25 0,54 – 0,30

4 0,24 – 0,03 0,09 – 0,01 0,24 – 0,03 0,29 – 0,05

5 0,02 – 0,00 0,00 0,02 – 0,00 0,04 – 0,00

Assessment with module phytobenthos without diatoms applicable by unreliable module diatoms and unreliable module macrophytes

Table 55: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module macrophytes: Running waters of Alpine Foothills, LAWA-types 2, 3, 4 and 11 and 19 in ecoregion Alpine Foothills

Phytobenthos PB 2

1 1,00 – 0,80

2 0,79 – 0,55

3 0,54 – 0,30

4 0,29 – 0,20

5 0,19 – 0,00

Page 114: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

110

4.4.2.3 Central German Upland

Assessment with modules macrophytes, diatoms and phytobenthos without diatoms

Table 56: Index limits for assignment of ecological status class: Siliceous running waters of variegated sandstone and bedrock in the Central German Upland with catchment area ≤ 100 km², LAWA-types 5 (excl. subtype 5.2: volcanites) and 5.1 and 11 in ecoregion Central German Upland

Phytobenthos PB 3

Diatoms D 5

Running Waters of Variegated Sandstone and Bedrock with Catchment ≤ 100 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,72 1,00 – 0,74 1,00 – 0,77 1,00 – 0,76

2 0,71 – 0,49 0,73 – 0,44 0,76 – 0,49 0,75 – 0,51

3 0,48 – 0,26 0,43 – 0,21 0,48 – 0,26 0,50 – 0,28

4 0,25 – 0,10 0,20 – 0,10 0,25 – 0,10 0,27 – 0,11

5 0,09 – 0,00 0,09 – 0,00 0,09 – 0,00 0,10 – 0,00

Table 57: Index limits for assignment of ecological status class: Siliceous running waters of volcanic areas in the Central German Upland with a catchment area ≤ 100 km², LAWA-type 5.2

Phytobenthos PB 3

Diatoms D 6

Running Waters in Volcanic Areas with Catchment ≤ 100 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,70 1,00 – 0,72 1,00 – 0,75 1,00 – 0,74

2 0,69 – 0,48 0,71 – 0,43 0,74 – 0,48 0,73 – 0,50

3 0,47 – 0,26 0,42 – 0,21 0,47 – 0,26 0,49 – 0,28

4 0,25 – 0,10 0,20 – 0,10 0,25 – 0,10 0,27 – 0,11

5 0,09 – 0,00 0,09 – 0,00 0,09 – 0,00 0,10 – 0,00

Table 58: Index limits for assignment of ecological status class: Siliceous running waters of variegated sandstone and bedrock in the Central German Uplands with catchment area > 100 km² and ≤ 1000 km², LAWA-type 9

Phytobenthos PB 3

Diatoms D 7

Running Waters of Variegated Sandstone and Bedrock with Catchment > 100 km2 and ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,70 1,00 – 0,72 1,00 – 0,75 1,00 – 0,74

2 0,69 – 0,48 0,71 – 0,43 0,74 – 0,48 0,73 – 0,50

3 0,47 – 0,26 0,42 – 0,21 0,47 – 0,26 0,49 – 0,28

4 0,25 – 0,10 0,20 – 0,10 0,25 – 0,10 0,27 – 0,11

5 0,09 – 0,00 0,09 – 0,00 0,09 – 0,00 0,10 – 0,00

Page 115: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

111

Table 59: Index limits for assignment of ecological status class: Calcareous running waters of the loess and keuper regions in the Central Germal Upland with catchment are ≤ 1000 km²; LAWA-types 6 and 6_K and 9.1 in loess, keuper and chalkstone regions excl. lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions and 19 in the Central German Upland

Phytobenthos PB 4

Diatoms D 8.1 und D 8.2 Running Waters of Loess and Keuper Regions with catchementt EZG ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,71 1,00 – 0,73 1,00 – 0,76 1,00 – 0,74

2 0,70 – 0,54 0,72 – 0,49 0,75 – 0,54 0,73 – 0,56

3 0,53 – 0,35 0,48 – 0,30 0,53 – 0,35 0,55 – 0,37

4 0,34 – 0,09 0,29 – 0,09 0,34 – 0,09 0,36 – 0,10

5 0,08 – 0,00 0,08 – 0,00 0,08 – 0,00 0,09 – 0,00

Table 60: Index limits for assignment of ecological status class: Calcareous running waters of calcareous regions of Central German Upland with catchment are ≤ 100 km², LAWA-type 7

Phytobenthos PB 5

Diatoms D 9.1

Running Wateres of Calcareous Regions with Catchment ≤ 100 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,77 1,00 – 0,78 1,00 – 0,82 1,00 – 0,80

2 0,76 – 0,53 0,77 – 0,48 0,81 – 0,53 0,79 – 0,55

3 0,52 – 0,29 0,47 – 0,24 0,52 – 0,29 0,54 – 0,31

4 0,28 – 0,10 0,23 – 0,10 0,28 – 0,10 0,30 – 0,11

5 0,09 – 0,00 0,09 – 0,00 0,09 – 0,00 0,10 – 0,00

Table 61: Index limits for assignment of ecological status class: Calcareous running waters of calcareous regions of Central German Upland with catchment area > 100 km² and ≤ 1000 km², LAWA-type 9.1 in lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions excl. loess, keuper and chalkstone regions

Phytobenthos PB 6

Diatoms D 9.2 Running Waters of Calcereous Regions with Catchemnt > 100 km2 und ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,74 1,00 – 0,75 1,00 – 0,79 1,00 – 0,77

2 0,73 – 0,54 0,74 – 0,49 0,78 – 0,54 0,76 – 0,55

3 0,53 – 0,28 0,48 – 0,23 0,53 – 0,28 0,54 – 0,30

4 0,27 – 0,10 0,22 – 0,09 0,27 – 0,10 0,29 – 0,10

5 0,09 – 0,00 0,08 – 0,00 0,09 – 0,00 0,09 – 0,00

Page 116: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

112

Table 62: Index limits for assignment of ecological status class: Calcareous running water in the Central German Upland with catchment area > 1000 km² and ≤ 10.000 km², LAWA-type 9.2

Phytobenthos PB 6

Diatoms D 10.1

Running Wates with Catchment > 1000 km2 and ≤ 10.000 km²

Macrophytes MRK MP MPG MRS

1 1,00 – 0,70 1,00 – 0,72 1,00 – 0,75 1,00 – 0,74

2 0,69 – 0,51 0,71 – 0,46 0,74 – 0,51 0,73 – 0,52

3 0,50 – 0,30 0,45 – 0,25 0,50 – 0,30 0,51 – 0,32

4 0,29 – 0,10 0,24 – 0,10 0,29 – 0,10 0,31 – 0,11

5 0,09 – 0,00 0,09 – 0,00 0,09 – 0,00 0,10 – 0,00

Table 63: Index limits for assignment of ecological status class: Calcareous running waters in the Central German Upland with catchment area > 10.000 km², LAWA-type 10

Phytobenthos PB 6

Diatoms D 10.2 Running Waters with Catchment > 10.000 km2

Macrophyts MRK MP MPG MRS

1 1,00 – 0,70 1,00 – 0,72 1,00 – 0,75 1,00 – 0,73

2 0,69 – 0,50 0,71 – 0,45 0,74 – 0,50 0,72 – 0,52

3 0,49 – 0,30 0,44 – 0,25 0,49 – 0,30 0,51 – 0,31

4 0,29 – 0,10 0,24 – 0,10 0,29 – 0,10 0,30 – 0,11

5 0,09 – 0,00 0,09 – 0,00 0,09 – 0,00 0,10 – 0,00

Page 117: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

113

Assessment with modules macrophytes and diatoms, applicable by unreliable module phytobenthos without diatoms

Table 64: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous running waters of variegated sandstone and bedrock in the Central German Upland with catchment area ≤ 100 km², LAWA-types 5 (excl. subtype 5.2: volcanites) and 5.1 and 11 in ecoregion Central German Upland

Diatoms D 5

Running Waters of Variegated Sandstone and Bedrock with Catchment ≤ 100 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,69 1,00 – 0,71 1,00 – 0,76 1,00 – 0,74

2 0,68 – 0,47 0,70 – 0,39 0,75 – 0,47 0,73 – 0,49

3 0,46 – 0,25 0,38 – 0,17 0,46 – 0,25 0,48 – 0,27

4 0,24 – 0,06 0,16 – 0,05 0,24 – 0,06 0,26 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Table 65: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous running waters of volcanic areas in the Central German Upland with a catchment area ≤ 100 km², LAWA-type 5.2

Diatoms D 6

Running Waters of Volcanic Areas with Catchment ≤ 100 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,66 1,00 – 0,68 1,00 – 0,73 1,00 – 0,71

2 0,65 – 0,45 0,67 – 0,38 0,72 – 0,45 0,70 – 0,48

3 0,44 – 0,25 0,37 – 0,17 0,44 – 0,25 0,47 – 0,27

4 0,24 – 0,06 0,16 – 0,05 0,24 – 0,06 0,26 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Table 66: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous running waters of variegated sandstone and bedrock in the Central German Upland with catchment area > 100 km² and ≤ 1000 km², LAWA-type 9

Diatoms D 7

Runningn Waters of Variegated Sandstone and bedrock with catchment > 100 km2 and ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,66 1,00 – 0,68 1,00 – 0,73 1,00 – 0,71

2 0,65 – 0,45 0,67 – 0,38 0,72 – 0,45 0,70 – 0,48

3 0,44 – 0,25 0,37 – 0,17 0,44 – 0,25 0,47 – 0,27

4 0,24 – 0,06 0,16 – 0,05 0,24 – 0,06 0,26 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Page 118: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

114

Table 67: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of the loess and keuper regions in the Cerntral Germal Upland with catchment are ≤ 1000 km²; LAWA-types 6 and 6_K and 9.1 in loess, keuper and chalkstone regions excl. lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions and 19 in the Central German Upland

Diatoms D 8.1 und D 8.2 Running Waters of Loess and Keuper Regions with Catchment ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,63 1,00 – 0,66 1,00 – 0,71 1,00 – 0,68

2 0,62 – 0,45 0,65 – 0,37 0,70 – 0,45 0,67 – 0,47

3 0,44 – 0,25 0,36 – 0,17 0,44 – 0,25 0,46 – 0,27

4 0,24 – 0,06 0,16 – 0,05 0,24 – 0,06 0,26 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Table 68: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of calcareous regions of Central German Upland with catchment are ≤ 100 km², LAWA-type 7

Diatoms D 9.1

Running Waters of Calcareous Regions ≤ 100 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,75 1,00 – 0,78 1,00 – 0,83 1,00 – 0,80

2 0,74 – 0,53 0,77 – 0,45 0,82 – 0,53 0,79 – 0,55

3 0,52 – 0,24 0,44 – 0,17 0,52 – 0,24 0,54 – 0,27

4 0,23 – 0,06 0,16 – 0,05 0,23 – 0,06 0,26 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Table 69: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of calcareous regions of Central German Upland with catchment area > 100 km² and ≤ 1000 km², LAWA-type 9.1 in lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions excl. loess, keuper and chalkstone regions

Diatoms D 9.2 Running Waters of Calcareous Regions with Catchment > 100 km2 and ≤ 1000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,71 1,00 – 0,73 1,00 – 0,78 1,00 – 0,76

2 0,70 – 0,51 0,72 – 0,43 0,77 – 0,51 0,75 – 0,53

3 0,50 – 0,23 0,42 – 0,15 0,50 – 0,23 0,52 – 0,25

4 0,22 – 0,05 0,14 – 0,04 0,22 – 0,05 0,24 – 0,06

5 0,04 – 0,00 0,03 – 0,00 0,04 – 0,00 0,05 – 0,00

Page 119: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

115

Table 70: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running water in the Central German Upland with catchment area > 1000 km² and ≤ 10.000 km², LAWA-type 9.2

Diatoms D 10.1

Running Waters with Catchment > 1000 km2 and ≤ 10.000 km²

Macrophytes MRK MP MPG MRS

1 1,00 – 0,66 1,00 – 0,68 1,00 – 0,73 1,00 – 0,71

2 0,65 – 0,46 0,67 – 0,39 0,72 – 0,46 0,70 – 0,49

3 0,45 – 0,25 0,38 – 0,18 0,45 – 0,25 0,48 – 0,28

4 0,24 – 0,06 0,17 – 0,05 0,24 – 0,06 0,27 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Table 71: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters in the Central German Upland with catchment area > 10.000 km², LAWA-type 10

Diatoms D 10.2 Runningn Water with Catchment EZG > 10.000 km2

Macrophytes MRK MP MPG MRS

1 1,00 – 0,65 1,00 – 0,68 1,00 – 0,73 1,00 – 0,70

2 0,64 – 0,45 0,67 – 0,38 0,72 – 0,45 0,69 – 0,48

3 0,44 – 0,25 0,37 – 0,17 0,44 – 0,25 0,47 – 0,27

4 0,24 – 0,06 0,16 – 0,05 0,24 – 0,06 0,26 – 0,07

5 0,05 – 0,00 0,04 – 0,00 0,05 – 0,00 0,06 – 0,00

Page 120: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

116

Assessment with modules macrophytes and phytobenthos without diatoms applicable by unreliable module diatoms

Table 72: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Siliceous running waters in the Central German Upland, LAWA-types 5, 5.1, 5.2, and 9 as well as 11 in the Central German Upland

Phytobenthos PB 3

Macrophytes MRK MP MPG MRS

1 1,00 – 0,75 1,00 – 0,78 1,00 – 0,83 1,00 – 0,80

2 0,74 – 0,53 0,77 – 0,45 0,82 – 0,53 0,79 – 0,55

3 0,52 – 0,28 0,44 – 0,20 0,52 – 0,28 0,54 – 0,30

4 0,27 – 0,12 0,19 – 0,11 0,27 – 0,12 0,29 – 0,13

5 0,11 – 0,00 0,10 – 0,00 0,11 – 0,00 0,12 – 0,00

Table 73: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters in the Central German Upland, LAWA-types 6, 6_K and 9.1_K as well as 19 in the Central German Upland

Phytobenthos PB 4

Macrophytes MRK MP MPG MRS

1 1,00 – 0,79 1,00 – 0,81 1,00 – 0,86 1,00 – 0,84

2 0,78 – 0,62 0,80 – 0,54 0,85 – 0,62 0,83 – 0,64

3 0,61 – 0,41 0,53 – 0,33 0,61 – 0,41 0,63 – 0,43

4 0,40 – 0,10 0,32 – 0,09 0,40 – 0,10 0,42 – 0,11

5 0,09 – 0,00 0,08 – 0,00 0,09 – 0,00 0,10 – 0,00

Table 74 Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of calcareous regions of Central German Upland with catchment are ≤ 100 km², LAWA-type 7

Phytobenthos PB 5

Macrophytes MRK MP MPG MRS

1 1,00 – 0,75 1,00 – 0,78 1,00 – 0,83 1,00 – 0,80

2 0,74 – 0,53 0,77 – 0,45 0,82 – 0,53 0,79 – 0,55

3 0,52 – 0,33 0,44 – 0,25 0,52 – 0,33 0,54 – 0,35

4 0,32 – 0,12 0,24 – 0,11 0,32 – 0,12 0,34 – 0,13

5 0,11 – 0,00 0,10 – 0,00 0,11 – 0,00 0,12 – 0,00

Page 121: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

117

Table 75: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of Central German Upland, LAWA-types 9.1, 9.2 and 10

Phytobenthos PB 6

Macrophytes MRK MP MPG MRS

1 1,00 – 0,75 1,00 – 0,78 1,00 – 0,83 1,00 – 0,80

2 0,74 – 0,55 0,77 – 0,48 0,82 – 0,55 0,79 – 0,58

3 0,54 – 0,33 0,47 – 0,25 0,54 – 0,33 0,57 – 0,35

4 0,32 – 0,12 0,24 – 0,11 0,32 – 0,12 0,34 – 0,13

5 0,11 – 0,00 0,10 – 0,00 0,11 – 0,00 0,12 – 0,00

Assessment with modules diatoms and phytobenthos without diatoms applicable by unreliable module macrophytes

Table 76: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Siliceous running waters of Central German Upland, LAWA-types 5, 5.1, 5.2 and 9 as well as 11 in Central German Upland

Phytobenthos PB 3

Diatoms

D 5 Running Waters of

Variegated Sandstone and Bedrock with Catchment ≤ 100 km2

D 6 Running Waters of Volcanic Areas with

Catchment ≤ 100 km2

D 7 Running Waters of

Variegated Sandstone and Bedrock with

Catchment > 100 km2 und ≤ 1000

km2

1 1,00 – 0,74 1,00 – 0,71 1,00 – 0,71

2 0,73 – 0,49 0,70 – 0,48 0,70 – 0,48

3 0,48 – 0,27 0,47 – 0,27 0,47 – 0,27

4 0,26 – 0,14 0,26 – 0,14 0,26 – 0,14

5 0,13 – 0,00 0,13 – 0,00 0,13 – 0,00

Table 77: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters in the German Central Upland, LAWA types 6 and 6_K and 9.1 in loess, keuper and chalkstone regions excl. lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions and 19 in the Central German Upland as well as type 7

Phytobenthos PB 4 PB 5

Diatoms

D 8. 1 und D 8.2 Running Waters of Loess and Keuper

Regions with Catchment ≤ 1000

km2

D 9.1 Running Waters of calcareous regions with Catchment ≤

100 km2

1 1,00 – 0,72 1,00 – 0,80

2 0,71 – 0,56 0,79 – 0,55

3 0,55 – 0,40 0,54 – 0,32

4 0,39 – 0,13 0,31 – 0,14

5 0,12 – 0,00 0,13 – 0,00

Page 122: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

118

Table 78: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of Central German Upland, LAWA-types 9.1 in in lacustrine limestone, Jura, Upper Jura, Lower Jura, dogger stone and other calcareous regions excl. loess, keuper and chalkstone regions, 9.2 and 10

Phytobenthos PB 6

Diatoms

D 9.2 Running Waters of Calcareous Regions with Catchment >

100 km2 and ≤ 1000 km2

D 10.1 Running Waters

with Catchment > 1000 km2 and ≤

10.000 km²

D 10.2 Running Waters

with Catchment > 10.000 km2

1 1,00 – 0,76 1,00 – 0,71 1,00 – 0,70

2 0,75 – 0,56 0,70 – 0,51 0,69 – 0,50

3 0,55 – 0,30 0,50 – 0,33 0,49 – 0,32

4 0,29 – 0,13 0,32 – 0,14 0,31 – 0,14

5 0,12 – 0,00 0,13 – 0,00 0,13 – 0,00

Page 123: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

119

Assessment with module macrophytes applicable by unreliable module diatoms and unreliable nodule phytobenthos without diatoms

Table 79: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms and unreliable module diatoms: Siliceous and calcareous running waters of Central German Upland

Macrophytes MRK MP MPG MRS

1 1,00 – 0,70 1,00 – 0,75 1,00 – 0,85 1,00 – 0,80

2 0,69 – 0,50 0,74 – 0,35 0,84 – 0,50 0,79 – 0,55

3 0,49 – 0,25 0,34 – 0,10 0,49 – 0,25 0,54 – 0,30

4 0,24 – 0,03 0,09 – 0,01 0,24 – 0,03 0,29 – 0,05

5 0,02 – 0,00 0,00 0,02 – 0,00 0,04 – 0,00

Assessment with module diatoms applicable by unreliable module macrophytes and unreliable modula diatoms

Table 80: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Siliceous running waters of Central German Upland

Diatoms

D 5 Running Waters of

Variegated Sandstone and Bedrock with Catchment ≤ 100 km2

D 6 Running Waters of Volcanic Areas with Catchment ≤ 100

km2

D 7 Running Waters of

Variegates Sandstrone and Bedrock with Catchment

> 100 km2 und ≤ 1000 km2

1 1,00 – 0,67 1,00 – 0,61 1,00 – 0,61

2 0,66 – 0,43 0,60 – 0,40 0,60 – 0,40

3 0,42 – 0,24 0,39 – 0,24 0,39 – 0,24

4 0,23 – 0,08 0,23 – 0,08 0,23 – 0,08

5 0,07 – 0,00 0,07 – 0,00 0,07 – 0,00

Table 81: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Calcareous running waters of Central German Upland with catchment area ≤ 1.000km²

Diatoms

D 8.1 und D 8.2 Runnning Waters of Loess and Keuper

Regions with Catchment ≤ 1000

km2

D 9.1 Running Waters of Calcareous Regions with Catchment ≤

100 km2

D 9.2 Running Waters of Calcareous Regions with Catchment >

100 km2 and ≤ 1000 km2

1 1,00 – 0,56 1,00 – 0,80 1,00 – 0,71

2 0,55 – 0,39 0,79 – 0,55 0,70 – 0,51

3 0,38 – 0,24 0,54 – 0,23 0,50 – 0,20

4 0,23 – 0,08 0,22 – 0,08 0,19 – 0,06

5 0,07 – 0,00 0,07 – 0,00 0,05 – 0,00

Page 124: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

120

Table 82: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Calcareous running waters of Central German Upland with catchment > 1.000km²

Diatoms

D 10.1 Running Waters of Calcareous Regions with Catchment > 1000 km2 and ≤

10.000 km2

D 10.2 Running Waters with Catchment > 10.000 km2

1 1,00 – 0,61 1,00 – 0,60

2 0,60 – 0,42 0,59 – 0,40

3 0,41 – 0,25 0,39 – 0,24

4 0,24 – 0,08 0,23 – 0,08

5 0,07 – 0,00 0,07 – 0,00

Assessment with module phytobenthos without diatoms applicable by unreliable module macrophytes and unreliable module diatoms

Table 83: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module diatoms: Any running waters of Central German Upland

Phytobenthos PB 3 PB 4 PB 5 PB 6

1 1,00 – 0,80 1,00 – 0,87 1,00 – 0,80 1,00 – 0,80

2 0,79 – 0,55 0,86 – 0,73 0,79 – 0,55 0,79 – 0,60

3 0,54 – 0,30 0,72 – 0,56 0,54 – 0,40 0,59 – 0,40

4 0,29 – 0,20 0,55 – 0,17 0,39 – 0,20 0,39 – 0,20

5 0,19 – 0,00 0,16 – 0,00 0,19 – 0,00 0,19 – 0,00

Page 125: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

121

4.4.2.4 North German Lowland

Assessment with modules macrophytes, diatoms and phytobenthos without diatoms

Table 84: Index limits for assignment of ecological status class: Siliceous or organic running waters of North German Lowland with catchment are ≤ 1000 km², LAWA-types 11 and 12 in ecoregion North German Lowland as well as 14 and 16, all base-poor or siliceoua types

Phytobenthos PB 9

Diatoms D 11.1 and D 11.2 Siliceous Runnung Waters with Catchment ≤ 1000 km2

Macrophytes TRk TRm TRg TNk TNm TNg

1 1,00 – 0,73 1,00 – 0,70 1,00 – 0,66 1,00 – 0,69 1,00 – 0,67 1,00 – 0,68

2 0,72 – 0,52 0,69 – 0,49 0,65 – 0,45 0,68 – 0,52 0,66 – 0,49 0,67 – 0,47

3 0,51 – 0,30 0,48 – 0,27 0,44 – 0,24 0,51 – 0,30 0,48 – 0,29 0,46 – 0,25

4 0,29 – 0,12 0,26 – 0,11 0,23 – 0,11 0,29 – 0,13 0,28 – 0,12 0,24 – 0,11

5 0,11 – 0,00 0,10 – 0,00 0,10 – 0,00 0,12 – 0,00 0,11 – 0,00 0,10 – 0,00

Table 85: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area ≤ 1000 km², LAWA-types 11 with base-rich character, 12 with base-rich character, 14 with calcareous character, 15, excl. loess regeion and catchment ≤ 1.000km² as well as 19 in ecoregion North German Lowland

Phytobenthos PB 10

Diatoms D 12.1 and D 12.2 Calcareous Running Waters with Catchment ≤ 1000 km2

Macrophytes TRk TRm TRg TNk TNm TNg

1 1,00 – 0,70 1,00 – 0,67 1,00 – 0,64 1,00 – 0,66 1,00 – 0,65 1,00 – 0,65

2 0,69 – 0,51 0,66 – 0,48 0,63 – 0,44 0,65 – 0,51 0,64 – 0,48 0,64 – 0,46

3 0,50 – 0,30 0,47 – 0,26 0,43 – 0,23 0,50 – 0,30 0,47 – 0,28 0,45 – 0,25

4 0,29 – 0,12 0,25 – 0,11 0,22 – 0,11 0,29 – 0,13 0,27 – 0,12 0,24 – 0,11

5 0,11 – 0,00 0,10 – 0,00 0,10 – 0,00 0,12 – 0,00 0,11 – 0,00 0,10 – 0,00

Table 86: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area > 1000 km², LAWA-type 15 with catchment area > 1.000km² (i.e. 15_g), excl. loess region and 12 with catchment > 1.000 km²

Phytobenthos PB 10

Diatoms D 13.1 Running Waters with Catchment > 1000 km2

Macrophytes TRg TRm TRg TNk TNm TNg

1 1,00 – 0,76 1,00 – 0,73 1,00 – 0,69 1,00 – 0,72 1,00 – 0,70 1,00 – 0,71

2 0,75 – 0,57 0,72 – 0,54 0,68 – 0,50 0,71 – 0,57 0,69 – 0,54 0,70 – 0,52

3 0,56 – 0,37 0,53 – 0,33 0,49 – 0,30 0,56 – 0,37 0,53 – 0,35 0,51 – 0,32

4 0,36 – 0,14 0,32 – 0,13 0,29 – 0,13 0,36 – 0,15 0,34 – 0,14 0,31 – 0,13

5 0,13 – 0,00 0,12 – 0,00 0,12 – 0,00 0,14 – 0,00 0,13 – 0,00 0,12 – 0,00

Page 126: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

122

Table 87: Index limits for assignment of ecological status class: Running waters of North German Lowland in loess regions, LAWA-type 18 and 15, only lows regions

Phytobenthos PB 10

Diatoms D 8.1

Macrophytes TRg TRm TRg TNk TNm TNg

1 1,00 – 0,69 1,00 – 0,65 1,00 – 0,62 1,00 – 0,65 1,00 – 0,63 1,00 – 0,64

2 0,68 – 0,50 0,64 – 0,46 0,61 – 0,43 0,64 – 0,50 0,62 – 0,46 0,63 – 0,45

3 0,49 – 0,30 0,45 – 0,26 0,42 – 0,23 0,49 – 0,30 0,45 – 0,28 0,44 – 0,25

4 0,29 – 0,12 0,25 – 0,11 0,22 – 0,11 0,29 – 0,13 0,27 – 0,12 0,24 – 0,11

5 0,11 – 0,00 0,10 – 0,00 0,10 – 0,00 0,12 – 0,00 0,11 – 0,00 0,10 – 0,00

Table 88: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area ≤ 1000 km², LAWA-type 16, calcareous character as well as 17 with catchment ≤ 1.000km²

Phytobenthos PB 11

Diatoms D 12.1 und 12.2 Calcareous Running Waters with Catchment ≤ 1000 km2

Macrophytes TRg TRm TRg TNk TNm TNg

1 1,00 – 0,70 1,00 – 0,67 1,00 – 0,64 1,00 – 0,66 1,00 – 0,65 1,00 – 0,65

2 0,69 – 0,51 0,66 – 0,48 0,63 – 0,44 0,65 – 0,51 0,64 – 0,48 0,64 – 0,46

3 0,50 – 0,30 0,47 – 0,26 0,43 – 0,23 0,50 – 0,30 0,47 – 0,28 0,45 – 0,25

4 0,29 – 0,12 0,25 – 0,11 0,22 – 0,11 0,29 – 0,13 0,27 – 0,12 0,24 – 0,11

5 0,11 – 0,00 0,10 – 0,00 0,10 – 0,00 0,12 – 0,00 0,11 – 0,00– 0,10 – 0,00

Table 89: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area > 1000 km², LAWA-type 17 with catchment area > 1.000km²

Phytobenthos PB 11

Diatoms D 13.1 Running Wates with Catchment > 1000 km2

Macrophytes TRg TRm TRg TNk TNm TNg

1 1,00 – 0,76 1,00 – 0,73 1,00 – 0,69 1,00 – 0,72 1,00 – 0,70 1,00 – 0,71

2 0,75 – 0,57 0,72 – 0,54 0,68 – 0,50 0,71 – 0,57 0,69 – 0,54 0,70 – 0,52

3 0,56 – 0,37 0,53 – 0,33 0,49 – 0,30 0,56 – 0,37 0,53 – 0,35 0,51 – 0,32

4 0,36 – 0,14 0,32 – 0,13 0,29 – 0,13 0,36 – 0,15 0,34 – 0,14 0,31 – 0,13

5 0,13 – 0,00 0,12 – 0,00 0,12 – 0,00 0,14 – 0,00 0,13 – 0,00 0,12 – 0,00

Page 127: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

123

Table 90: Index limits for assignment of ecological status class: Calcareous running waters of North German Lowland with catchment area > 10.000 km², LAWA-type 20

Phytobenthos PB 12

Diatoms D 13.2 Running Waters with Catchment > 10.000 km2

Macrophytes TRg TRm TRg TNk TNm TNg

1 1,00 – 0,76 1,00 – 0,73 1,00 – 0,69 1,00 – 0,72 1,00 – 0,70 1,00 – 0,71

2 0,75 – 0,57 0,72 – 0,54 0,68 – 0,50 0,71 – 0,57 0,69 – 0,54 0,70 – 0,52

3 0,56 – 0,37 0,53 – 0,33 0,49 – 0,30 0,56 – 0,37 0,53 – 0,35 0,51 – 0,32

4 0,36 – 0,14 0,32 – 0,13 0,29 – 0,13 0,36 – 0,15 0,34 – 0,14 0,31 – 0,13

5 0,13 – 0,00 0,12 – 0,00 0,12 – 0,00 0,14 – 0,00 0,13 – 0,00 0,12 – 0,00

Assessment with modules macrophytes and diatoms applicable by unreliable module phytobenthos without diatoms

Table 91: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Siliceous or orgnis running waters of North German Lowland with catchment area ≤ 1000 km², LAWA-types 11 and 12 in the ecoregion North German Lowland as well as 14 and 16, all types with base-poor or siliceous character

Diatoms D 11.1 and D 11.2 Siliceous Running Waters with Catchment ≤ 1000 km2

Macrophytes TRk TRm TRg TNk TNm TNg

1 1,00 – 0,72 1,00 – 0,67 1,00 – 0,62 1,00 – 0,66 1,00 – 0,64 1,00 – 0,65

2 0,71 – 0,48 0,66 – 0,43 0,61 – 0,38 0,65 – 0,48 0,63 – 0,43 0,64 – 0,41

3 0,47 – 0,26 0,42 – 0,21 0,37 – 0,16 0,47 – 0,26 0,42 – 0,23 0,40 – 0,18

4 0,25 – 0,06 0,20 – 0,05 0,15 – 0,05 0,25 – 0,07 0,22 – 0,06 0,17 – 0,05

5 0,05 – 0,00 0,04 – 0,00 0,04 – 0,00 0,06 – 0,00 0,05 – 0,00 0,04 – 0,00

Table 92: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Calcareous running waters of North German Lowland with catchment area < 1000 km², LAWA-types 11 with base-rich character, 12 with catchment ≤ 1.000km² and with base-rich character, 14 and 16, both with calcareous character, 15, excl. loess region and with catchment ≤ 1.000km², 17 with catchment ≤ 1.000km² and 19 in ecoregion North German Lowland

Diatoms D 12.1 and D 12.2 Calcareous Running Waters with Catchment ≤ 1000 km2

Macrophytes TRk TRm TRg TNk TNm TNg

1 1,00 – 0,68 1,00 – 0,63 1,00 – 0,58 1,00 – 0,62 1,00 – 0,60 1,00 – 0,61

2 0,67 – 0,47 0,62 – 0,42 0,57 – 0,37 0,61 – 0,47 0,59 – 0,42 0,60 – 0,39

3 0,46 – 0,25 0,41 – 0,20 0,36 – 0,15 0,46 – 0,25 0,41 – 0,22 0,38 – 0,17

4 0,24 – 0,06 0,19 – 0,05 0,14 – 0,05 0,24 – 0,07 0,21 – 0,06 0,16 – 0,05

5 0,05 – 0,00 0,04 – 0,00 0,04 – 0,00 0,06 – 0,00 0,05 – 0,00 0,04 – 0,00

Page 128: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

124

Table 93: Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of North German Lowland with catchment > 1000 km², LAWA-types 12, base-rich character and at the same time catchment area 1.000 km², 15 i.e.t 15_g), excl. loess regions and at the same time catchment area > 1.000 km², 17 with catchment area > 1.000km² and20 20

Diatoms D 13.1 and D 13.2 Running Waters with Catchment > 1000 km2

Macrophytes TRk TRm TRg TNk TNm TNg

1 1,00 – 0,77 1,00 – 0,72 1,00 – 0,67 1,00 – 0,71 1,00 – 0,68 1,00 – 0,69

2 0,76 – 0,56 0,71 – 0,51 0,66 – 0,46 0,70 – 0,56 0,67 – 0,51 0,68 – 0,48

3 0,55 – 0,35 0,50 – 0,30 0,45 – 0,25 0,55 – 0,35 0,50 – 0,33 0,47 – 0,28

4 0,34 – 0,09 0,29 – 0,08 0,24 – 0,08 0,34 – 0,10 0,32 – 0,09 0,27 – 0,08

5 0,08 – 0,00 0,07 – 0,00 0,07 – 0,00 0,09 – 0,00 0,08 – 0,00 0,07 – 0,00

Table 94 Index limits for assignment of ecological status class applicable by unreliable module phytobenthos without diatoms: Running waters of North German Lowland in loess regions, LAWA-types 15, only loess regions and 18

Diatoms D 8.1

Macrophytes TRk TRm TRg TNk TNm TNg

1 1,00 – 0,66 1,00 – 0,61 1,00 – 0,56 1,00 – 0,60 1,00 – 0,57 1,00 – 0,58

2 0,65 – 0,45 0,60 – 0,40 0,55 – 0,35 0,59 – 0,45 0,56 – 0,40 0,57 – 0,37

3 0,44 – 0,25 0,39 – 0,20 0,34 – 0,15 0,44 – 0,25 0,39 – 0,22 0,36 – 0,17

4 0,24 – 0,06 0,19 – 0,05 0,14 – 0,05 0,24 – 0,07 0,21 – 0,06 0,16 – 0,05

5 0,05 – 0,00 0,04 – 0,00 0,04 – 0,00 0,06 – 0,00 0,05 – 0,00 0,04 – 0,00

Assessment with modules macrophytes and phytobenthos without diatoms applicable by unreliable module diatoms

Table 95: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Siliceous or orgnic running waters of North German Lowland, LAWA-types 11, 12, 14 and 16 with base-poor or siliceous character

Phytobenthos PB 9

Macrophytes TRk TRm TRg TNk TNm TNg

1 1,00 – 0,75 1,00 – 0,70 1,00 – 0,65 1,00 – 0,69 1,00 – 0,67 1,00 – 0,68

2 0,74 – 0,55 0,69 – 0,50 0,64 – 0,45 0,68 – 0,55 0,66 – 0,50 0,67 – 0,48

3 0,54 – 0,33 0,49 – 0,28 0,44 – 0,23 0,54 – 0,33 0,49 – 0,30 0,47 – 0,25

4 0,32 – 0,14 0,27 – 0,13 0,22 – 0,13 0,32 – 0,15 0,29 – 0,14 0,24 – 0,13

5 0,13 – 0,00 0,12 – 0,00 0,12 – 0,00 0,14 – 0,00 0,13 – 0,00 0,12 – 0,00

Page 129: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

125

Table 96 Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of North German Lowland, LAWA-types 11, 12, 14 with base-rich or calcareous character, 15, 18, and 19 in North German Lowland

Phytobenthos PB 10

Macrophytes TRk TRm TRg TNk TN TNg

1 1,00 – 0,75 1,00 – 0,70 1,00 – 0,65 1,00 – 0,69 1,00 – 0,67 1,0 – 0,68

2 0,74 – 0,55 0,69 – 0,50 0,64 – 0,45 0,68 – 0,55 0,66 – 0,50 0,67 – 0,48

3 0,54 – 0,33 0,49 – 0,28 0,44 – 0,23 0,54 – 0,33 0,49 – 0,30 0,47 – 0,25

4 0,32 – 0,14 0,27 – 0,13 0,22 – 0,13 0,32 – 0,15 0,29 – 0,14 0,24 – 0,13

5 0,13 – 0,00 0,12 – 0,00 0,12 – 0,00 0,14 – 0,00 0,13 – 0,00 0,12 – 0,00

Table 97: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of North German Lowland, LAWA-types 16, with calcareous character and 17

Phytobenthos PB 11

Macrophytes TRk TRm TRg TNk TN TNg

1 1,00 – 0,75 1,00 – 0,70 1,00 – 0,65 1,00 – 0,69 1,00 – 0,67 1,00 – 0,68

2 0,74 – 0,55 0,69 – 0,50 0,64 – 0,45 0,68 – 0,55 0,66 – 0,50 0,67 – 0,48

3 0,54 – 0,33 0,49 – 0,28 0,44 – 0,23 0,54 – 0,33 0,49 – 0,30 0,47 – 0,25

4 0,32 – 0,14 0,27 – 0,13 0,22 – 0,13 0,32 – 0,15 0,29 – 0,14 0,24 – 0,13

5 0,13 – 0,00 0,12 – 0,00 0,12 – 0,00 0,14 – 0,00 0,13 – 0,00 0,12 – 0,00

Table 98: Index limits for assignment of ecological status class applicable by unreliable module diatoms: Calcareous running waters of North German Lowland, LAWA-type 20

Phytobenthos PB 12

Macrophytes TRk TRm TRg TNk TN TNg

1 1,00 – 0,75 1,00 – 0,70 1,00 – 0,65 1,00 – 0,69 1,00 – 0,67 1,00 – 0,68

2 0,74 – 0,55 0,69 – 0,50 0,64 – 0,45 0,68 – 0,55 0,66 – 0,50 0,67 – 0,48

3 0,54 – 0,33 0,49 – 0,28 0,44 – 0,23 0,54 – 0,33 0,49 – 0,30 0,47 – 0,25

4 0,32 – 0,14 0,27 – 0,13 0,22 – 0,13 0,32 – 0,15 0,29 – 0,14 0,24 – 0,13

5 0,13 – 0,00 0,12 – 0,00 0,12 – 0,00 0,14 – 0,00 0,13 – 0,00 0,12 – 0,00

Page 130: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

126

Assessment with modules diatoms and phytobenthos without diatoms applicable by unreliable module macrophytes

Table 99: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Siliceous or organic running waters of North German Lowland with catchment area ≤ 1000 km², LAWA-types 11 and 12 in ecoregion North German Lowland and 14 and 16, all types with base-poor or silisceous character

Phytobenthos PB 9

Diatoms D 11.1 and D 11.2

Siliceous Running Waters with Catchment ≤ 1000 km2

1 1,00 – 0,72

2 0,71 – 0,53

3 0,52 – 0,33

4 0,32 – 0,17

5 0,16 – 0,00

Table 100: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland, LAWA-types 11 with base-rich character, 12 with catchment area ≤ 1.000km² and base-rich character, 14 with calcareous character, 15, excl. loess region and a catchment ≤ 1.000km² and 19 in ecoregion North German Lowland

Phytobenthos PB 10

Diatoms D 12.1 and D 12.2

Calcareous Running Waters with Catchment ≤ 1000 km2

1 1,00 – 0,68

2 0,67 – 0,52

3 0,51 – 0,32

4 0,31 – 0,17

5 0,16 – 0,00

Table 101 Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland with catchment area > 1000 km², LAWA-type 15 with catchment area > 1.000km² (i.e. 15_g), excl. loess regions and 12 with catchment > 1.000 km²

Phytobenthos PB 10

Diatoms D 13.1

Running Waters with Catchment > 1000 km2

1 1,00 – 0,77

2 0,76 – 0,61

3 0,60 – 0,43

4 0,42 – 0,20

5 0,19 – 0,00

Page 131: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

127

Table 102: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland, LAWA-type 18 and 15, only loess regions

Phytobenthos PB 10

Diatoms D 8.1

1 1,00 – 0,66

2 0,65 – 0,50

3 0,49 – 0,32

4 0,31 – 0,17

5 0,16 – 0,00

Table 103: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running water of North German Lowland, LAWA-types 16 with calcareous character, and 17 with catchment area ≤ 1.000km²

Phytobenthos PB 11

Diatoms D 12.1 and D 12.2

Calcareous Running Waters with Catchment ≤ 1000 km2

1 1,00 – 0,68

2 0,67 – 0,52

3 0,51 – 0,32

4 0,31 – 0,17

5 0,16 – 0,00

Table 104: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland, LAWA-type 17 with catchment > 1.000km²

Phytobenthos PB 11

Diatoms D 13.1

Running Waters with Catchment > 1000 km2

1 1,00 – 0,77

2 0,76 – 0,61

3 0,60 – 0,43

4 0,42 – 0,20

5 0,19 – 0,00

Table 105: Index limits for assignment of ecological status class applicable by unreliable module macrophytes: Calcareous running waters of North German Lowland, LAWA-type 20

Phytobenthos PB 12

Diatoms D 13.2

Running Waters with Catchment > 10.000 km2

1 1,00 – 0,77

2 0,76 – 0,61

3 0,60 – 0,43

4 0,42 – 0,20

5 0,19 – 0,00

Page 132: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

128

Assessment with module macrophytes applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms

Table 106: Index limits for assignment of ecological status class applicable by unreliable module diatoms and unreliable module phytobenthos without diatoms: Running Waters of North German Lowlands

Macrophytes TRk TRm TRg TNk TNm TNg

1 1,00 – 0,75 1,00 – 0,65 1,00 – 0,55 1,00 – 0,63 1,00 – 0,58 1,00 – 0,60

2 0,74 – 0,50 0,64 – 0,40 0,54 – 0,30 0,62 – 0,50 0,57 – 0,40 0,59 – 0,35

3 0,49 – 0,25 0,39 – 0,15 0,29 – 0,05 0,49 – 0,25 0,39 – 0,20 0,34 – 0,10

4 0,24 – 0,03 0,14 – 0,01 0,04 – 0,01 0,24 – 0,05 0,19 – 0,03 0,09 – 0,01

5 0,02 – 0,00 0,00 0,00 0,04 – 0,00 0,02 – 0,00 0,00

Assessment with module diatoms applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms

Table 107: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module phytobenthos without diatoms: Siliceous or organic running waters of North German Lowland

Diatoms

D 8.1 D 11.1 and D 11.2Siliceous Running

Waters with Catchment ≤ 1000

km2

D 12.1 and D 12.2Calcareous Running

Waters with Catchment ≤ 1000

km2

D 13.1 and D 13.2Running Waters with Catchment

> 1000 km2

1 1,00 – 0,56 1,00 – 0,69 1,00 – 0,61 1,00 – 0,78

2 0,55 – 0,39 0,68 – 0,46 0,60 – 0,43 0,77 – 0,61

3 0,38 – 0,24 0,45 – 0,26 0,42 – 0,24 0,60 – 0,45

4 0,23 – 0,08 0,25 – 0,08 0,23 – 0,08 0,44 – 0,14

5 0,07 – 0,00 0,07 – 0,00 0,07 – 0,00 0,13 – 0,00

Assessment with module phytobenthos without diatoms applicable by unreliable module macrophytes and unreliable module diatoms

Table 108: Index limits for assignment of ecological status class applicable by unreliable module macrophytes and unreliable module diatoms: Siliceous or organic and calcareous running waters of North German Lowlands

Phytobenthos PB 9 PB 10 PB 11 PB 12

1 1,00 – 0,75 1,00 – 0,75 1,00 – 0,75 1,00 – 0,75

2 0,74 – 0,60 0,74 – 0,60 0,74 – 0,60 0,74 – 0,60

3 0,59 – 0,40 0,59 – 0,40 0,59 – 0,40 0,59 – 0,40

4 0,39 – 0,25 0,39 – 0,25 0,39 – 0,25 0,39 – 0,25

5 0,24 – 0,00 0,24 – 0,00 0,24 – 0,00 0,24 – 0,00

Page 133: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

129

4.4.2.5 Combination of Results with Additional Criteria

After determination of the ecological status class by calculation of the relevant indices the assessment procedure for the subcomponent diatoms provides two metrics for indication of special pressures. The results of these metrics are incorporated in the assessment of the biocomponent macrophytes and phytobenthos. As these are kinds of pressures which are not indicated as well by all organism groups but influence the entire ecosystem, they are integrated at the end in the overall results.

If the modules “acidification” or “salinisation” are relevant, the ecological status class is reduced according to Table 27 and/or Table 29. Due to the serious ecological relevance of this adverse effect, this reduction of the ecological status class is not carried out until after combination of the three subcomponents macrophytes, diatoms and phytobenthos without diatoms to the ecological status class. This procedure is in accordance with the requirements of ECOSTAT (2003).

4.5 Remarks to the Interpretation of Assessment Results The procedure PHYLIB allows through its structure besides the assessment of the biocomponent macrophytes and phytobenthos according to EG-WFD also the investigation of individual results from sampling sites, from subcomponents or single modules. Such a procedure serves the interpretation of the overall assessment. The following assessment results can be determined: • Biocomponent macrophytes and phytobenthos (M&P) • Subcomponent macrophytes • Subcomponent diatoms • Subcomponent diatoms, module trophic index • Subcomponent diatoms, module sum of reference taxa • Subcomponent phytobenthos without diatoms (PoD)

Because the subcomponents show differences in morphology and physiology as well as spatial and temporal phenology and the different modules and metrics have differing assessment goals, it is possible that there are larger discrepancies between these individual informations. In most cases these discrepancies are not implausible.

For interpretation of the assessment results and as aid for maybe necessary planning of remediation measures, short documents were written explaining the assessment procedure for each individual water body type and also for the most important assessment modules incl. their explanatory power and ecological relevance. These documents can be found in SCHAUMBURG et al. (2012) Chapter 7.2.

Page 134: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

130

Page 135: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

131

5 Literature

BANNING, M. (1990): Der Rheo-Index – eine Möglichkeit zur Berechnung der Auswirkungen des Flußstaus auf die benthische Lebensgemeinschaft. Erweiterte Zusammenfassung der Jahres-tagung der DGL: 186–190

BAYERISCHES LANDESAMT FÜR WASSERWIRTSCHAFT (1995): Kartier- und Bewertungsverfahren Gewässerstruktur. Erläuterungsbericht, Kartier- und Bewertungsanleitung, 77 S.

BERTSCH, K. (1959): Moosflora von Südwestdeutschland. 3. Auflage, Verlag Eugen Ulmer, Stutt-gart, 234 S.

BRIEM, E. (2003): Gewässerlandschaften der Bundesrepublik Deutschland. ATV-DVWK Arbeits-bericht, Hennef

CORING, E. (1999): Säuregrad. Indikation mit Hilfe von Diatomeen. – In: TÜMPLING, W. VON, FRIEDRICH, G. (Hrsg.): Biologische Gewässeruntersuchung. Methoden der biologischen Gewässeruntersuchung 2: 298–305

HILDEBRAND, A. (1991): Assoziationen von Bodendiatomeen pflanzensoziologisch charakterisierter Standorte. Diplomarbeit J. W. Goethe-Universität Frankfurt am Main, 143 S.

HOFMANN, G., WERUM, M., LANGE-BERTALOT, H. (2011): Diatomeen im Süßwasser-Benthos von Mitteleuropa. Ganter Verlag, Rugell.

KELLY, M.G., CAZAUBON, A., CORING, E., DELL’UOMO, A., ECTOR, L., GOLDSMITH, B., GUASCH, H., HÜRLIMANN, J., JARLMAN, A., KAWECKA, B., KWANDRANS, J., LAUGASTE, R., LINDSTRÖM, E.-A., LEITAO, M., MARVAN, P., PADISÁK, J., PIPP, E., PRYGIEL, J., ROTT, E., SABATER, S., DAM, H. VAN, VIZINET, J. (1998): Recommendations for the routine sampling of diatoms for water quality assessments in Europe. Journal of Applied Phycology 10: 215–224

KOHLER, A. (1978): Methoden der Kartierung von Flora und Vegetation von Süßwasserbiotopen. Landschaft + Stadt 10/2: 73–85

KRAMMER, K., LANGE-BERTALOT, H. (1986–1991, 2004): Süßwasserflora von Mitteleuropa, Bacillariophyceae. 2/1: Naviculaceae, 876 S.; 2/2: Bacillariaceae, Epithemiaceae, Suri-rellaceae, 596 S.; 2/3: Centrales, Fragilariaceae, Eunotiaceae, 576 S.; 2/4: Achnanthaceae, 437 S.; Stuttgart, Fischer

LÄNDERARBEITSGEMEINSCHAFT WASSER (2000): Gewässerstrukturgütekartierung in der Bundesrepublik Deutschland, Verfahren für kleine und mittelgroße Fließgewässer, Empfehlung, 164 S.

Page 136: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

132

LANUV NRW (2009): Benthische Algen ohne Bacillariophyceen und Characeeen – Feldführer, 2. aktualisierte Neuauflage; Bearbeiter A. Gutowski & J. Foerster. LANUV, Arbeitsblattblatt 2, 90 S. HTTP://WWW.LANUV.NRW.DE/VEROEFFENTLICHUNGEN/ARBEITSBLATT/ARBLA2/ARBLA2.PDF

MAUCH, E., SCHMEDTJE, U., MAETZE, A. & FISCHER, F. (2003): Taxaliste der Gewässerorganis-men Deutschlands zur Kodierung biologischer Befunde. - Informationsberichte Bayer. Lan-desamt für Wasserwirtschaft 1/03: 1-388 + CD-ROM. Stand April (2006): http://www.bayern.de/LFW/technik/qkd/lmn/fliessgewaesser seen/taxa/taxa inet.xls

MISCHKE, U. (2005): Entwicklung eines Bewertungsverfahrens für Fließgewässer mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie. Überarbeiteter Endbericht zum LAWA-Projekt O 6.03, 99 S.

POTT, R., REMY, D. (2000): Gewässer des Binnenlandes. Ökosysteme Mitteleuropas aus geo-botanischer Sicht. Ulmer, Stuttgart, 255 S.

POTTGIEßER, T. & SOMMERHÄUSER, M. (2008): Erste Überarbeitung der Steckbriefe der deutschen Fließgewässertypen, mit folgendem link: wasserblick, Öffentliches Forum, LAWA-Info, Materialien, Fliessgewässertypen

POTTGIEßER, T. (2008): Anhang der Steckbriefe der deutschen Fließgewässertypen - Bewertungsverfahren und Klassengrenzen (A 1.1) mit folgendem link: wasserblick, Öffentliches Forum, LAWA-Info, Materialien, Fliessgewässertypen

ROTT, E., HOFMANN, G., PALL, K., PFISTER, P., PIPP, E. (1997): Indikationslisten für Aufwuchsalgen. Teil 1: Saprobielle Indikation. Bundesministerium für Land- und Forstwirtschaft, Wien, 73 S.

ROTT, E., PFISTER, P., VAN DAM, H., PIPP, E., PALL, K., BINDER, N., ORTLER, K. (1999): Indikationslisten für Aufwuchsalgen in österreichischen Fließgewässern, Teil 2: Trophieindikation sowie geochemische Präferenz, taxonomische und toxikologische Anmerkungen. Bundesministerium für Land- und Forstwirtschaft, Wien, 248 S.

SCHACHTSCHABEL, P., BLUME, H.-P., BRÜMMER, G., HARTGE, K.-H., SCHWERTMANN, U., FISCHER, W.R., RENGER, M., STREBEL, O. (1992): Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart, 491 S.

SCHAUMBURG, J., SCHMEDTJE, U., SCHRANZ, C., KÖPF, B., SCHNEIDER, S., MEILINGER, P., STELZER, D., HOFMANN, G., GUTOWSKI, A. UND FOERSTER, J. (2004): Erarbeitung eines ökologischen Bewertungsverfahrens für Fließgewässer und Seen im Teilbereich Makrophyten und Phyto-benthos zur Umsetzung der EU-Wasserrahmenrichtlinie. – Bayerisches Landesamt für Wasserwirtschaft, Abschlussbericht an das Bundesministerium für Bildung und Forschung (FKZ 0330033) und die Länderarbeitsgemeinschaft Wasser (Projekt Nr. O 11.03), München: 635 S. http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm

Page 137: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

133

SCHAUMBURG, J., SCHMEDTJE, U., SCHRANZ, C., KÖPF, B., SCHNEIDER, S., MEILINGER, P., STELZER, D., HOFMANN, G., GUTOWSKI, A., FOERSTER, J. (2005): Bewertungsverfahren Makrophyten & Phytobenthos, Fließgewässer- und Seenbewertung in Deutschland nach EG-WRRL. – Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft, Heft 1/05: 245 S., München.

SCHAUMBURG, J., SCHRANZ, C., STELZER, D. (2011): Bewertung von Seen mit Makrophyten & Phytobenthos gemäß EG-WRRL – Anpassung des Verfahrens für natürliche und künstliche Gewässer sowie Unterstützung der Interkalibrierung. Bayerisches Landesamt für Umwelt, Endbericht im Auftrag der LAWA .(Projekt Nr. O 10.09), 161 S, Augsburg/Wielenbach.

SCHAUMBURG, J., SCHRANZ, C., STELZER, D., HOFMANN, G., GUTOWSKI, A ., FOERSTER, J. (2007): Vorbereitung des nationalen Bewertungsverfahrens für Makrophyten & Phytobenthos zur Interkalibrierung sowie Fachliche Unterstützung beim Interkalibrierungsprozess Bayerisches Landesamt für Umwelt, Endbericht im Auftrag der Universität Duisburg - Essen, 192 S, Augsburg/Wielenbach.

SCHAUMBURG, J., SCHRANZ, C., STELZER, D., HOFMANN, G., GUTOWSKI, A. & FOERSTER, J. (2005): Bundesweiter Test: Bewertungsverfahren „Makrophyten & Phytobenthos“ in Fließgewässern zur Umsetzung der WRRL. Endbericht im Auftrag der LAWA (Projekt-Nr. O 2.04): 230 S. http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm

SCHAUMBURG, J., SCHRANZ, C., STELZER, D., VOGEL, A., GUTOWSKI, A. (2012): Weiterentwicklung biologischer Untersuchungsverfahren zur kohärenten Umsetzung der EG-Wasserrahmenrichtlinie. Teilvorhaben Makrophyten & Phytobenthos. Endbericht im Auftrag des UBA (FKZ 3707 28 201), 552 S., Augsburg/Wielenbach. http://www.lfu.bayern.de/wasser/gewaesserqualitaet_seen/phylib_deutsch/publikationen/index.htm

SCHWOERBEL, J. (1994): Methoden der Hydrobiologie. Gustav Fischer Verlag, Stuttgart, Jena, 368 S.

SHANNON, C.E., WEAVER, W. (1949): The mathematical theory of communication. Univ. Illinois Press, Urbana., 117 S.

WÖRLEIN, F. (1992): Pflanzen für Garten, Stadt und Landschaft. Taschenkatalog, Wörlein Baumschulen, Dießen.

ZIEMANN, H. (1971): DIE WIRKUNG DES SALZGEHALTES AUF DIE DIATOMEENFLORA ALS

GRUNDLAGE FÜR EINE BIOLOGISCHE ANALYSE UND KLASSIFIKATION DER

BINNENGEWÄSSER. LIMNOLOGICA 8 (2): 505–525

ZIEMANN, H. (1999): Bestimmung des Halobienindex. – In: Tümpling, W. von, Friedrich, G. (Hrsg.): Biologische Gewässeruntersuchung. Methoden der Biologischen Gewässerunter-suchung 2: 310–313

Page 138: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

134

Page 139: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

135

6 Identification Literature

Macrophytes

BERTSCH, K. (1959): Moosflora von Südwestdeutschland. 3. Auflage, Verlag Eugen Ulmer, Stutt-gart, 234 S.

BURCK, O. (1947): Die Laubmoose Mitteleuropas. – In: MERTENS, R. (Hrsg.): Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft. Verlag Dr. Waldemar Kramer, Frankfurt am Main. (Abhandlung 477): 1–210

CASPER, S.J., KRAUSCH, H.-D. (1980): Pteridophyta und Anthophyta. 1. Teil. – In: ETTL, H., GÄRTNER, G., HEYNIG, H. (Hrsg.): Süßwasserflora von Mitteleuropa, Bd. 23. Gustav Fischer Verlag, Stuttgart, New York, 403 S.

CASPER, S.J., KRAUSCH, H.-D. (1981): Pteridophyta und Anthophyta. 2. Teil. – In: ETTL, H., GÄRTNER, G., HEYNIG, H. (Hrsg.): Süßwasserflora von Mitteleuropa, Bd. 24. Gustav Fischer Verlag, Stuttgart, New York, 538 S.

DEMARET, F., CASTAGNE, E. (1964): Bryophytes. Volume II – Fascicule III. – In: ROBYNS, W. (Hrsg.): Flore Générale de Belgique, Brüssel

FRAHM, J.-P., FREY, W. (1992): Moosflora. 3., überarbeitete Auflage, Verlag Eugen Ulmer, Stuttgart, 528 S.

FREY, W., FRAHM, J.-P., FISCHER, E., LOBIN, W. (1995): DIE MOOS- UND FARNPFLANZEN

EUROPAS, 6. Aufl. – In: Gams, H. (Begr.): Kleine Kryptogamenflora. Gustav Fischer Verlag, Stuttgart, Jena, New York, 426 S.

KLAPP, E., OPITZ VON BOBERFELD, W. (1990): Taschenbuch der Gräser. 12. überarb. Auflage, Verlag Paul Parey, Berlin, Hamburg, 282 S.

KRAUSE, W. (1997): Charales (Charophyceae). – In: ETTL, H., GÄRTNER, G., HEYNIG, H., MOLLENHAUER, D. (Hrsg.): Süßwasserflora von Mitteleuropa, Bd. 18. Gustav Fischer Verlag, Jena, Stuttgart, Lübeck, Ulm, 202 S.

LANDWEHR, J. (1984): Nieuwe Atlas nederlandse Bladmossen. Thieme, Zutphen (NL), 568 S.

MÜLLER, K. (1957): Die Lebermoose. – In: RABENHORST, L. (Hrsg.): Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. VI: Band, 2. Abteilung, 3. Auflage

NEBEL, M., PHILIPPI, G. (Hrsg., 2001): Die Moose Baden-Württembergs. Band 2. In Zusammen-arbeit mit der Landesanstalt für Umweltschutz Baden-Württemberg. Ulmer Stuttgart (Hohenheim), 529 S.

Page 140: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

136

NEBEL, M.; PHILIPPI, G. [HRSG.] (2000): Die Moose Baden-Württembergs. Band 1. In Zusammenarbeit mit der Landesanstalt für Umweltschutz Baden-Württemberg. Ulmer Stuttgart (Hohenheim), 512 S.

NYHOLM, E. (1986): Illustrated flora of nordic mosses. Fasc. 1 Fissidentaceae – Seligeriaceae

NYHOLM, E. (1993): Illustrated flora of nordic mosses. Fasc. 3 Bryaceae – Rhodobryaceae – Mniaceae – Cinclidiaceae – Plagomniaceae. Nord. Bryol. Soc., Copenhagen und Lund

OBERDORFER, E. (1994): Pflanzensoziologische Exkursionsflora. 7. Auflage. Verlag Eugen Ulmer, Stuttgart, 1050 S.

PAUL, H., MÖNKEMEYER, W., SCHIFFNER, V. (1931): Bryophyta (Sphagnales – Bryales – Hepa-ticae). – In: PASCHER, A. (Hrsg.): Die Süsswasserflora Mitteleuropas. Bd. 22. Gustav Fischer Verlag, Jena, 252 S.

ROTHMALER, W. (1994a): Exkursionsflora von Deutschland. Bd. 3, Gefäßpflanzen: Atlasband. 9. durchges. und verb. Auflage, Gustav Fischer Verlag, Jena, Stuttgart, 753 S.

ROTHMALER, W. (1994b): Exkursionsflora von Deutschland. Bd. 4, Gefäßpflanzen: Kritischer Band. 8. Auflage, Gustav Fischer Verlag, Jena, Stuttgart, 811 S.

SCHMEIL, O., FITSCHEN, J., SEYBOLD, S. (2009): Flora von Deutschland und angrenzender Länder: Ein Buch zum Bestimmen der wild wachsenden und häufig kultivierten Gefäßpflanzen, Quelle & Meyer; Auflage: 94., unveränderte Auflage, 880 Seiten

SCHUSTER, R.M. (1980): The Hepaticae and Anthocerotae of North America. East of the Hunderedth Meridian. Vol. IV: Columbia University Press, New York

SMITH, A.J.E. (1992): The liverworts of Britain and Ireland. Cambridge University Press, Cam-bridge, New York, Port Chester, Melbourne, Sydney, 362 S.

WELCH, W.H. (1960): A Monograph of the Fontinalaceae. Martinius Nijhoff, Den Hag (NL), 357 S.

VAN DE WEYER, K., SCHMIDT, C., KREIMEIER, B., WASSONG, D. (2011): Bestimmungsschlüssel für die aquatischen Makrophyten (Gefäßpflanzen, Armleuchterlgen und Moose) in Deutschland. Band 1: Bestimmungsschlüssel und Band 2: Abbildungen. Fachbeiträge des LUGV, Heft 119 und Heft 120. LUGV Brandenburg, Potsdam.

Diatoms

HOFMANN, G., WERUM, M., LANGE-BERTALOT, H. (2011): Diatomeen im Süßwasser-Benthos von Mitteleuropa. Ganter Verlag, Rugell.

KRAMMER, K. (1997a): Die cymbelloiden Diatomeen, eine Monographie der weltweit bekannten Taxa, Teil 1. Bibliotheca Diatomologica, 36. J. Cramer Verlag, Berlin –Stuttgart.

Page 141: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

137

KRAMMER, K. (1997b): Die cymbelloiden Diatomeen, eine Monographie der weltweit bekannten Taxa, Teil 2. Bibliotheca Diatomologica, 37. J. Cramer Verlag, Berlin –Stuttgart.

KRAMMER, K. (2000): The genus Pinnularia. Diatoms of Europe 1, 703 S. Gantner Verlag, Rugell.

KRAMMER, K. (2002): Cymbella. Diatoms of Europe 3, 584. Gantner Verlag, Rugell.

KRAMMER, K. (2003): Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. Diatoms of Europe 4, 530 S. Gantner Verlag, Rugell.

KRAMMER, K., LANGE-BERTALOT, H. (1986–1991, 2004): Süßwasserflora von Mitteleuropa, Bacillariophyceae. 2/1: Naviculaceae, 876 S.; 2/2: Bacillariaceae, Epithemiaceae, Suri-rellaceae, 596 S.; 2/3: Centrales, Fragilariaceae, Eunotiaceae, 576 S.; 2/4: Achnanthaceae, 437 S.; Stuttgart, Fischer

LANGE-BERTALOT, H., METZELTIN, D. (1996): Oligotrophie-Indikatoren. 800 Taxa repräsentativ für drei diverse Seen-Typen. Iconographia Diatomologica 2: 1–390

LANGE-BERTALOT, H. (2001): Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato Frustulia. Diatoms of Europe 2, 526 S. Gantner Verlag, Rugell.

LANGE-BERTALOT, H., MOSER, G. (1994): Brachysira. Monographie der Gattung. Bibliotheca Diatomologica 29: 1–212

LANGE-BERTALOT, H. (1993): 85 Neue Taxa. Bibliotheca Diatomologica 27, 454 S.

LEVKOV, Z. (2009): Amphora sensu lato. Diatoms of Europe, 5, 916 S. Gantner Verlag, Rugell.

REICHARDT, E. (1999): Zur Revision der Gattung Gomphonema. Iconographia Diatomologica 8, 203 S. Ganter Verlag, Rugell.

WITKOWSKI, A. LANGE-BERTALOT, H., METZELTIN, M. (2000): Diatom flora of marine coasts1. Iconographia Diatomologica 7: 955 S. Ganter Verlag, Rugell.

Phytobenthos without Diatoms

ANAGNOSTIDIS, K. & KOMÁREK, J. (1988): Modern approach to the classification system of cyanophytes. 5 – Stigonematales. Arch. Hydrobiol./Algological Studies 59: 1-73.

BOURRELLY, P. (1968): Les Algues d’eau douce. Bd II : Les Algues jaunes et brunes. Soc. N. Boubée, Paris, 517 S.

BOURRELLY, P. (1970): Les Algues d’eau douce. Bd. III : Les Algues bleus et rouges. Les Eugléniens, Peridiniens et Cryptomonadines. Soc. N. Boubée, Paris, 606 S.

Page 142: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

138

BOURRELLY, P. (1972): Les Algues d’eau douce. Bd. I : Les Algues vertes. Soc. N. Boubée, Paris, 569 S.

ENTWISLE, T.J., SONNEMAN, J.A., LEWIS, S.H. (1997): Freshwater Algae in Australia. Sainty and Associates Pty Ltd., 242 S.

CHRISTENSEN, T.A. (1970): Seaweeds of the British Isles. Vol. 4 Tribophyceae (Xanthophyceae). British Museum (Natural History), 36 S.

COESEL, P. F. M (1994): De Desmidiaceeen van Nederland, Bd. 5: Fam. Desmidiaceae (3). wettenschappelijke mededelingen 210, Koninklijke Nederlandse Natuurhistorische Verening, Utrecht, 52 S.

COESEL, P. F. M (1997): De Desmidiaceeen van Nederland, Bd. 6: Fam. Desmidiaceae (4). wettenschappelijke mededelingen 220, Koninklijke Nederlandse Natuurhistorische Verening, Utrecht, 93 S.

COESEL, P. F. M. (1982): De Desmidiaceeen van Nederland, Bd. 1: Fam. Mesotaeniaceae, Gonatozygaceae, Peniaceae. wettenschappelijke mededelingen 153, Koninklijke Nederlandse Natuurhistorische Verening, Hoogwoud, 32 S.

COESEL, P. F. M. (1983): De Desmidiaceeen van Nederland, Bd. 2: Fam. Closteriaceae. wettenschappelijke mededelingen 157, Koninklijke Nederlandse Natuurhistorische Verening, Hoogwoud, 49 S.

COESEL, P. F. M. (1985): De Desmidiaceeen van Nederland, Bd. 3: Fam. Desmidiaceae (1). wettenschappelijke mededelingen 170, Koninklijke Nederlandse Natuurhistorische Verening, Hoogwoud, 70 S.

COESEL, P. F. M. (1991): De Desmidiaceeen van Nederland, Bd. 4: Fam. Desmidiaceae (2). wettenschappelijke mededelingen 153, Koninklijke Nederlandse Natuurhistorische Verening, Hoogwoud, 88 S.

COMPERE, P. (1991): Rhodophytes, In: Flore practique des algues d’eau douce de Belgique, Jardin Botanique National de Belgique, Meise, 55 S.

CROASDALE, H. & FLINT, E.A. (1986): Flora of New Zealand. Freshwater Algae, Chlorophyta, Desmids: with ecological comments on their habitats, Vol. 1., V.R. Ward, Govt. Printer, Wellington, 132 S.

CROASDALE, H. & FLINT, E.A. (1988): Flora of New Zealand. Freshwater Algae, Chlorophyta, Desmids: with ecological comments on their habitats, Vol. 2. Actinotaenium, Cosmarium, Cosmocladium, Spinocosmarium, Xanthidium, The Caxton Press, Christchurch, 147 S.

CROASDALE, H., FLINT, E.A. & Racine, M.M. (1994): Flora of New Zealand. Freshwater algae, Chlorophyta, Desmids: with ecological comments on their habitats, Vol. 3. Staurodesmus, Staurastrum and the Filamentous Desmids, Manaaki Whenua Press, Lincoln, 218 S.

Page 143: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

139

ELORANTA, P & KWANDRANS, J. (1996): Freshwater Rhodophyta. Identification key for common taxa, particularly taxa found in Finland, Department of Limnology and Environmental Protection/Limnology, University of Helsinki.

ETTL H. & GÄRTNER G. (1988): Chlorophyta II, In: ETTL, H., GERLOFF, J., HEYNIG, H., MOLLENHAUER, D. (Hrsg.): Süßwasserflora von Mitteleuropa Bd. 10. Fischer, Jena, 436 S.

ETTL, H. (1978): Xanthophyceae, 1. Teil, In: ETTL, H., GERLOFF, J., HEYNIG, H. (Hrsg.): Süßwasserflora von Mitteleuropa Bd. 3. Fischer, Stuttgart, 530 S.

ETTL, H. (1983): CHLOROPHYTA 1, Phytomonadina. – In: Ettl, H., Gerloff, J., Heyning, H., Mollenhauer, D. (Hrsg.): Süßwasserflora von Mitteleuropa Bd. 9. Fischer, Stuttgart, 807 S.

FÖRSTER , K. (1982): Conjugatophyceae Zygnematales und Desmidiales (excl. Zygnemataceae). In: HUBER-PESTALOZZI, G. (Hrsg.): Das Phytoplankton des Süßwassers. Die Binnengewässer Bd. XVI, 8. Teil, 1. Hälfte, Schweizerbart, Stuttgart, 543 S.

FOTT, B. (1972): Chlorophyceae (Grünalgen), Ordnung Tetrasporales. In: HUBER-PESTALOZZI, G. (Hrsg.): Das Phytoplankton des Süßwassers. Die Binnengewässer Bd. XVI, 6. Teil. Schweizerbart, Stuttgart, 116 S.

FOTT, B. (1968): Cryptophyceae, Chloromonadophyceae, Dinophyceae. – In: Huber-Pestalozzi, G. (Hrsg.): Das Phytoplankton des Süßwassers. Die Binnengewässer Bd. XVI, 3. Teil. Schweizerbart, Stuttgart, 322 S.

FRIEDRICH, G. (1966): Compsopogon hookeri MONTAGNE (Rhodophyceae, Bangioideae) neu für Deutschland. Nova Hedwigia 12: 399-403.

GEITLER, L. (1932): Cyanophyceae von Europa. Rabenhorst’s Krytogamenflora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig, 1196 S.

HUBER-PESTALOZZI, G. (1955): Euglenophyceae. In: HUBER-PESTALOZZI, G. (Hrsg.): Das Phytoplankton des Süßwassers. Die Binnengewässer Bd. XVI, 4. Teil. Schweizerbart, Stuttgart, 606 S.

HUBER-PESTALOZZI, G. (1961): Chlorophyceae (Grünalgen), Ordnung: Volvocales. – In: Huber-Pestalozzi, G. (Hrsg.): Das Phytoplankton des Süßwassers. Die Binnengewässer Bd. XVI, 5. Teil. Schweizerbart, Stuttgart, 744 S.

JOHN, D.M., WHITTON, B.A. & BROOK, A.J. (HRSG., 2002): The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestial algae. Cambridge University Press, Cambridge, United Kingdom, 702 S.

KADŁUBOWSKA, J.Z. (1984): Conjugatophyceae I, Chlorophyta VIII, Zygnematales. In: ETTL, H., GERLOFF, J., HEYNIG, H., MOLLENHAUER, D. (Hrsg.): Süßwasserflora von Mitteleuropa Bd. 16. Fischer, Stuttgart, 532 S.

Page 144: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

140

KANN, E. & KOMÁREK, J. (1970): Systematisch-ökologische Bemerkungen zu den Arten des Formenkreises Phormidium autumnale. Schweiz. Z. Hydrol. 32: 495-518.

KANN, E. (1978): Systematik und Ökologie der Algen österreichischer Bergbäche. Arch. Hydrobiol./Suppl. 53: 405-643.

KOMÁREK, J. (1999): Übersicht der planktischen Blaualgen (Cyanobakterien) im Einzugsgebiet der Elbe. Internationele Kommission zum Schutz der Elbe (Hrsg.), Magdeburg

KOMÁREK, J., ANAGNOSTIDIS, K. (1989): Modern approach to the classification system of cyanophytes 4 – Nostocales. Arch. Hydrobiol., Algological Studies 56: 247–345

KOMÁREK, J., ANAGNOSTIDIS, K. (1998): Cyanoprokaryota I. Chroococcales. – In: Ettl, H., Gärtner, G., Heynig, H., Mollenhauer, D. (Hrsg.) Süßwasserflora von Mitteleuropa Bd. 19. Fischer, Jena, 800 S.

KOMÁREK, J. & FOTT, B.. (1983): Chlorococcales. In: HUBER-PESTALOZZI, G. (Hrsg.): Das Phytoplankton des Süßwassers. Die Binnengewässer Bd. XVI, 7. Teil. Schweizerbart, Stuttgart, 1044 S.

KOMÁREK, J. & KANN, E. (1973): Zur Taxonomie und Ökologie der Gattung Homoeothrix. Arch. Protistenkd. 115: 173-233.

KOMÁREK, J. ANAGNOSTIDES K. (2005): Cyanoprokaryota. II. Oscillatoriales. In: BÜDEL. B., GÄRTNER, G., KRIENITZ, L. , SCHLAGERL, M. (Hrsg.): Süßwasserflora von Mitteleuropa. Bd. 19.2. Elsevier Verlag, München, 759 S.

KOMÁREK, J., KOVÁCIK, L. (1987): Revision of several species of the genus Homoeothrix (Cyanophyta). Preslia 59: 229–242

KRISTIANSEN, J. & PREISIG, H.R. (2001): Encyclopedia of Chrysophyte Genera. Bibliotheca Phycologica 110, J. Cramer, Stuttgart, 260 S.

KUMANO, S. (2002): Freshwater Red Algae of the World. Biopress, Bristol, 375 S.

KUSEL-FETZMANN, E. (2002): Die Euglenophytenflora des Neusiedler Sees (Burgenland, Österreich). Abhandlungen der Zoologisch-Botanischen Gesellschaft in Österreich, Bd. 32, 115 S.

LANUV NRW (2009): Benthische Algen ohne Bacillariophyceen und Characeeen – Feldführer, 2. aktualisierte Neuauflage; Bearbeiter A. Gutowski & J. Foerster. LANUV, Arbeitsblattblatt 2, 90 S. HTTP://WWW.LANUV.NRW.DE/VEROEFFENTLICHUNGEN/ARBEITSBLATT/ARBLA2/ARBLA2.PDF

LANUV NRW (2009): Benthische Algen ohne Bacillariophyceen und Characeeen – Bestimmungshilfe, Bearbeiter A. Gutowski & J. Foerster. LANUV, Arbeitsblattblatt 9, 474 S. HTTP://WWW.LANUV.NRW.DE/VEROEFFENTLICHUNGEN/ARBEITSBLATT/ARBLA9/SI-XIV.PDF

Page 145: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

141

LENZENWEGER, R. (1996): Desmidiaceenflora von Österreich, Teil 1. In: Cramer, J. (Hrsg.): Bibliotheca Phycologica 101, Stuttgart, 162 S.

LENZENWEGER, R. (1997): Desmidiaceenflora von Österreich, Teil 2. In: Cramer, J. (Hrsg.): Bibliotheca Phycologica 102, Stuttgart, 216 S.

LENZENWEGER, R. (1999): Desmidiaceenflora von Österreich, Teil 3. In: Cramer, J. (Hrsg.): Bibliotheca Phycologica 104, Stuttgart, 218 S.

LENZENWEGER, R. (2003): Desmidiaceenflora von Österreich, Teil 4. In: Cramer, J. (Hrsg.): Bibliotheca Phycologica 111, Stuttgart, 87 S.

LEUKART, P., KNAPPE, J. (1995): Observations on Balbiania investiens (Rhodophyta) from two new locations in Germany and from laboratory culture. Nova Hedwigia 60: 527–532

LINNE VON BERG, K.-H., HOEF-EMDEN, K., MARIN, B. & MELKONIAN, M. (2004): Der Kosmos-Algenführer. Die wichtigsten Süßwasseralgen im Mikroskop. Franckh-Kosmos Verlag, Stuttgart, 366 S.

LOKHORST, G.M. (1999): Taxonomic study of the genus Microspora Thuret (Chlorophyceae). An integrated field, culture and herbarium analysis. Arch. Hydrobiol./Algological Studies 93: 1-38.

MOLLENHAUER, D., BENGTSSON, R. & LINDSTRØM, E.-A. (1999): Macroscopic cyanobacteria of the genus Nostoc: a neglected and endangered constituent of European inland aquatic biodiversity. Eur. J. Phycol. 34: 349-360.

MROZIŃSKA, T. (1985): Oedogoniophyceae: Oedogoniales. In: ETTL, H., GÄRTNER, G., HEYNIG, H., MOLLENHAUER, D. (Hrsg.): Süßwasserflora von Mitteleuropa Bd. 14. Fischer, Jena, 624 S.

NECCHI, O. & ZUCCHI, M.R. (1993): Systematics and distribution of freshwater Audouinella (Acrochaetiaceae, Rhodophyta) in Brazil. Eur. J. Phycol. 30: 209-218.

NECCHI, O., SHEATH, R.G. & COLE, K.M. (1993 a): Systematics of freshwater Audouinella (Acrochaetiaceae, Rhodophyta) in North America. 1. The reddisch species. Arch. Hydrobiol., Algological Studies 70: 11-28.

NECCHI, O., SHEATH, R.G. & COLE, K.M. (1993 b): Systematics of freshwater Audouinella (Acrochaetiaceae, Rhodophyta) in North America. 1. The bluish species. Arch. Hydrobiol., Algological Studies 71: 13-21.

PANKOW, H. (1990): Ostsee-Algenflora. Gustav Fischer Verlag, Jena.

POPOVSKY, J., PFIESTER, L.A. (1990): Dinophyceae. – In: Ettl, H., Gärtner, G., Heynig, H., Mollenhauer, D. (Hrsg.): Süßwasserflora von Mitteleuropa Bd. 6. Fischer, Jena, 272 S.

PRINTZ, H. (1964): Die Chaetophoralen der Binnengewässer. Hydrobiologia 24: 1-376.

Page 146: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

142

RIETH, A. (1980): Xanthophyceae, 2. Teil. In: ETTL, H., GERLOFF, J., HEYNIG, H. (Hrsg.): Süßwasserflora von Mitteleuropa Bd. 4. Fischer, Stuttgart, 147 S.

RIETH, A. (1979): Ein Standort der epiphytischen Süßwasser-Rotalge Balbiania investiens (Lenormand) Sirodot 1876. Arch. Protistenkd. 121: 401–416

RŮŽIČKA, J. (1977): Die Desmidiaceen Mitteleuropas, Bd. 1.1. Schweizerbart, Stuttgart, 736 S.

RŮŽIČKA, J. (1981): Die Desmidiaceen Mitteleuropas, Bd. 1.2. Schweizerbart, Stuttgart, 291 S.

SHEATH, R.G., WHITTICK, A., COLE K.M. (1994): Rhododraparnaldia oregonica, a new freshwater red algal genus and species intermediate between the Acrochaetiales and the Batracho-spermales. Phycologia 33: 1–7

SHEATH, R.G., VIS, M.L. (1995): Distribution and systematics of Batrachospermum (Batracho-spermales, Rhodophyta) in North America. 7 Section Hybrida. Phycologia 34: 431–438

SIMONS, J., LOKHORST, G.M. & VAN BEEM, A.P. (1999): Bentische zoetwateralgen in Nederland. KNNV Uitgeverij, Utrecht, 280 S.

STARMACH, K. (1972): Chlorophyta III. In: Flora słodkowodna Polski, T 10. Polska Akademis Nauk, Warszawa, 750 S.

STARMACH, K. (1985): Chrysophyceae und Haptophyceae, In: ETTL, H., GERLOFF, J., HEYNIG, H., MOLLENHAUER, D. (Hrsg.): Süßwasserflora von Mitteleuropa Bd. 1. Fischer, Jena, 515 S.

STARMACH, K. (1966): Cyanophyta – sinice Glaucophyta – Glaukofity. – In: Starmach, K. (Hrsg.): Flora słodkowodna Polski, T. 2. Polska Akademia Nauk, Warszawa, 807 S.

VAN DEN HOEK, C. (1963): Revision of the europea speces of Cladophora, (Reprint 1976) Koeltz Science Publishers, Koenigstein, 248 S.

VIS, M.L., SHEATH, R.G., ENTWISLE, T.J. (1995): Morphometric analysis of Batrachospermum section Batrachospermum (Batrachospermales, Rhodophyta) type specimens. Eur. J. Phycol. 30: 35–55

WEHR, J.D. & SHEATH, R.G. (2003, HRSG.): Freshwater Algae of North America. Ecology and Classification. Elsevier Science (USA), San Diego, 918 S.

WEHR, J.D., STEIN, J.R. (1985): Studies on the biography and ecology on the freshwater phaeophycean alga Heribaudiella fluviatile. J. Phycology 21: 81–93

WOŁOWSKI, K. & Hindák, F. (2005): Atlas of Euglenophytes, VEDA Publishing House of the Slovak Academy of Science, Warschau, 136 S.

WOŁOWSKI, K. (1998): Taxonomic and environmetal studies on eulenophytes of the Kraków-Częstochowa upland (Southern POLAND), Fragmeta Floristica et Geobotanica

Page 147: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

143

Supplementum 6. W. Szafer, Institute of Botany, Polish Academy of Sciences, Krakow, 192 S.

Page 148: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

144

7 Appendix

Page 149: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

145

Page 150: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

146

7.1 Profiles of Biocoenotic Macrophyte Types

Page 151: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

147

Page 152: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

148

Siliceous, rhithral running waters of Central German Upland, Alpine Foothills and Alps (MRS)

Figure 2: Type MRS: Schwarzbach Höhe Jagdschlösschen (Sampling Site No 33, Bavaria)

Siliceous, rhithral running waters of Central German Upland, Alpine Foothills and Alps (MRS, Figure 2) exhibit, due to their geochemistry, low total hardness and acid capacity. These are in near natural, uninfluenced status on average below 1.4 mmol/l. Most of them are about three metres wide, rarely more than ten metres. The channel flow is low, only depths of about 30 cm are reached. In their natural state these water bodies are usually surrounded by forest and thus (strongly) shaded. The flow velocity level according to BAYERISCHES LANDESAMT FÜR WASSERWIRTSCHAFT (1995) is nearly always to grade as IV (fast flow, moderate current) or higher (rapid, falling). The substrates are, according to these conditions, strongly dominated by gravel, rocks and bolders. Due to these environmental paramenters the main growth form of aquatic macrophytes are mosses, vascular hydrophytes are rare (modified from MEILINGER 2003).

Page 153: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

149

Page 154: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

150

Calcareous, rhithral running waters of Central German Upland, Alpine Foothills and Alps (MRK)

Figure 3: Type MRK: Würm near Mühltal (Sampling Site No 223, Bavaria)

The calcareous, rhithral running water types are similar to the siliceous type of Central German Upland, Alpine Foothills and Alps. They have, due to their geochemistry, higher levels of total hardness and acid capacity. These are in the natural, uninfluenced state on average above 1.4 mmol/l. Although some larger water bodies with a width of sometimes more than 30 m and a depth of up to 1m are included in this type, high flow velocities of IV (fast flowing, current with moderate turbulence) and more (rapid, falling) (BAYERISCHES LANDESAMT FÜR WASSERWIRTSCHAFT 1995) assign this type also to the rhithral water bodies. Shading can also be high. Mainly large corn sizes are characteristic for rhithral water bodies of the Central German Upland, whereby the percentage of rocks and bloders is slightly less in the calcareous, rhithral type in Central German Upland than in type MRS. The majority of macrophytes here belongs to the mosses too. Due to the partially higher flow, especially in eutrophicated water bodies, hydrophytes occur (modified from MEILINGER 2003).

Page 155: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

151

Page 156: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

152

Potamal running waters of Central German Upland, Alpine Foothills and Alps (MP) inclusive subtypeMPG (influenced by ground water)

Figure 4: Type MPG: Innerer Rhine, Niederhausen (Sampling Site No 881, Baden-Württemberg)

Potamal water bodies in Central German Upland are in their habitat conditions for macrophytes similar to the potamal running waters of Northern Germany. The water bodies of type MP(G) are mostly about 10 metres wide and deeper than 30 cm. Shading is nearly always low, the flow velocity is around level III (slow flowing, visible flowing, water surface nearly smooth) (BAYERISCHES

LANDESAMT FÜR WASSERWIRTSCHAFT 1995). Thus, the water bodies contain high proportions of fine sediments like mud, sand and pebbles. However, larger substrates like gravel, rocks and bolders also form a large part of the substrate. These for macrophytes favourable environmental conditions cause the formation of a varied macrophyte vegetation with a high percentage of hydrophytes (modified from MEILINGER 2003).

The subtype MPG (ground water influenced) is characterised by strong and clear ground water inflow. Typical for that type are low water temperature in summer (“summer cool”) and high water temperature in winter (“winter warm”).

Page 157: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

153

Page 158: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

154

TR – rhithral running waters of North German Lowland

Figure 5: Type TR: Schwärze outflow Schwärzensee (Sampling Site 10018; Brandenburg)

Rhithral running waters of the North German Lowland (TR, Figure 5) are mostly only about 2 to 3 m wide and only rarely reach a width of more than 10 metres. Channel flow is low, mostly only depths of about 30 cm are reached. Natural sites of this type are surrounded by forest and therefore more or less shaded. Flow velocity is higher than in the potamal running waters of the Lowland (TN), and is around class III (slow flowing, visible flowing, and water surface nearly smooth) and IV (fast flowing, current with moderate turbulence) according to BAYERISCHES LANDESAMT FÜR WASSERWIRTSCHAFT (1995). The current is rather turbulent. Substrate is mainly sand and/or pebbles. Due to low channel flow in running waters of type TR the formation, for example of large Potamogeton species is not possible. The environmental conditions are the reason that sites of type TR in near natural state are mostly colonized by mosses, Berula erecta (submerged and emerged), Ranunculus and Callitriche taxa.

Type TR is, similar to type TN, found in three different sizes. A water body of type TR with suffix “k” is a small water body of its type with stream character. Suffix “m” describes a water body with the character of a small to larger river. A with the suffix “g” named type stands for a large water body of its type and should show according characteristics.

Page 159: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

155

Page 160: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

156

TNk – small lowland running water of the North German Lowland

Figure 6: Type TNk: Grove near Wehdel (Sampling Site 10026; Lower Saxony)

The small lowland running waters of the North German Lowland (TNk, Figure 6) are usually between three and five metres wide, up to one metre deep with only little shade. The flow velocity is less than that of rhithral running waters of the Lowland and reaches class II (very slow flowing) and III (slow flowing) according to BAYERISCHES LANDESAMT FÜR WASSERWIRTSCHAFT (1995). This potamal current influences also substrate composition. It is mainly made up of fine sediments like mud and sand. The environmental conditions in running waters of type TNk are very suitable for macrophyte colonization.

Page 161: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

157

Page 162: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

158

(Medium sized) lowland running waters of the Northern German Lowland (TNm)

Figure 7: Type TN: Pfefferfließ west of Stangenhagen (Sampling Site No 25, Brandenburg)

The medium sized potamal running waters of the North German Lowland (TNm, Figure 7) are between three and 20 metres wide, have a depth of more than 30 cm up to more than one metre and have little shading. Flow velocity is low, class II (very slow flowing, weak current, but visible flowing) and III (slow flowing, visible flowing) according to BAYERISCHES LANDESAMT FÜR WASSERWIRTSCHAFT (1995). The substrate composition is influenced by the potamal current regime. There is mainly fine substrate like mud and sand. The habitats conditions in type TNm running waters are well suited for colonization with macrophytes which can be seen by the varied spectrum of growth forms. Typical macrophyte communities are here formed, amongst others, by large Potamogeton taxa (modified from MEILINGER 2003).

Page 163: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

159

Page 164: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

160

TNg – large lowland running waters of the North German Lowland

Figure 8: Type TNg: Weser near Dörverdev (Sampling Site 10084; Lower Saxony)

The large potamal running waters of the North German Lowland (TNg, Figure 8) have a width of at least 30 metres. In their natural state the water body profile is wide and flat, often fords are formed. Characteristic are large scale river relocations with splitting and a high proportion of coarse woody debris. Due to engineering works these water bodies today have mostly relatively great depths which do not allow colonization with macrophytes as in the natural state, but force the macrophytes to the edges. Therefore an assessment with macrophytes is in many cases impossible.

Page 165: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

161

Page 166: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

162

7.2 Preservatives for Phytobenthos Sampling

Acidic Lugol’s Solution 20 g potassium iodide (IK)

200 ml destilled water

10 g resublimated iodine (J2)

19ml conc. acetic acid (96-100% CH3COOH)

Solve the potassium iodide in little water, then add the iodine and fill up with the remaining water. Subsequently add the acetic acid. Store the solution in small, brown bottles. It is recommended to fill the bottles as much as possible as the iodine oxidises in half full bottles.

Neutralised Formaldehyde 500 ml formaldehyde (40%)

500 ml destilled water

100 g hexamethylentetramine

Dilute formaldehyde in destilled water and then add hexamethylentetramine. Filter after one week (pH 7.3-7.9).

For sample preservation a final concentration of 3-4% should be achieved.

Page 167: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

163

Page 168: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

164

7.3 Mapping and Field Protocols

Page 169: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

165

Page 170: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

166

Figure 9: Field protocol for water body structural quality according to LAWA (LÄNDERARBEITSGEMEINSCHAFT WASSER 2000), page 1

Page 171: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

167

Figure 10: Field protocol for water body structural quality according to LAWA (LÄNDERARBEITSGEMEINSCHAFT WASSER 2000), page 2

Page 172: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

168

Field protocol for diatom sampling in running waters(Macrophyte- & phytobenthos assessment accoring to EC WFD 2005; grey fields are optional)

Name of water boby Length of section Mean widthm m

Sampling site Mean depth Water levelI 0-30 cm trockenII 30-100 cm niedrig

Location of sampling site III >100 cm mittelhoch

Nearest town/village Editor Is sampling possible across theentire width? yes no

Sampling site no Report no Turbidity Bottom visible?no turbidity, clear yesmedium turbidity no

Easting Northing strong turbidity

Photo noTopo. map no Date

Flow velocity accoring to BLfW (1995)

I not visible flowing almost still, eddyII very slow flowing current very weak, but visibleIII slow flowing visible flowing, water surface smoothIV fast flowing current with moderate turbulanceV rapid turbulent currentVI torrential very turbulent, loud rushing

Shading accoding to Wörlein (1992)

1 completely sunny sunny from sunrise to sunset2 sunny in full sun most of the time between sunrise and sunset, but always during the

warmest hours of the day3 partly sunny mainly in the sun, but in the shade during the hottest hours4 half shaded more than half a day in the shade and always at noon 5 shaded full shade under trees

Substrate diatom sample

Substrate Macrophyte aspect

Proportion% mud% clay/loam (<0,063 mm)% sand (0,063-2,0 mm)% fine/med. gravel (2,0-6,3/6,3-20 mm) Aspect of remaining phytobenthos% course gravel (20-63 mm)% stones (63-200 mm)% boulders (> 200 mm)% organic/peat

Notes

Bavarian Environment Agency November 2005

Figure 11: Field protocol for diatom sampling

Page 173: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

169

Page 174: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

170

Field protocol for phytobenthos sampling in running waters(Macrophytes & phytobenthos assessment according to EC-WFD; grey fields optional)

Name of water body Length of section Mean widthm m

Sampling site Mean depth Water levelI 0-30 cm trocken

II 30-100 cm niedrigLocation of sampling site III >100 cm mittel

hoch

Nearest town/village Editor Sampling possible across entire width ofthe water body? yes no

Sampling site no Report no Turbidity Bottom visible?

no turbidity, clear yesmedium turbidity no

Easting Northing stong turbidity

Photo noTopo. map no Date

Collected phytobenthos samples

Degree of cover orestimated abundance

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Bavarian Environment Agency, January 2012

No Description of sample Type of substrate

Figure 12: Field protocol for phytobenthos sampling

Page 175: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

171

Page 176: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

172

Microscopy Protocol Phytobenthos (PoD)Macrophyte & phytobenthos as s es s ment according to E C WFD

Water body Report no Subreport no

Sampling site SS no

Name of person sampling Date sampling

Name of person microsc. analysis Date microscopic analysis

Degree of cover subsample No of cover slips

Notes Abundance classes

12

DVNo Taxon Note (size etc) Abundance

Bavarian E nvironment Agency, J anuary 2012

3

macroscopically raremicroscopically common

macroscopic rare, just visible (note in f ield protocol: "single specimen" or "degree of cover 5%") or microscopically en masse

PhotoNo

Figure 13: Microscopy protocol phytobenthos without diatoms, suitable for documentation of an individual subsample

Page 177: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

173

Page 178: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

174

Figure 14: Microscopy protocol phytobenthos without diatoms, suitable for documentation of all subsamples of a sample

Mic

rosc

op

y p

roto

col

ph

yto

ben

tho

s (P

oD

)M

acro

phyt

e &

phy

tobe

ntho

s as

sess

men

t ac

cord

ing

to E

C W

FD

Wat

er b

ody

Rep

ort N

o D

ate

mic

rosc

opic

ana

lysi

s

Samp

ling s

ite S

S n

o N

ame

of p

erso

n m

icro

sc. a

naly

sis

Sam

plin

g da

te N

ame

of p

erso

n sa

mpl

ing

12

34

56

78

910

Deg

ree

of c

over

sub

sam

ple

Not

e

Abu

ndan

ce c

lass

es:

1: m

icro

scop

ical

ly ra

re, 2

: mic

rosc

opic

ally

com

mon

, 3: m

acro

scop

ical

ly ra

re, j

ust v

isib

le (n

ote

in fi

eld

prot

ocol

: "si

ngle

spe

cim

en" o

r "de

gree

of c

over

5%

") o

r mic

rosc

opic

ally

en

mas

se

Bav

aria

n E

nviro

nmen

t Age

ncy,

Jan

uary

201

2

high

est

mic

rosc

. ab

unda

nce

abun

danc

e fo

r ov

eral

l re

sult

Phot

o No

DV N

oTa

xon

Subs

ampl

e No

Abun

danc

e cl

ass

Page 179: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

175

Page 180: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

176

Field protocol mac rophytes & phytobenthos running waters(Macrophytes & phytobenthos as s es s ment according to E C WFD; grey fields are optional)

Name of water body Length of s ection Mean widthm m

S ampling s ite Mean depth Water levelI 0-30 cm trockenII 30-100 cm niedrig

Location of s ampling s ite III >100 cm mittelhoch

Neares t town/village E ditor S ampling pos s ible acros s the entire width ofthe water body? yes no

S ampling s ite no Report no Turbidity Bottom vis ibleno turbidity, c lear yesmedium turbidity no

E as ting Northing s trong turbidity

P hoto noTopo. map no Date

F low velocity according to BLfW (1995) Diatom sample yes /no

I not vis ible flow ing almos t s till, eddy S us trateII very s low flow ing current very weak, but vis ible

III s low flow ing vis ible flow ing, water s urface s mooth

IV fas t flow ing current w ith moderate turbulance

V rapid turbulent current

VI torrential very turbulent, loud rus hing

S hading according to Wörlein (1992) Macrophyte s tands1 completely s us unny from s unris e to s uns et extensive mos aic2 s unny in full s un mos t of the time between s unris e and s uns et,

but always during the warmes t hours of the day Water3 partly s unny mainly in the s un, but in the s hade during the hottes t hours Colour4 half s haded more than half a day in the s hade and always at noon Odor5 s haded full s hade under trees

Macrophyte depopulation yes no Helophyte dominance

Reas ons Taxa

Algal as pect

Dominant plants of the riparian zone Notes Meadows & gras s land Reeds & s edge fen Herbs & perennial plants Alluvial fores t Plants of the fores t floor Trees and s hrubs Cultivated s pecies & neophytes

S ubs trate E mbankments /extrins ic s ubs tratesS ubs trate

P roportion cover Dis tance Near natural% mud m Lining of river bed % clay/loam (<0,063 mm) m Trans vers e building% s and (0,063-2,0 mm) m E mbankment% fine/med. gravel (2,0-6,3/6,3-20mm) m Culvert% cours e gravel (20-63 mm) m Canalization% s tones (63-200 mm) m Was te/(cons truction) debris% boulders (> 200 mm) m% organic/peat m

Bavarian E nvironment Agency, October 2011 Figure 15: Field protocol macrophytes and phytobenthos in running waters (page 1)

Page 181: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

177

Makrophytes

Taxon namePlant

abundancetotal plant

abundancesub-/

emergeVitality

Socia- bility

Sediment/Substrate He

rb.

Total cover macrophytes %

* Plant abundance ** Vitality, modified after *** Sociability, modified according to accors ing to KOHLER (1978) BRAUN-BLANQUET (1964) BRAUN-BLANQUET (1964)

1 = very rare = very well developed I = s cattered2 = rare ß = well developed II = in tufts3 = common O = moderately developed III = s mall patches4 = frequent oo = poorly developed IV = extens ive patches5 = en mas s e V = forming large flocks

Collected phytobenthos samples

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bavarian E nviroment Agency, October 2011

S ubs trateDegree of cover or es timated abundance

Des cription of s ampleNo

Figure 16: Field protocol macrophytes and phytobenthos in running waters (page 2)

Page 182: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

178

7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by Dr. Klaus van de Weyer

Page 183: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

179

Page 184: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

180

Klaus van de Weyer, 20.02.2008

Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types The running water typology, component macrophytes, by SCHAUMBURG et al. (2006) was aligned to the LAWA-running water types (POTTGIESSER et al. 2004) which form the basis for type assignment. The consequence is that the existing classification for macrophyte running water types by SCHAUMBURG et al. (2006) on the basis of amongst others water body width, depth and flow velocity is no longer pursued. The following alignment is not a comparison, but an alignment of the macrophyte running water types by SCHAUMBURG et al. (2006) to the LAWA running water types (POTTGIESSER et al. 2004). For the Lowland and the large rivers of the Central Upland a further differentiation in rhithral and potamal sampling sites is necessary. For this division the valley bottom gradient under consideration of the potentially natural degree of meandering, the size of the catchments and the proportion of Central German Upland is used (see Table 1): Tab. 1: Criteria for the distinction of rhithral and potamal running waters or running water sections (KOENZEN, pers. comm., KOENZEN 2005) Catchment size (km²) Valley bottom

gradient* Proportion of Central German Upland in the catchment

< 100 <= 1/00 potamal

> 1/00 rhithral

100-10.000 <= 0,5/00 potamal

> 0,5/00-1/00 < 50% potamal

> 0,5/00-1/00 > 50% rhithral

> 1/00 rhithral

> 10.000 <= 0,5/00 potamal

> 0,5/00 rhithral * under consideration of the potentially natural degree of meandering rhithral: mainly fast flowing, potamal: mainly slow flowing According to this the LAWA-running water types (POTTGIESSER et al. 2004) can be differentiated as shown in Tab. 2. At the same time the corresponding running water macrophyte types by SCHAUMBURG et al. (2006) are listed. For the rhithral running waters of the North German Lowland a differentiation analogous to the potamal running waters of the North German Lowland is necessary.

Page 185: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

181

Tab. 2: Suggestion for a macrophyte running water type alignment: LAWA - PHYLIB- (without Alps and Alpine Foothills) LAWA-TYPE LAWA-TYPE PHYLIB-TYPE new 5 Siliceous streams of Central Upland rich in coarse debris MRS 5.1 Siliceous streams of Central Upland rich in fine debris MRS 6 Calcareous streams of Central Upland rich in fine debris MRK 7 Calcareous streams of Central Upland rich in coarse debris MRK 9 Siliceous rivers of Central Upland rich in fine-coarse debris MRS 9.1 Calcareous rivers of Central Upland rich in fine-coarse debris MRK 9.2, rhithral Rhithral, large rivers of Central Upland Mg 9.2, potamal Potamal, large rivers of Central Upland MP 10, rhithral Rhithral, very large rivers characterised by gravel Mg 10, potamal Potamal, very large rivers characterised by gravel MP 11, Lowland Lowland streams characterised by organic material TNk 11, Central Upland Central Upland streams characterised by organic material MP 12, Lowland Lowland rivers characterised by organic material TN 12, Central Upland Central Upland rivers characterised by organic material MP 14, rhithral Rhithral, Lowland streams characterised by sand TRk 14, potamal Potamal, Lowland streams characterised by sand TNk 15, rhithral Rhithral, Lowland rivers characterised by sand and clay TR 15, potamal Potamal, Lowland rivers characterised by sand and clay TN 15g, rhithral Large, rhithral, Lowland rivers characterised by sand and clay TRg 15g, potamal Large, potamal, Lowland rivers characterised by sand and clay TNg 16 Lowland streams characterised by gravel TRk 17, rhithral Rhithral, Lowland rivers characterised by gravel TR 17, potamal Potamal, Lowland rivers characterised by gravel TN 18, rhithral Rhithral, Lowland streams characterised by loess and clay TRk 18, potamal Potamal, Lowland streams characterised by loess and clay TNk 19, Lowland, rhithral Rhithral flatland running water of the Lowland TRk 19, Lowland, potamal Potamal flatland running waters of the Lowland TN 19, Central Upland, rhithral, siliceous

Rhithral, siliceous flatland running waters of the Central Upland MRS

19, Central Upland, rhithral, calcareous

Rhithral, calcareous flatland running waters of the Central Upland MRK

19, Central Upland, potamal Potamal, flatland running waters of the Central Upland MP 20 Very large rivers characterised by sand TNg 21, rhithral Rhithral, running waters characterised by lake outflow TR/TRk/TRg 21, potamal Potamal,running waters characterised by lake outflow TN/TNk/TNg rhithral: mainly fast flowing, potamal: mainly slow flowing MRK: Calcareous, rhithral running waters of Central Upland, Alpine Foothills and Alps MRS: Siliceous, rhithral running waters of Central Upland, Alpine Foothills and Alps MP: Potamal running waters of Central Upland, Alpine Foothills and Alps Mg: Very large rivers of Central Upland, Alpine Foothills and Alps TRk: Small rhithral running waters of North German Lowland TR: Medium-sized, rhithral running waters of North German Lowland TRg: Large, rhithral running waters of North German Lowland TNk: Small, potamal running waters of North German Lowland TNm: Medium-sized, potamal running waters of North German Lowland TNg: Large, potamal running waters of North German Lowland Sofar not included in PHYLIB

Page 186: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

182

Literature KOENZEN, U. 2005: Fluss- und Stromauen in Deutschland - Typologie und Leitbilder.

Ergebnisse des F+E-Vorhabens „Typologie und Leitbildentwicklung für Flussauen in der Bundesrepublik Deutschland“ des Bundesamtes für Naturschutz FKZ 80382100. - Angewandte Landschaftsökologie 65: 327 S. + Karte.

POTTGIESSER, T., KAIL, J., SEUTER, S., HALLE, M. 2004: Abschließende Arbeiten zur Fließgewässertypisierung entsprechend den Anforderungen der EU-WRRL, Teil II, Endbericht: 20 S., im Auftrag der Länderarbeitsgemeinschaft Wasser (LAWA)

SCHAUMBURG, J., SCHRANZ, C., STELZER, D., HOFMANN, G., GUTOWSKI, A., FOERSTER, J. 2006: Handlungsanweisung für die ökologische Bewertung von Fließgewässern zur Umsetzung der EU-Wasserrahmenrichtlinie: Makrophyten und Phytobenthos, Stand Januar 2006

Page 187: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

183

Page 188: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

184

7.5 Consultation about the Determination of the Valley Bottom Gradient for a Macrophyte Typology for Running Waters article by Planungsbüro Koenzen

Page 189: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

185

Page 190: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

186

Bavarian Environment Agency Consultation about the Determination

of the Valley Bottom Gradient for a Macrophyte Typology for Running

Waters

Page 191: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

187

Contractee:

Bavarian Environment Agency 86 177 Augsburg

Contractor:

Benrather Straße 47

40721 Hilden

Tel: 02103/90884-0 Fax: 02103/90884-19 Dr. Uwe Koenzen Dipl-Geogr. Julia Herda Dipl.-Ing. (FH) Annette Kurth Dipl.-Geogr. Patrick Amberge

December 2008

Page 192: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

188

Instructions for the Determination of the Valley Bottom Gradient

using a Geographical Information System For determination of the valley bottom gradient two procedures are described in the

following:

• Using the Programme Arc-Gis 9.2 and

• Using the Programme Arc-View 3.2.

At first the predominant degrees of meandering are determined. To this end a join query is

conducted in Arc-Gis to determine the relevant LAWA-types.

I.e., the query connects the information of the position of the sampling site (point shape) with

the water body type (line shape) and that way gives the type in the area of the sampling site

(lines to point).

For the relevant water body types the predominant degrees of meandering are estimated.

They are used to check for plausibility.

Page 193: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

189

For the calculation of the valley bottom gradient using Arc-Gis 9.2 the following steps are

necessary:

1. Load shapes of sampling sites and water body lines, of DGM with as high resultion as

possible, topographical information

2. In the area of the sampling site digitise the middle of the valley as line shape

(about 500 m upstream and downstream at streams, about 1 km at rivers)

Page 194: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

190

3. Convert the line shape with the valley middle lines into a 3D-line-shape using the 3D-

Analyst (convert Features to 3D)

4. Convert the marked valley bottom middle line in a diagram using the tool “Create

Profile Graph” and then export as Excel file

5. Draw point diagram in Excel, add trendline incl suitable equation -> gradient read off

(check for plausibility, see below)

Page 195: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

191

For calculation of the valley bottom gradient using ArcView the following steps are

necessary:

1. Load shapes of sampling sites and water body lines, DGM with as high resolution as

possible, topographical information

2. In the area of the sampling site digitise the middle of the valley as line shape

(about 500 m upstream and downstream at streams, about 1 km at rivers)

3. Put sampling site number into table of attributes

4. Use Script (e.g. stationi) to get points in 100 m distances along the line

5. Use Grid-Analyst (Extract X, Y, Z values for Point Shape from Grid Theme)

6. Conduct join-query of the new point shape with the valley middle lines shape (line to

points). The information to the sampling site number (from the valley middle lines

shape) is transferred to the point shape (points along the valley middle line in the

area of each sampling site)

Page 196: Instruction Manual for the Assessment of Running Water ... · 7.4 Alignment of the running waters typology of Schaumburg et al. (2006) with the LAWA-running water types article by

Macrophytes and Phytobenthos in Running Waters January 2012

192

7. Load dbf-file of the point shape which contains information to the z-values into Excel

8. Draw a point diagram in the Excel file, add trandline inclusive suitable equation ->

read off gradient (check for plausibility, see below)

To check for plausibility the following procedure is suggested:

Using topographical information to the heights in the area of the sampling site randomly the

valley bottom gradient can be calculated manually and compared with the semiautomatic

determined values. If necessary, corrections can be made.

In the Lowland it has to be considered that the determination of the valley bottom gradient

especially depends on the quality of the data. A high resolution DGM gives a more realistic

valley bottom gradient for the Lowland than a DGM with less resolution. In the mountains,

however, in very small valleys, the raster size of the DGM is crucial.

For a plausible assessment of the trend line the following has to be taken into account:

• Draw valley bottom middle lines as long as possible (at least 400 m upstream and

downstream of sampling sites at streams, at least 1 km at rivers)

• Check Z-values in Excel manually/visually -> delete outliers (orientation at lower

edge)