Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference...

21
Optimi ed Integration of Post Optimized Integration of Post- Combustion CO 2 Capture Process i G fi ld P Pl t Jochen Oexmann Institute of Energy Systems in Greenfield Power Plants Imo Pfaff Sebastian Linnenberg Alfons Kather Hamburg University of Technology Institute of Energy Systems 12 th International Post Combustion Capture Network Meeting 30 September 2009, Regina, Canada Prof. Dr.-Ing. A. Kather

Transcript of Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference...

Page 1: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Optimi ed Integration of PostOptimized Integration of Post-Combustion CO2 Capture Process i G fi ld P Pl t

Jochen Oexmann

Institute ofEnergy Systems

in Greenfield Power PlantsImo Pfaff

Sebastian Linnenberg

Alfons Kather

Hamburg University of TechnologyInstitute of Energy Systems

12th International Post Combustion Capture Network Meeting

30 September 2009, Regina, CanadaProf. Dr.-Ing. A. Kather

Page 2: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Background

Post-combustion CO2 capture by wet chemical absorption processes + Based on the conventional steam power plant process

R t fitt bl+ Retrofittable− Relatively high efficiency penalty

Effi i l d tOther CO2

Structure of efficiency losses

Efficiency losses due to ▸ CO2 capture unit

• Heat demand to regenerate solvent

compression

PowerHeat demand to regenerate solvent• Power demand

▸ CO2 compression Heat

▸ Further auxiliary loads (fans etc.) CO2 capture unit

Focus of most studies: Retrofit integration

This study: focus on GreenfieldW t t l d ll l t ti i ti ibl▸Water-steam-cycle and overall power plant optimization possible

2

Page 3: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Methodology (1)

Reference power plant process (Ebsilon Professional)

▸ Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW)(USC, hard-coal, ηnet = 45.6 %, 600 MWel, gross )

3

Page 4: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Methodology (1)

Reference power plant process (Ebsilon Professional)

▸ Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW)(USC, hard-coal, ηnet = 45.6 %, 600 MWel, gross )

Wet chemical absorption process (Aspen Plus)

▸MEA based process with optimistic performance parameters:

3.3 GJ/t CO2 @ 124 °C (90% capture)flue gas

from FGDto atmosphere make-up

waterfrom FGD

to CO2-storage

intercooled compression

washing section overhead

condenser

solvent cooler

water

rich-leanHX

desorberabsorber

to make-up water system

steam/condensatefrom/to

power plant

blower

solvent pump(CO2-rich)

reboiler

flue gas cooler solvent pump(CO2-lean)

l i

filter

4

to water conditioning or FGD

reclaimer

disposal

Page 5: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Methodology (1)

Reference power plant process (Ebsilon Professional)

▸ Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW)(USC, hard-coal, ηnet = 45.6 %, 600 MWel, gross )

Wet chemical absorption process (Aspen Plus)

▸MEA based process with optimistic performance parameters:

3.3 GJ/t CO2 @ 124 °C (90% capture)

CO2 compression process (Ebsilon Professional)

▸ 8-staged compressor, each stage intercooled

▸ Pipeline conditions 110 bar, 40 °C

1 2 3/4 6/75 8

5

Page 6: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Methodology (2)

M

M

MM

CO2 Capture UnitSteamCondens ate Power Cool outCool in

Fl ue gas

TG

CO2

CCR

Compressor1 2

345

e l. Eig e n b ed a r fa u c h g a s r e in ig u n g

1 4 . 1 5 9 M Wa u g u n g a u s d e m Ke s s e lh a

0. 983 37 5. 000

39 9. 926 98 6. 553

0. 971 12 0. 046

12 3. 557 98 6. 553

0. 971 11 6. 691

11 9. 972 10 33. 71 2

45 36. 43 3 kW

1. 000 40 . 000

40 . 470 94 3. 192

1. 042 44 . 446

44 . 972 94 3. 192

1. 008 48 . 902

51 . 224 10 53. 49 3

1. 008 48 . 902

51 . 243 10 52. 56 2

1. 008 48 902

30 . 432 0 931

0. 960 11 6. 857

12 0. 436 10 21. 90 4

17 8. 918 kW

1. 008 12 2. 988

12 6. 852 10 21. 90 4

13 683. 7 22 kW

1. 042 44 . 446

44 . 972 47 . 160

0.900

Flue gas side CO2 Capture and CO2 Compressor

M

MM

Qzu = 2295 .15 MW

Nettowirkungsgrad34.70 %

Klem m enleistung Nettoleistung

B ruttow irkungsgrad40.24 %

Eig e n b e d a rKe s s e l

3 . 9 1 1 M W

284. 899 600. 000

3461. 134 824. 090

274. 999 596. 416

3459. 403 824. 090

923519.342 kW

58. 988 620. 000

3706. 533 690. 830

796479.474 kW 3. 937 238. 856

2941. 868 264. 428

57. 998 618. 890

3704. 680 690. 830

2. 850 kg/ s 2900. 000 kJ/ kg

1. 061 kg/ s

0. 902 kg/ s 3. 937 238. 856

2941. 868 265. 330

1. 913 235. 100

2941. 643 131. 174

97. 959 186. 625

796. 720 4. 120

1. 913 235. 100

2941. 643 129. 765

2 1 8 7 1 9 3 . 5 0 4 k W

9 1 . 8 0 6 k g / s 4 4 . 2 2 1 ° C

0. 995 37 5. 000

39 9. 926 98 6. 553

1. 000 33 9. 021

34 9. 261 75 8. 323

1. 000 50 0. 000

65 2. 637 1. 285

22 95. 14 8 kW

23 70. 87 4 kW

48 . 902 0. 931 1. 012 25 . 000

10 4. 929 31 . 589

70 04. 06 7 kW

29 6. 559 kW

3. 000 25 . 000

30 . 987 91 . 806

0. 960 11 6. 857

94 . 975 11 . 809

Get aG 0. 989

e t a i0 . 9 2 0

P7 0 . 7M W

e t a i0 . 9 2 0

P8 5 . 7M W

e t a i0 . 9 2 0

P8 2 . 8M W

et a i0 . 9 1 0

P71 . 1

P - I P S T

4 7 8 . 5 M W

T 5 2 . 0

1 0 0 M

T 2 0 . 0

1 9 2 M

P - H P S T

3 2 3 . 7 M W

e t a i0 . 9 2 0

P8 2 . 8M W

e t a i0 . 9 2 0

P8 5 . 7M W

e t a i0 . 9 2 0

P7 0 . 7M W

e t a i0 . 8 0 1

P7 . 3

M W

e t a i0 . 8 1 0

P1 1 . 6M W

e t a i0 . 8 0 9

P5 . 6

M W

P - L P S T

6 5 . 1 M W

e t a i0 . 8 0 9

P5 . 6

M W

e t a i0 . 8 1 0

P1 1 . 6M W

e t a i0 . 8 0 1

P7 . 3

M W

e t a i0 . 7 7 6

P8 . 0

M W

El . Ei genbedarf13 .76 %

e t a i0 . 8 0 0

P7 . 2

M W

e t a i0 . 8 0 9

P6 . 4

M W

e t a i0 . 8 0 9

P1 1 . 3M W

P - L P S T

? ? ? M W

e t a i0 . 8 0 9

P1 1 . 3M W

e t a i0 . 8 0 9

P6 . 4

M W

e t a i0 . 8 0 0

P7 . 2

M W

e t a i0 . 7 7 3

P8 . 5

M W

e t a i0 . 7 7 6

P8 . 0

M W

et a i0 . 7 7 3

P8. 5

M W

DT 2. 3 K

61. 998 356. 968

3058. 528 686. 710

319. 899 306. 875

1362. 866 824. 090

60. 988 355. 527

3056. 998 686. 710

88. 282 410. 082

3151. 380 54. 913

27. 947 502. 353

3464. 591 46. 973

1 270 39 .868 k W

322. 186 °C 351. 668 °C

299. 667 °C

91. 012 411. 941

3151. 380 54. 913

3. 937 2941. 868

28. 812 502. 778

3464. 591 46. 973

91. 012 411. 941

3151. 380 54. 913 302. 157 °C

28. 812 502. 778

3464. 591 46. 973 0. 031

24. 873 0. 941

2401. 882 56. 695 2328. 574

1. 013 24. 115

22. 634 14731. 939

0. 028 22. 771 0. 937

2389. 486 56. 037 2584. 206

0. 031 24. 873 0. 941

2401. 882 56. 695 2328. 574

0. 028 22. 771 0. 937

2389. 486 56. 037 2584. 206

306. 875 °C 306. 875 °C

1. 176 190. 107

2855. 049 6. 400

0. 681 145. 025

2769. 142 9. 124

0. 000 kg/ s

KA

T 5 . 0 K

6 5 M

T 5 1 . 5

7 1 M

T 5 . 0 K

2 8 7 M

Q 257. 1 MW

Mühlenluf t abwärme

Nebenkühlwasser

Q 88. 6 MW

DT 2. 3 K

DT 2. 3 K

Q 98. 7 MW

Q 29. 4 MW

Q 14. 4 MWDT 2. 2 KDT 1. 3 K

Q 259. 5 MW

Mühlenluf t -WÜ

11. 570 370. 194

3198. 170 91. 367

3. 788 238. 590 1. 000

2941. 868 21. 830 13. 415

1. 153 189. 614 1. 000

2854. 186 7. 302 13. 436

301. 967 °C 277. 026 °C

321. 899 275. 313

1206. 910 797. 223 280. 314 °C

229. 411 °C

275. 736 °C

273. 435 °C

324. 249 227. 159

985. 713 797. 223

60. 137 355. 309

3058. 528 79. 402

238. 856 21. 830

232. 160 °C

0. 116 48. 777 0. 980

2541. 461 9. 472 118. 232

61. 998 356. 968

3058. 528 79. 402

11. 570 370. 194

3198. 170 88. 927

0. 028 22. 771

95. 517 112. 075

1. 013 20. 000

84. 013 264. 976

1. 013 11. 300

11. 416 14535. 058

0. 031 20. 000

83. 921 2. 777

23. 535 °C

0. 028 22. 771 0. 937

2389. 486 112. 075

1. 013 17. 714

74. 446 24170. 000

2. 481 28. 631

120. 243 2082. 000

0 044 2367 310

68. 095 kg/ s

0. 318 90. 072 1. 000

2665. 410 10. 477 55. 011

17. 729 °C

1. 270 kg/ s

0. 000 kg/ s

0. 663 144. 956 1. 000

2769. 142 9. 124 26. 391

61. 998 356. 968

3058. 528 0. 000

0. 031 24. 873 0. 941

2401. 882 113. 390

? ?

? ?

6750. 689 kW

T 5 . 0 K

2 7 7 M

1 5 . 63 7 . 4

K W S di 6 E ON E i i G bH

DT 1. 2 K0 . 7

? ? ? M W B re n s to f fwä rm e l e i s tu n g :

e rz e u g t e El e k t ro e n e rg i e (b ru2 3 .5 2 M W e rz e u g t e El e k t ro e n e rg i e (n e9 6 .4 8 M W a u s g e k o p p e l te F e rn wä rm e l e ? ? ? M W

Profi l : CCSrf_90

Q 19. 0 MW

DT 2. 9 K

Q 48. 4 MW

DT 1. 1 K

Q 24. 9 MW

DT 0. 7 K

Q 22. 1 MW

Q

Q 94. 8 MW

DT 1. 2 K1 . 7

Q 21. 9 MW

229. 411 C 198. 967 °C

141. 659 °C

176. 235 °C

11. 216 184. 935

785. 038 828. 210

184. 935 °C

29. 123 °C

574. 882 kW

14. 541 87. 357

366. 939 299. 648

14. 315 102. 568

430. 925 328. 779

14. 020 140. 806

593. 327 328. 779 28. 457 °C

15. 300 25. 957

110. 248 280. 046 69. 307 °C

P bar T °C X -

H kJ/kg M kg/s VM m³/s

319. 949 191. 024

827. 232 26. 867

11. 288 369. 952

3198. 170 42. 332

0. 044 30. 555 0. 922

2367. 310 42. 332 1245. 534

3 4 8 2 0 .3 6

0. 031 24. 873

108. 298 280. 046

0. 044 30. 555 0. 922

2367. 310 42. 332 1245. 534

326. 529 190. 944

827. 232 824. 090

48. 060 °C

30. 555 °C 42. 332 kg/ s

59. 668 kW

45. 551 kW

K W Staudinger 6

080923_SK_Ref erenz_CCS

E. ON Engineer ing G mbH EEN-TKP-Kul 25. 02. 2008 CCSr f _90

A n l a g e n wi rk u n g s g ra d (b ru t toA n l a g e n wi rk u n g s g ra d c a . (n ? ? ? %

? ? ? %

A n l a g e n n u t z u n g s g ra d (b ru t tA n l a g e n n u t z u n g s g ra d c a . (n

? ? ? %? ? ? %

Abdampf quer schnit t 4 x 14 m² Um gebungsluf t t emperat ur 11. 3°C

• Integration of CO2 capture unit by implementing interface characteristics in

Water-steam-side

6

“yellow-box” within power plant simulation tool EBSILONProfessional

Page 7: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Methodology (2)

• Integration of CO2 capture unit by implementing interface characteristics in

7

“yellow-box” within power plant simulation tool EBSILONProfessional

Page 8: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Study Approach

CCS power plant

▸ Design point: 100 % load with 90 % CO2 capture

▸ Flow sheet layout unchanged to maintain comparability

For each design case

▸Optimization of steam bleed pressures of pre-heat train

▸Optimal reboiler condensate return point

Conducted analyses

1. Evaluate impact IP/LP crossover pipe pressure (basic integration)

2. Optimization by waste heat recovery

8

Page 9: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Basic Integration

Interface requirements delivered by the power plant

1. Heat for regeneration in sufficient quantity and quality

2. Power to drive the CO2 compressor, pumps and fans

3. Cooling water to discharge waste heat

Only reasonable option to extract LP-steam: IP/LP crossover pipe

▸ Best suited to extract large steam quantity (~ 50% needed)

▸ To meet the required quality (T,p) over entire load range

• steam attemperationreboilersuperheated spraysuperheated

steamfrom IP/LP

crossover pipe

p yattemperator

zo condensatepre-heat train

9

Page 10: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Basic Integration

Interface requirements delivered by the power plant

1. Heat for regeneration in sufficient quantity and quality

2. Power to drive the CO2 compressor, pumps and fans

3. Cooling water to discharge waste heat

Only reasonable option to extract LP-steam: IP/LP crossover pipe

▸ Best suited to extract large steam quantity (~ 50% needed)

▸ To meet the required quality (T,p) over entire load range

• steam attemperation 3.3 bar t CCU• pressure maintenance concept:

Treboiler + ΔT = 124 + 10 = 134 °Csteam @ 3 0 bar + 8 % press

to CCU

IP/ LPsteam @ 3.0 bar + 8 % press.loss: 3.3 bar

IP/ LPcrossover pipe

10

Page 11: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Impact of IP/LP Crossover Pipe Pressure

10035.9

% %

Choice of IP/LP design pressure:trade-off between design point and part-load efficiency

80

90

35.7

35.8

oint

in %

ressure 

ation in %Part load in which

IP/LP pressure would dropbelow 3.3 bar in base case:

6 4 %

50

60

70

35 4

35.5

35.6

design

 po

itho

ut pr

e in ope

ra56.4 %

30

40

50

35.2

35.3

35.4

ency

atd

l loa

d wi

nce valce

0

10

20

34 9

35.0

35.1

Net effici

Minim

aainten

anNet efficiency decreasein base case:- 10.6 %-pts.

034.9

3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

IP/LP crossover pipe design pressure in bar

N ma

11

IP/LP crossover pipe design pressure in barbase case

Page 12: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Optimisation by Waste Heat Recovery (I)

Potential sources of waste heat for recovery

▸ Reasonable temperature level needed

12

Page 13: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Optimisation by Waste Heat Recovery (I)

Possible heat sinks for direct integration combustion air

pre heatingpre-heating

condensate pre-heating

13

Page 14: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Optimisation by Waste Heat Recovery (I)

Potential sources of waste heat for recovery

▸ Reasonable temperature level needed

• Desorber overhead condenser (OHC)

• Intercoolers and aftercooler of CO2 compressor

Possible heat sinks for direct integration

▸ Condensate pre-heating

▸ Combustion air pre-heating

Advanced heat integration improve temperature level of the waste heat

▸ Skipping distinct intercoolers of CO2 compressor (heat pumping)

▸ Advanced combustion air pre-heat configuration (heat shifting)

14

Page 15: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

C b i

Advanced Combustion Air Pre-Heat Configuration

Combustionair

APH

4 5

4

5

Flue gas

APHSec I

Fl

3

ure

T6

3

4 6

7APHSec II

Ai h t

Flue gastemperature

> Tdew2 Te

mpe

ratu

7 2

3

Air heater (bleed steamfrom turbines) APH Sec I APH Sec II

TransferredHeat Q

1

T 1

15

Page 16: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

C b i

Advanced Combustion Air Pre-Heat Configuration

Combustionair

APH

4 5

4

5

Flue gas

APHSec I

Fl

3

ure

T6

3

4 6

7APHSec II

Ai h t

Flue gastemperature

> Tdew2 Te

mpe

ratu

7 2

3

(waste heatfrom OHC orintercoolers)

Air heater

APH Sec I APH Sec II

TransferredHeat Q

1

TWaste heat input

1

intercoolers)

i. Waste heat replaces steam bleed air heater (ηnet +0.3 %-pts.)

p

16

Page 17: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

C b i

Advanced Combustion Air Pre-Heat Configuration

Combustionair

APH

4 5

4

5

Flue gas

APHSec I

Fl

3

ure

T6

3

4 6

7APHSec II

Ai h t

Flue gastemperature

> Tdew2 Te

mpe

ratu

7 2

3

(waste heatfrom OHC orintercoolers)

Air heater

APH Sec I APH Sec II

TransferredHeat Q

1

TWaste heat input

1

intercoolers)

i. Waste heat replaces steam bleed air heater (ηnet +0.3 %-pts.)

ii. Increased waste heat integration leads to higher flue gas losses

p

g g g

17

Page 18: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

C b i

Advanced Combustion Air Pre-Heat Configuration

Combustionair

APH

4 5

4

5

Flue gas

APHSec I

BypassFl

3

ure

T6

3

4 6

7APHSec II

Ai h t

ypeconomiser

(HP feedwater heater)

Flue gastemperature

> Tdew2 Te

mpe

ratu

7 2

3

(waste heatfrom OHC orintercoolers)

Air heater

APH Sec I APH Sec II

TransferredHeat Q

1

TWaste heat input

1

intercoolers)

i. Waste heat replaces steam bleed air heater (ηnet +0.3 %-pts.)

ii. Increased waste heat integration leads to higher flue gas losses

p

g g g

iii. Bypass economiser to decrease flue gas outlet temperature (+0.5 %-pts. total)

i. High costs of additional gas-liquid heat exchanger

18

i. High costs of additional gas liquid heat exchanger

ii. Lower temperature difference in APH ▸ larger HX area ▸ larger costs

Page 19: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Optimisation by Waste Heat Recovery (II)

-0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9No Heat recovery measure

Efficiency improvement in % points

OHC-Condensate

OHC APH

eat eco e y easu e

1 OHC ► Condensate

2 OHC ► Combustion Air Si l h tOHC-APH

IC8_T55

2 OHC ► Combustion Air

3 7 IC ► Condensate

Simple heatrecovery

IC4_T40

IC2_T40

4 3 IC ► Condensate

5 1 IC ► Condensate Advancedheat recovery

OHC+Adv. APH6 OHC ► Advanced APH

7 Combination of 1+5Combinations

8 Combination of 1+5+6Combinations

19

Page 20: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Conclusions

Heat demand predominant reason for efficiency penalty

Design point and part-load efficiency strongly depend on IP/LP pressure

▸ Careful consideration of scheduled power plant operation

• Excess of 2.2 bar decreases efficiency by 0.9 % points at design point

• Slope of part-load efficiency improved with increased crossover pipe pressure

Optimization by waste heat recovery

▸ Up to 0.9 % points advancement in overall net efficiency

▸ Increases degree of integration potentially lowers availability / operability

▸Most cost effective option has to be evaluated

20

Page 21: Institute of Optimi ed Integration of PostOptimized ... cap/4-2 sec.pdf · Concept study Reference Power Plant North Rhine-Westphalia (RPP-NRW) ... 4 to water conditioning or FGD

Hamburg University of TechnologyInstitute of Energy Systems

Thank you for your attention!

Institute of Energy SystemsJochen Oexmann - [email protected]

Institute of Energy Systems

This work has been submitted for publication in “Energy”.