INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf ·...

140
CHARACTERIZATION SYNTHESIS ENERGY ORGANICS OXIDES BIOLOGICAL POLYMERS MAGNETIC TECHNOLOGY SCIENCE PROCESSING TECHNOLOGY DEVICES ENVIRONMENTAL ENGINEERING STRUCTURE CHARACTERIZATION COMPUTATION ELECTRONICS SENSORS MANUFACTURING SYNTHESIS INTERDISCIPLINARY FISCAL YEAR 2011 2012 ANNUAL REPORT INSTITUTE FOR MATERIALS RESEARCH THE GATEWAY TO MATERIALS RESEARCH AT THE OHIO STATE UNIVERSITY

Transcript of INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf ·...

Page 1: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

CHARACTERIZATION

SYNTHESIS ENERGY ORGANICS OXIDES

BIOLOGICAL POLYMERS MAGNETIC TECHNOLOGY

SCIENCE

PROCESSING

TECHNOLOGY DEVICES

ENVIRONMENTAL

ENGINEERING

STRUCTURE

CHARACTERIZATION

COMPUTATION

ELECTRONICSSENSORS

MANUFACTURING

MULTIFUNCTIONAL

SYNTHESISINTERDISCIPLINARY

FISCAL YEAR 2011–2012 ANNUAL REPORT

INSTITUTE FOR MATERIALS RESEARCHTHE GATEWAY TO MATERIALS RESEARCH AT THE OHIO STATE UNIVERSITY

Page 2: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

The Ohio State University Institute for Materials Research

Fiscal Year 2011–2012

Annual Report

Steven A. Ringel, Director

Layla M. Manganaro, Program Manager Angela M. Dockery, Business Manager

For more information of additional print copies of this report, contact: The Ohio State University Institute for Materials Research Administrative Offices Room E337 Scott Laboratory 201 West 10th Avenue Columbus, Ohio 43210 Imr.osu.edu

© 2012. All rights reserved.

Page 3: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

TABLE OF CONTENTS

Introduction and Fiscal Year 2012 Highlights…………………………………………………………………………………..1

Overview of the Institute for Materials Research…………………………………………………………………………….2

IMR Members and the OSU Materials Community – By the Numbers……………………………….2

IMR Organizational Structure……………………………………………………………………………………………..4

IMR-Supported Research Centers and Select Projects……………………………………………………………………..7

Center for Emergent Materials (CEM) – National Science Foundation Materials Research Science and Engineering Center (MRSEC)…………………………………………….7

Center for Affordable Nanoengineering of Polymer Biomedical Devices (CANPBD) – National Science Foundation Nanoscale Science and Engineering Center (NSEC)……………..14

Research Scholars Cluster on Technology-Enabling and Emergent Materials (TEEM) – Ohio Department of Development Ohio Research Scholars Program Award……………………………………………………………………………23

Wright Center for Photovoltaics Innovation and Commercialization (PVIC) – Ohio Department of Development Wright Center…………………………………………………………….31

MRI: Acquisition of a Hybrid Diamond/III-N Synthesis Cluster Tool – National Science Foundation Materials Research Instrumentation Award………………………..36

Industry Collaborations and Partnerships………………………………………………………………………………………39

Current National Science Foundation Industry/University Cooperative Research Centers (I/UCRCs) Involving IMR Members………………………………………………………..40

Page 4: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

TABLE OF CONTENTS

Ohio Third Frontier Funding………………………………………………………………………………………………43

Center for the Accelerated Maturation of Materials (CAMM)…………………………………………..44

Advancing Sustainability Research: Innovative Partnerships for Actionable Solutions - Alcoa Foundation Award…………………………………….45

The Ohio Manufacturing Institute…………………………………………………………………………………….50

Center for Emergent Materials (CEM) Industry Activities………………………………………………….53

International Collaborations…………………………………………………………………………………………………………55

Universidad Politécnica de Madrid……………………………………………………………………………………55

The CEM International Material Alliance (IMRA)……………………………………………………………….56

IMR Research Enhancement Program……………………………………………………………………………………………58

OSU Materials Research Seed Grant Program…………………………………………………………………..59

IMR Facility Grants……………………………………………………………………………………………………………65

IMR Industry Challenge Grants………………………………………………………………………………………….66

Major Core Materials Research Facilities’ Updates………………………………………………………………………..67

Nanotech West Laboratory……………………………………………………………………………………………….67

NanoSystems Laboratory (NSL)…………………………………………………………………………………………72

Center for Chemical and Biophysical Dynamics (CCBD)…………………………………………………….75

Outreach and Engagement Activities…………………………………………………………………………………………….78

Page 5: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

TABLE OF CONTENTS

2011 OSU Materials Week Conference……………………………………………………………………………..78

2011-2012 IMR Colloquia Series……………………………………………………………………………………….80

Other IMR-Supported Seminars………………………………………………………………………………………..82

Faculty and Student Outreach and Engagement Activities………………………………………………..84

IMR Quarterly Newsletter…………………………………………………………………………………………………89

Financial Report…………………………………………………………………………………………………………………………….91

APPENDICES

Appendices…………………………………………………………………………………………………………………………………...93

Appendix A: Members of the Institute for Materials Research (IMR) as of July 2012………………………………………………………………………………………………………………….94 Appendix B: Research Outputs from OSU Materials Community Directly Resulting from IMR Resources and Activities………………………………………………………………….100 Appendix C: Activities of Members of Technical Staff (MTS) For Fiscal Year 2011 -2012………………………………………………………………………………………………117 Appendix D: 2011 – 2012 IMR Facility Grants Awards……………………………………………………129

Page 6: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

 

The 2012 fiscal year saw great progress for The Ohio State University Institute for Materials Research 

(IMR) and its multi‐college membership at all levels.  Our breadth and depth has never been stronger, 

and this is measured by many factors, most of which are described in this year’s report.  For example, 

this  past  year  saw  the  groundbreaking  of  our  new  Center  for  Electron  Microscopy  and  Analysis 

(CEMAS)  located  in Ohio State’s west campus  research park, which will be directed by one of  IMR’s 

recent Ohio Research Scholar  faculty recruits.   CEMAS  is due to open  in 2013 and will be one of the 

most significant electron microscopy centers of excellence world‐wide.  Our faculty members and their 

groups  are  publishing  high  impact  journal  articles  and  getting  cited  at    a  pace  that  continues  to 

accelerate  and  the  cutting  edge  qualities  of  the  efforts  are  being  noticed, with  one  of  our  faculty 

groups  landing  the  cover of  the  journal Nature, highlighting  research  seeded by an  IMR grant.   Our 

Centers  of  Excellence  are  producing world‐leading  results, with  the  Center  for  Emergent Materials 

(CEM), an NSF MRSEC, and the Center for Affordable Nanoengineering of Polymeric Biomedical Devices 

(CANPBD), an NSF NSEC, continuing their leading presence.  

In  terms  of  industrially‐centered  research  and  development,  our  Wright  Center  for  Photovoltaics 

Innovation and Commercialization (PVIC) successfully transitioned from  its  initial government funding 

into a sustained, industry‐supported mode.  IMR members have netted three NSF‐supported Industry/

University  Cooperative  Research  Centers  (I/UCRCs)  and  are  a  dominant  force  in  capturing  state‐

supported research to spur commercial advances, from new materials for bioproducts and solar energy 

to  teraherz  imaging  and  instrumentation  development.    The  sustainable,  lightweight  materials 

manufacturing  initiative,  started  by    funding  from  the  Alcoa  Foundation,  has made  extraordinary 

progress in its first year.  In terms of outreach, several of our members, notably through CEM, CANPBD 

and also through wide‐ranging  individual efforts, have created  innovative pathways for educating the 

younger  generation  and  their  teachers  alike.    IMR‐supported  and managed  core  research  facilities 

continue to add to their existing strengths, with several new capabilities acquired and large increases in 

our base of users at each facility.   

In addition, last year saw the first cycle of our new, integrated seed grant program that spans individual 

exploratory to team‐oriented research.   The OSU Materials Research Seed Grant Program awarded 7 

new grants  totaling $480,000  in direct  research  support  to 15  researchers  from  seven departments.  

The 4th annual OSU Materials Week conference was held in September of 2011, our largest with more 

than 450 attendees, in which we highlighted industry‐OSU interactions in materials R&D.  Certainly not 

least,  the  sponsored  projects  expenditures  during  FY2012  by  IMR’s  162  faculty members  exceeded 

$61.4 million  

This  annual  report provides more detail  into many of  these  activities  and  accomplishments,  and  in 

general summarizes progress and current status of  the  IMR within  its broad mission  to advance and 

support the University’s materials‐allied enterprise. 

 

INTRODUCTION AND FISCAL YEAR 2012 HIGHIGHTS 

IMR Fiscal Year 2011 -2012 Annual Report

Page 1

Page 7: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

 

The Ohio  State University  Institute  for Materials  Research  (IMR)  is  an  interdisciplinary  organization 

established in 2006 with the purpose of facilitating, promoting and coordinating research activities and 

infrastructure related to the science and engineering of materials throughout the University.  As a unit 

of  the OSU Office of Research directly  reporting  to  the OSU Senior Vice President of Research,  IMR 

serves as the gateway to the multi‐college materials research enterprise at The Ohio State University.   

IMR  VISION:  A  multidisciplinary  research  institute  that  propels  OSU  to  the  recognized 

international forefront of materials‐allied research and scholarship 

IMR MISSION: To nurture, grow and support research groups leading to small, large and center‐

level awards; to provide strategic planning, resources,  infrastructure, and educational/outreach 

activities;  to  coordinate,  support and assist with management of campus‐wide materials‐allied 

research and related resources 

In 2005, a Materials Vision Committee of 13 OSU faculty from a broad range of departments involved 

in materials  research  from  the Colleges of Engineering, Math & Physical Sciences and Medicine was 

formed by the OSU Senior Vice President for Research to develop a compelling and strategic vision for 

materials‐allied research at OSU.  This Committee’s mission was to assess OSU’s materials community 

and  its  activities  and make  recommendations  designed  to  propel  OSU  to worldwide  leadership  in 

materials  research.    In  September  2005,  the Materials  Vision  Committee  submitted  its  report,  and 

based on critical assessments of the status, assets, needs and unique strengths of materials research 

across  the University with  respect  to  international  trends  and  future  opportunities,  the  Committee 

recommended formation of a strong and vibrant Institute for Materials Research (IMR). 

 

The OSU materials community  is made up of a diverse and distinguished group of faculty researchers 

that  continues  to  grow  in  reputation,  impact  and  size.    The  162  faculty members  of  the materials 

community  at  Ohio  State  include  9  National  Academy members,  19 Ohio  Research  Scholars, Ohio 

Eminent  Scholars,  and  Distinguished  University  Professors,  18  endowed  chairs  and  named 

professorships, and dozens of Fellows of various professional associations such as AAAS, IEEE, APS, ACS 

and  MRS.    OSU’s  materials  community  includes  faculty  members  and  professional  research  staff 

representing 20 departments and 6 colleges ‐ the Colleges of Engineering; Arts and Sciences (Division 

of  Natural  and Mathematical  Sciences);  Food,  Agricultural  and  Environmental  Sciences; Medicine; 

Pharmacy; and Veterinary Medicine.  A Google Scholar literature search of IMR members’ publications 

found that these 162 faculty members authored 1,606 publications, or 9.91 papers per faculty member 

OVERVIEW OF THE INSTITUTE FOR MATERIALS RESEARCH 

IMR MEMBERS AND THE OSU MATERIALS COMMUNITY—BY THE NUMBERS 

IMR Fiscal Year 2011 -2012 Annual Report

Page 2

Page 8: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

during Fiscal Year 2012 (July 1, 2011 – June 30, 2012).   Additionally, an  ISI  literature search  indicated 

that  those  162  faculty members’  publications  also  received  33,168  citations  during  that  same  12‐

month period, for an average of 204.7 total citations per faculty member that year.  

The Ohio State University Office of Sponsored Programs tabulated the research activities of the OSU 

materials community and found that during the 12‐month period of July 1, 2011 – June 30, 2012 (OSU 

Fiscal Year 12), the externally sponsored research expenditures of IMR members totaled $61,401,636. 

The IMR is structured to broadly support and advance this large and multidisciplinary community.  The 

diagram in Figure 1 shows how IMR interfaces and interacts with all facets of the materials community. 

 

Figure 1. The interface between IMR and the OSU materials community, showing some of the organizational structure of IMR and how it serves as an umbrella organization with resources available to research centers, groups, and individuals.

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 3

Page 9: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

The Institute for Materials Research reports to an Executive Committee made up of Ohio State leaders 

from the three units of the university that provide direct operational funding for IMR: OSU’s Office of 

Research, College of Engineering, and the Division of Natural and Mathematical Sciences of the College 

of Arts and Sciences.   This committee meets regularly each year with the IMR Director to review IMR 

activities,  finances,  and  future  plans,  and  in  turn  provides  oversight  and  guidance  regarding  IMR’s 

strategic planning and ensures  that  IMR activities are aligned with college priorities  in materials and 

are  in  the  best  interests  of  the  colleges  supporting  IMR.    The  balance  in  this  committee  between 

equivalent financial stakeholders is critical and has allowed IMR to assist in creating unique college‐to‐

college interactions that leverages the strengths of each.   

IMR  is also advised by an External Advisory Board  (EAB) charged with providing IMR  leadership with 

non‐OSU  perspectives  and  experience‐driven  advice  from  other  universities,  industry  and  federal 

laboratories, to help ensure the success and relevance of IMR activities moving forward.  An important 

goal  for  the  EAB  is  to  assist  IMR  in maximizing  its  impact  and  to  enhance  its  collaborations with 

partners from the industrial and non‐profit sectors, including federal laboratories, by providing advice 

on both  technical directions and mechanisms  for  interactions with external organizations.   The EAB 

meets annually with IMR leadership to review and discuss IMR research activities, directions, facilities 

and  programs  and  provide  a written  assessment  and  recommendations  for  future  success.    IMR’s 

External Advisory Board members and their affiliations are listed in the organizational chart in Figure 2. 

Daily operations  at  IMR  are overseen by  IMR  Director Dr.  Steven A. Ringel, who has  served  as  the 

Director  of  IMR  since  its  inception.    Dr.  Ringel  is  a  Professor  in  the  Department  of  Electrical  and 

Computer Engineering, where he also holds the Neal A. Smith Endowed Chair in Electrical Engineering.  

He also holds courtesy appointments as a Professor of Physics and a Professor of Materials Science and 

Engineering.   Dr. Ringel’s research program  is  internationally recognized and  is focused on electronic 

materials,  devices,  photovoltaics  and  defect  science  with  a  particular  interest  in  integrating  basic 

science and engineering  issues to create new device technologies.   The  IMR Director  is appointed by 

the Vice President for Research, with the advice and recommendation of the Executive Committee, and 

serves 50% of his time as the chief administrative officer of the IMR.  He is responsible for the external 

and internal leadership, vision, overall direction, general welfare and progress of the IMR.  The Director 

is also responsible for the accomplishment of IMR’s programs, financing and staffing, and serves as the 

linkage  for  the  IMR community  to OSU central administration, and  to  state and  federal government 

and external agencies as may be appropriate. 

IMR’s three Associate Directors ‐ Malcolm Chisholm, Ph.D., Robert J. Davis, Ph.D., Michael Mills, Ph.D. ‐ 

represent much  of  the  core  OSU materials  community,  with  one  Associate  Director  with  a  home 

department  in  the  College  of  Engineering,  one  Associate  Director with  a  home  department  in  the 

Division  of  Natural  and  Mathematical  Sciences  of  the  College  of  Arts  and  Sciences,  and  a  third 

IMR ORGANIZATIONAL STRUCTURE 

IMR Fiscal Year 2011 -2012 Annual Report

Page 4

Page 10: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Associate Director who  represents  leadership  from OSU’s materials‐allied  research  facilities  on  our 

west  campus  research  park,  emphasizing  core  facilities  and  industry  interactions.    Each  Associate 

Director assists with the leadership and planning of the IMR’s activities and directions, and serves as a 

formal liaison between his/her college or unit constituency and the IMR.  The Associate Directors more 

specifically help to plan and participate in major IMR events and coordinate and review IMR Members 

of  Technical  Staff.    They meet with  the  IMR Director  to  consult with  and  provide  advice  regarding 

strategic  decisions  that  include  research  priorities,  facility  planning, modifying  and  proposing  new 

plans, and related issues.  They create and recommend review processes regarding allocation decisions 

to  the  Director  for  funding  of  programs  and  support  of  technical  staff  through  its  Research 

Enhancement Program.  

The  IMR has a  lean but very effective administrative  staff, comprised of a Program Manager and a 

Business  Manager.    IMR  administrative  staff  is  responsible  not  only  for  the  entire  financial 

administration of  IMR  and major  externally  funded  research programs, but  also has  key  leadership 

within  the  Institute  for  activities  such  as  proposal  development, management  of  our  large  internal 

research  funding program, annual Materials Week  conference, marketing  and  communications, and 

seminar  series.    The  staff  also  maintains  oversight  responsibility  for  the  IMR  Nanotech  West 

Laboratory, which  formally  operates  as  an  organization within  IMR.    In  addition,  the  IMR  employs 

several undergraduate students to provide a wide range of support services including conference and 

seminar support, clerical duties, driving our shuttle van, and providing lab support to the IMR Members 

of Technical Staff who are located in IMR‐supported core facilities throughout campus.   

Our organization also employs IMR Members of Technical Staff (MTS), highly skilled technical experts, 

research engineers and scientists whose primary function is to enable world‐class research within our 

core,  multi‐user  facilities.    Their  responsibilities  include  maintaining  facilities  at  peak  operating 

conditions,  coordinating  between  materials  user  facilities  across  campus,  enabling  facility  access, 

providing training and generally being available to assist and, in certain cases, lead research programs.  

Importantly, the Members of Technical Staff are assigned to one primary facility and provide a human 

interface to enable a network between the many materials facilities and  laboratories across colleges.  

IMR Members of Technical Staff are a major part of the fabric that enables cross‐disciplinary research, 

assisting  in the avoidance of redundant  lab development and at the same time providing engineering 

and  scientific  support  on  any  number  of  projects.    Generally  speaking,  MTS  employees  serve  as 

laboratory coordinators to enable access by researchers not only from OSU but also from outside the 

university.    In addition  to dealing with all aspects of maintaining complex  instrumentation,  including 

scheduling,  data  management  and  financial  responsibilities,  MTS  employees  are  encouraged  to 

develop research programs and contracts depending upon their own level of expertise and education. 

Departments or centers  receiving an  IMR MTS  to support  their activities execute a Memorandum of 

Understanding with  IMR.    The MOU  details  specifics  of  the  agreement  regarding MTS  supervision, 

salary  support,  and  expectations  for  the  arrangement.    Success  metrics  are  jointly  agreed  upon 

IMR Fiscal Year 2011 -2012 Annual Report

Page 5

Page 11: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

between the faculty member or senior staff member  in charge of the particular facility and the MTS, 

with approval by the  IMR Director.   MTS may be reassigned by the  IMR Director  in consultation with 

the Associate Directors  to another research area based on university demands, needs and history of 

performance.    It  is understood  that any  facility  that  is  supported by an MTS must become  itself an 

“earnings”  center  so  that  the  facility  can  be  accessible  to  users  throughout  the  IMR  community, 

irrespective  of  home  department,  via  a  fee‐for‐use model.   We  currently  have  four Members  of 

Technical Staff with primary facility responsibilities at the Nanotech West Laboratory (Ms. Aimee 

Price  –  nanolithography  and  Dr.  John  Carlin  –  MOCVD  and  processing),  the  ENCOMM 

NanoSystems  Laboratory  (Dr.  Denis  Pelekhov  –  magnetoelectronics),  and  the  Center  for 

Chemical and Biophysical Dynamics (Dr. Evgeny Danilov – fast optical spectroscopies).  A fifth 

MTS position, currently unfilled, was committed this year to the fledgling Center for Electron 

Microscopy  and  Analysis  (CEMAS), which  is  a  new  core  facility  that  is  part  of  IMR’s  Ohio 

Research Scholar program award  (see  the Research Scholars Cluster on Technology‐Enabling 

and Emergent Materials section later in this report for more information).   

This organizational structure was created by the original vision committee, and has proved to 

be an effective way to obtain a wide range of guidance from university, industry, and national 

laboratory leadership.  Figure 2 shows the organization chart depicting the placement and role 

of these committees, their memberships, and formal reporting line. 

 

Figure 2. IMR organizational chart and formal reporting lines as of July 1, 2012.

IMR Fiscal Year 2011 -2012 Annual Report

Page 6

Page 12: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

The  OSU  Institute  for Materials  Research  is  involved with  all  aspects  of  the  lifecycle  of  externally 

supported research centers and other block grants within the Ohio State materials community.   This 

includes continuous strategic proposal development, support of subsequently funded and pre‐existing 

centers,  support  and  guidance  for  renewal of  centers  and planning  for  sun‐setting of  centers.    The 

development  of  prestigious  centers  of  impact  is  central  to  IMR’s mission  and  vision.    This  section 

summarizes a variety of center activities during FY12.  

 

Funding  Agency:  National  Science  Foundation  ‐ Materials Research  Science  and  Engineering Center 

(MRSEC) Program 

Principal Investigators: PI: P. Chris Hammel, Co‐PIs: Leonard Brillson, Ezekiel Johnston‐Halperin, Patrick 

Woodward, with 14 senior investigators 

Duration: 9/1/2008 – 8/1/2014 

Amount: $10.8 million + $6.8 million cost share, including more than $1M from IMR 

Description:  The  Center  for  Emergent  Materials  (CEM),  a  NSF  Materials  Research  Science  and 

Engineering Center  (MRSEC), was established at The Ohio State University on September 1, 2008.   A 

prime  goal  of  the  IMR  at  its  inception  was  to  develop  prestigious,  externally‐supported  research 

centers at Ohio State.   The CEM, which  is  the  first OSU‐led NSF MRSEC, was  the  result of  the  IMR’s 

initial multi‐year process to cultivate successful research centers from 2006‐2008, described in earlier 

reports, working closely with other groups at OSU.   Currently,  IMR  is engaged with CEM at all  levels: 

through a seat on the CEM Oversight Committee chaired by the Vice President for Research, a seat on 

its Executive Committee, and through ongoing financial support of CEM staff members, collaboration/

seminar  funds,  and  support  of  its  internal  proto‐IRG  seed  program.    All  told  this  support  is 

approximately $1M over 6 years.  CEM currently consists of 2 Interdisciplinary Research Groups (IRGs), 

20 core  faculty members and 10 other  faculty  investigators drawn  from 6 different disciplines and 4 

universities, in addition to extensive educational and outreach programs.   The IMR  is fully committed 

to  the  continued  success  and  future  renewal  of  the MRSEC  program.    Below  are  FY12  technical 

highlights  from  CEM  activities.    More  extensive  details  can  be  found  from  CEM’s  annual  report, 

submitted to NSF, from which this information was summarized below. 

IMR‐SUPPORTED RESEARCH CENTERS AND SELECT PROJECTS 

CENTER FOR EMERGENT MATERIALS (CEM)   NATIONAL SCIENCE FOUNDATION MATERIALS RESEARCH SCIENCE AND  ENGINEERING CENTER (MRSEC)  

IMR Fiscal Year 2011 -2012 Annual Report

Page 7

Page 13: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

HIGHLIGHTS AND ACCOMPLISHMENTS OF CEM FOR FY 2012  

The  research  mission  of  the  CEM  is  to  lay  the  scientific  foundations  for  new  opportunities  and 

directions  in  complex magnetic materials and  systems  through discovery of emergent materials and 

phenomena,  innovation  in  development  of  probes  used  to  understand  emergent  phenomena,  and 

advances  in  predictive  theory/modeling.    This  offers  the  potential  for  electronic  devices  that  can 

perform multiple functions, and innovative, energy‐efficient approaches to information processing and 

logic.    The  CEM  has  two  Interdisciplinary  Research  Groups  (IRGs),  and  three  supported  Seeds.    A 

synopsis of the  IRGs  is provided below,  including details of each  IRG’s major accomplishments during 

Fiscal Year 2011‐2012 and cumulative accomplishments and impacts to date. 

IRG‐1:  TOWARDS  SPIN‐PRESERVING  HETEROGENEOUS  SPIN 

NETWORKS 

In  anticipation  of  a  need  for  integrated  heterogeneous materials  systems  that  enable  generation, 

transport, manipulation,  and  detection  of  electronic  spin,  IRG‐1  is  studying  characteristics  of  and 

phenomena within multicomponent spin networks.   At the heart of this network are low‐dimensional 

structures made of  spin‐preserving materials  such  as  silicon  and  carbon.    Specifically,  the  following 

correlated challenges (inherent to any spin‐based network architecture) are being addressed in detail, 

both  experimentally  and  theoretically:  (i)  spin  injection/extraction:  efficient  generation  of  spin‐

polarized free carriers, their  injection  into an optimal channel, and their extraction from that channel 

for  subsequent  analysis/manipulation,  and  (ii)  spin  transport:  conveying  the  spin  state  from  a  fixed 

point to remote network locations while maintaining the spin polarization.  The IRG‐1 team comprises 

ten  core  faculty  members,  fourteen  graduate  students,  three  post‐doctoral  scholars,  and  several 

undergraduates. 

IRG‐1 MAJOR ACCOMPLISHMENTS DURING FISCAL YEAR 2012 

Over the past year, IRG‐1 has leveraged leading positions in scanned probe microscopy, spin transport 

in graphene and magnetic resonance to accomplish the following: 

ATOMISTIC STUDIES OF MAGNETIC DOPANTS IN SEMICONDUCTORS  

Atomistic study of defect energetics: IRG‐1’s STM studies revealed how dopant properties such 

as carrier binding energy (e.g., shallow or deep?), depend on proximity to interfaces, dopants, 

charged vacancies, adatoms, and step edges.  

Density‐functional theory modeling of point defects: DFT calculations performed on Ga(Mn)As 

IMR Fiscal Year 2011 -2012 Annual Report

Page 8

Page 14: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

supercells  containing both a Mn acceptor and an As vacancy,  improved understanding of  the 

origins of  these observations.   These  calculations  reproduce both  the  coulomb‐driven physics 

and average dielectric constant observed in experiment. 

MAGNETISM IN GRAPHENE 

Direct  Detection  of Magnetic Moment  Formation:  IRG‐1  researchers  have  developed  a  new 

method  to  directly  detect  the  formation  of magnetic moments  in  graphene  based  on  their 

scattering of pure spin currents in graphene spin valves.  Using these techniques, the formation 

of  local magnetic moments  resulting  from hydrogen doping or  ion bombardment damage has 

been identified.  

Exploring  the mechanisms  of  spin  relaxation  in  graphene:  In  related work,  IRG‐1  researchers 

employed  tunneling spin valves  to compare spin  relaxation  in single‐layer graphene  (SLG) and 

bilayer graphene  (BLG) at  low  temperatures.   These experiments  reveal dramatically different 

spin  scattering mechanisms  in  these  two  closely  related  systems,  with  BLG  exhibiting  both 

longer spin lifetime and an inverse relationship between spin lifetime and diffusion coefficient. 

Ab‐initio  methods  for  calculating  defect‐induced  magnetism  and  spin  lifetimes:  IRG‐1 

researchers  have  applied  density  functional  theory  to  better  understand  origins  of  defect‐

induced magnetism and spin lifetimes in graphene.  They find that Fe prefers to bind on hollow 

sites  in  the honeycomb  lattice,  and  interestingly, prefers  to  cluster, with  adatoms  at nearest 

neighbor hollow sites.   These methods are being extended  to study hydrogen adsorbates and 

lattice vacancies for direct comparison with the experimental work described above. 

DC AND FMR DRIVEN SPIN INJECTION IN FE/MGO/SI 

Correlation of spin‐ and charge‐injection through Fe/MgO/Si tunnel contacts: IRG‐1 researchers 

have  observed  large  3‐terminal  spin‐injection  signals  in  Fe/MgO/Si  tunnel  junction  systems 

employing n‐ and p‐type Si (doping: ~5 × 1018/cm3, close to the metal‐insulator transition), and 

have  also  observed  and  quantified  important  correlations  between  the  spin‐  and  charge‐

injection  signals measured by  current‐voltage  J‐V  curves.   These  results provide direct  insight 

into the spin injection mechanism in these and related materials.      

Room‐temperature spin‐pumping  into Si directly observed via the spin‐accumulation voltage VS 

at Fe/MgO/Si contacts: Using the same Fe/MgO/Si contacts described above, IRG‐1 researchers 

find  that  ferromagnetic  resonance  excited  in  the  Fe  film  produces  spin  accumulation  in  the 

adjacent Si channel, that is detected through the resulting DC voltage across the contact.  To the 

authors’ knowledge, this is the first time a spin‐pumping induced contact voltage has been used 

to directly detect  spin  accumulation  in  a  semiconductor  (as opposed  to  the  inverse  spin‐Hall 

IMR Fiscal Year 2011 -2012 Annual Report

Page 9

Page 15: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

effect detection of the spin current pumped into the non‐magnetic material).     

IRG1 CUMULATIVE ACCOMPLISHMENTS AND IMPACTS:  

Carbon based  spintronics:  IRG‐1 has established world‐leadership  in  the area of carbon based 

spintronics  through  the  synergistic  development  of  world‐leading  graphene  spin  valves 

(switching signal of ~ 100 W 1 and spin lifetime of ~ 1 ns1 at room temperature) and first in world 

demonstrations of all‐organic spin valves and hybrid organic/inorganic spin‐functional devices. 

Magnetic  and  electronic  structure  of  point  defects:  IRG‐1  researchers  have  established  a 

leadership position  in  the characterization and control of  individual defects  in semiconductors 

using advanced scanned STM and sensitive scanned probe magnetic resonance.   These studies 

leverage atomistic, ab initio theoretical calculations in materials such as GaAs, Si, and graphene. 

Spin generation and dissipation: In collaboration with the Thermal Spintronics proto‐IRG, IRG‐1 

researchers have published world‐leading results including the elucidation of the importance of 

phonon‐magnon  drag  in  magnetic  materials  and  phonon‐electron  drag  in  nonmagnetic 

semiconductors  in  the  rapidly  emerging  area  of  spin‐thermal  physics.    Collaborative  spin 

pumping studies  in Fe/MgO/Si heterostructures and modeling demonstrate unique strength  in 

the study of spin generation and dissipation. 

 

 

Research images from the IRG‐1 group: (left) STM images and spatial maps of dI/dV, showing an ionization ring around a single surface‐layer Mn acceptor (MnGa). The local downward band bending is increased by bringing VAs nearby, thus causing an  increased ring diameter. (right) DFT calculated total LDOS for MnGa near VAs. The  in‐gap acceptor state sys‐tematically shifts toward higher energy with proximity to VAs, consistent with experiment. 

IMR Fiscal Year 2011 -2012 Annual Report

Page 10

Page 16: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IRG‐2:   DOUBLE   PEROVSKITE   INTERFACES   AND 

HETEROSTRUCTURES 

The  properties  that  can  be  found  among  A2BB′O6  double  perovskites  (half‐metallicity,  high 

temperature ferrimagnetism, etc.) make them one of the most promising families of complex oxides, 

yet they are relatively unexplored on many fronts.  Many of their properties are not well understood, 

many compositions have either not yet been made or are incompletely characterized, and compared to 

ABO3 perovskites there have been relatively few studies of thin films and heterostructures.  To realize 

the potential of double perovskites, IRG‐2 is pursuing two parallel and synergistic thrusts: (a) combined 

theoretical, computational and experimental efforts to develop models that can be used to understand 

and predict the properties of double perovskites, and (b) growth and characterization of highly ordered 

epitaxial double perovskite films, interfaces and heterostructures.  The IRG‐2 team comprises nine core 

faculty  members,  one  faculty  affiliate,  twelve  graduate  students,  two  post‐doctoral  scholars,  and 

several undergraduates. 

IRG‐2 MAJOR ACCOMPLISHMENTS DURING FISCAL YEAR 2012 

IRG‐2 researchers continue to break new ground in the field of double perovskite (DP) oxides on three 

synergistic  fronts:  (1)  growth  and  characterization  of  high  quality  epitaxial  films,  (2)  synthesis  and 

characterization of new bulk materials, (3) theory and modeling. 

GROWTH AND CHARACTERIZATION OF HIGH QUALITY EPITAXIAL FILMS 

IRG‐2  researchers  have  shown  that  the  magnetic  and  electrical  transport  properties  of  epitaxial 

Sr2CrReO6 films can be varied over a wide range through the appropriate choice of substrate.   When 

grown on SrTiO3, which is nearly lattice matched, Sr2CrReO6 is a ferrimagnetic (TC = 530 K, MS = 1.3 μB/

f.u.)  semiconductor with  an optical gap of 0.2 eV.   When grown on a  substrate  that  induces either 

compressive strain or tensile strain the low temperature resistivity increases, by as much as two orders 

of magnitude, and  the saturation magnetization also  increases,  to values as  large as 3.2 μB/f.u.   The 

origins of this dramatic sensitivity to the substrate are currently under investigation.  

SYNTHESIS AND CHARACTERIZATION OF NEW BULK MATERIALS 

Single phase bulk samples of thirteen double perovskites containing osmium have been prepared and 

characterized.   All of  these  compounds are magnetic  insulators, with ordering  temperatures varying 

from 725 to 23 K.  The observed patterns of magnetic ordering in this family do not obey the normally 

reliable  Goodenough−Kanamori  rules.    A  par cularly  intriguing  case  is  Sr2CoOsO6  where  both 

experimental observations and computational modeling shows  that  long  range  interactions between 

cations of the same type (Co−O−Os−O−Co and Os−O−Co−O−Os) are much stronger than shorter range 

IMR Fiscal Year 2011 -2012 Annual Report

Page 11

Page 17: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

 

 

 

 

 interactions  between  different  cations  (Co−O−Os).    Further  study  of  the  magne sm  of  these 

compounds will shed new  light on the rules that govern magnetism  in oxides containing both 3d and 

5d metal cations.  

THEORY AND MODELING 

The  double  perovskite  Sr2CrOsO6  is  a  ferrimagnetic  insulator  with  the  highest  Curie 

temperature  (TC=725  K)  of  any  perovskite.    IRG‐2  researchers  have  developed  a  unified 

theoretical  framework,  integrating  the hierarchy of  charge and  spin energy  scales, and have 

derived a new analytical criterion for a multi‐band Mott insulator: (UCr UOs)1/2 > 2.5 W, where W 

is the bandwidth, and UCr and UOs are the effective charge gaps on Cr and Os, respectively.  This 

elegant criterion demonstrates that the small U on Os can be compensated by a strong U on Cr 

thus driving  the  system  into a Mott  insulating  state.   Among oxides containing 5d  transition 

metal  ions, where spin‐orbit coupling can be  large, there are relatively few Mott  insulators  in 

close proximity to a metallic state.  Doping such compounds offers the opportunity to discover 

novel phases of matter. 

In  all  half‐metallic  A2BB′O6  double  perovskites  studied  to  date  the  spin  polarization  of  the 

conduction electrons is significantly reduced by B/B′ disorder.  First principles DFT calculations 

have been used to predict that Ca2MnRuO6 will be a ferrimagnetic half‐metal, in which the spin 

polarization  is not sensitive to chemical disorder of the Mn and Ru atoms.   Furthermore, the 

calculations show that due to strong coupling between orbital and spin degrees of freedom in 

A2MnRuO6  perovskites  it  should  be  possible  to  use  epitaxial  strain  to  tune  between 

ferrimagnetic and antiferromagnetic ground states.   Following  this  lead, high quality  films of 

Sr2MnRuO6 have been deposited as a first step toward exploring the use of epitaxial strain to 

control the properties of A2MnRuO6 perovskites.      

 

 

 

 

 

 

 

 

From the IRG‐2 group: STEM images show (a) a high degree of Cr/Re ordering in films on SrTiO3 and (b) a clear zig‐zag bending of the atomic columns on Sr2GaTaO6.  

IMR Fiscal Year 2011 -2012 Annual Report

Page 12

Page 18: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IRG‐2 CUMULATIVE ACCOMPLISHMENTS AND IMPACTS:   

Near  complete ordering  in double perovskite epitaxial  films: Half‐metallic double perovskites 

(A2BB′O6)  have  attracted  wide  attention  due  to  their  high  spin  polarization  and  Curie 

temperatures.   Realizing  this potential  requires well‐ordered  films;  that has been  elusive  to 

date. IRG‐2 has developed a new sputter deposition technique that demonstrates with 99% B/

B′  ordering  enabling  crystalline  quality  comparable  to  the  best  semiconductor  and  complex 

oxide films made by MBE and PLD.   

Surprising  semiconducting behavior  in Sr2CrReO6   films: The exceptional quality of  these  films 

led  to our discovery that, contrary to prevailing belief,  fully ordered Sr2CrReO6  is a small gap 

semiconductor/Mott  insulator.   This opens  the door to controlling  its electrical properties by 

doping and to electrostatic gating for device applications.   

Spin orbit magnetization tuning: We further confirmed, and calculated theoretically, the role of 

strong  spin‐orbit  coupling  in  the  dramatic  sensitivity  of  the magnetization  of  fully  ordered 

Sr2CrReO6 to epitaxial strain: from 1.3 µB/f.u. (no strain ) to 3.2 µB/f.u. (1.6% strain).  This offers 

a window to understand 5d transition metal complex oxides and could enable magnetization 

tuning for multifunctional applications.  

 

 

 

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 13

Page 19: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

Funding  Agency:  National  Science  Foundation  Nanoscale  Science  and  Engineering  Center  (NSEC) 

Program 

Principal  Investigators:  PI:  L.  James  Lee, Co‐PIs:  John  Lannutti, Robert  J.  Lee,  Susan Olesik, Michael 

Paulaitis, R. Sooryakumar, and Sherwin Singer 

Duration: 09/01/2004 – 09/30/2014 

Amount: $25,716,460 

Description:   IMR and Ohio State are fortunate to not only be a site for a current NSF MRSEC program, 

but  also  a  current  NSF  NSEC  program  ‐  The    Center  for  Affordable  Nanoengineering  of  Polymeric 

Biomedical Devices (CANPBD) ‐ making OSU one of only 7 U.S. universities to be home to both types of 

prestigious NSF materials  research  centers during  FY12.   CANPBD  is housed within  IMR’s Nanotech 

West  Laboratory,  with  its  primary  biohybrid  laboratories  supported  by  IMR/Nanotech  West  staff 

members,  in  conjunction  with  CANPBD  senior  researchers.    CANPBD  student  and  postdoctoral 

researcher offices are also located at Nanotech West.  CANPBD was initiated in 2004 and is currently in 

its  second  cycle  of  the  NSF  award,  with  a  primary  goal  to  develop  polymer‐based,  low‐cost 

nanomaterials and nanoengineering technology to produce advanced medical diagnostic devices, cell‐

based  devices,  and  multifunctional  polymer‐nanoparticle‐biomolecule  nanostructures  for  next‐

generation medical and pharmaceutical applications.  Although challenging, this goal provides not only 

opportunities for scientific breakthroughs and the development of cutting edge technologies, but novel 

and demonstrable interdisciplinary system integration. Fundamental science and engineering is one of 

the major foci of this center.    In Phase  I, ending  in 2009, many useful nanotechnologies, devices and 

nanoconstructs were developed. Each had  specific merits and value‐added  capabilities providing  for 

near‐term applications.  Following this success, a nanotechnology system was established in Phase II to 

address the need for (1) ‘up‐stream’ fundamental science, (2) high risk technologies meeting long‐term 

research objectives, and  (3)  ‘down‐stream’ devices and nanoconstructs  requiring  integrated  system‐

level effort. In addition to NSF NSEC funding, the CANPB team has successfully pursued leverage grants 

from  NSF  SBIR/STTR,  other  funding  agencies  (e.g.  NIH,  Ohio  Third  Frontier  Program)  and  industry 

through joint proposals and CANPBD spin‐off companies.  Joint proposals and grants with our medical 

collaborators  and  industrial  partners  provide  not  only  commercialization  pathways,  but  also  a 

‘blueprint’  for a business plan  to achieve  center  sustainability after Phase  II  funding ends.    IMR has 

been integral to the phase II development and transition plans beyond the NSF funding limit of 2014, 

CENTER FOR AFFORDABLE NANOENGINEERING OF POLYMER BIOMEDICAL  DEVICES (CANPBD)   NATIONAL SCIENCE FOUNDATION NANOSCALE SCIENCE AND ENGINEERING  CENTER (NSEC)  

IMR Fiscal Year 2011 -2012 Annual Report

Page 14

Page 20: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

notably  through  its  support  of  internal  seed  funding  specifically  targeting  CANPBD‐industry  and 

CANPBD‐College of Medicine teams which has amounted to more than $250k to date.  

The interconnections among fundamental sciences, technology innovations and medical applications of 

our  research  plan  in  Phase  II  are  organized  into  three  highly  integrated  nanofactory  assembly  (or 

disassembly) systems for personalized nanomedicine.   The first two systems consist of an Automated 

Cell to Biomolecule Analysis (ACBA) ‘liquid biopsy’ System for early cancer detection and the third is a 

smaller Multifunctional Nanoparticle Design and Synthesis (MNDS) System for simultaneous delivery of 

therapeutic,  imaging  and  probing  reagents.    One  ACBA  system  is  based  on  an  Optical  Tweezers 

platform, while  the other  is based on a Magnetic Tweezers platform.   All  three systems share many 

similar nanotechnologies and nanomaterials to address a broad range of biomedical needs.  To realize 

this goal, the system  level challenges and technical barriers are addressed though team efforts using 

the SIMILAR system integration process and the Risk Management approach. 

HIGHLIGHTS AND ACCOMPLISHMENTS OF CANPBD FOR FY 2012 

The center’s research team has completed a very productive year.  Our faculty and students published 

69 technical papers (266 papers since 2004).  In addition, 11 patents were filed (25 patents filed since 

2004), 1 patent was  awarded  (4 patents  awarded  since 2004),  and 5  inventions were disclosed  (17 

inventions were disclosed since 2004).  Six PhD students and 6 MS students finished their studies in the 

past 12 months, and are now working for industry, other companies, government and academia.  Our 

research program and industrial collaboration are strongly enhanced by $4.6M in federal grants, $1M 

in  research and  commercialization grants  from  the Ohio Department of Development,  industry, and 

SBIR Phase I and II grants.  In addition to the $8M state‐of‐the‐art equipment items in nanomachining, 

nanoscale  polymer  processing,  nanobio  characterization  and  manipulation,  and  micro/nanofluidic 

analysis fully  installed  in the CANPBD’s central  labs at Nanotech West Laboratory, we have designed, 

built  and  successfully  demonstrated  preliminary  ACBA  and MNDS  prototypes.    The  “supply  chain” 

linking CANPBD with nearby national laboratories such as Battelle, major medical centers at OSU such 

as the Comprehensive Cancer Center (CCC), the Center for Entrepreneurship at OSU’s Fisher College of 

Business, and  the biotech  industry has been  further enhanced  through  the addition  to  the  Industrial 

Advisory Board and an expanded Medical Advisory and Evaluation Board.  

A brief summary of major research accomplishments  in the two nanofactory systems and our center‐

level system integration efforts during the last reporting period of Phase II are introduced here.  

OPTICAL TWEEZERS BASED ACBA 

The Optical tweezers based ACBA integrates novel polymer/ DNA soft lithography for chip fabrication, 

low‐cost  optical  tweezers  for  cell  manipulation,  synthesis  of  liposomal  nanoparticles  containing 

IMR Fiscal Year 2011 -2012 Annual Report

Page 15

Page 21: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

advanced  fluorescence molecular  probes  for  in‐situ  detection  in  living  cells,  and  electrokinetically 

driven nanofluidics for probe/molecule delivery into a single platform.  In the 2011 annual report, we 

showed a successful prototype ACBA system consisting of an antibody array for capturing targeted cells 

in a cell mixture and an  innovative nanochannel electroporation  (NEP) device  for  injecting molecular 

beacons (MBs) to detect the targeted mRNA biomarkers  inside the captured  living cells.   The two are 

integrated on a low‐cost optical tweezers platform for cell manipulation.  NEP is realized by a low‐cost 

DNA  Combing  and  Imprinting  (DCI)  process  recently  invented  in  our  center  to  produce  polymer 

microchannel‐nanochannel‐microchannel  arrays  on  large  surface  areas.    Using  an  automated  dip 

coating process and a layer‐by‐layer approach, we are now able to produce DCI chips with a successful 

rate of >90% nanochannels from <5 to >200 nm diameter covering an area  larger than 1 cm2.   In the 

last 12 months, a high‐resolution cell sorting technology based on a novel tethered  immunoliposome 

nanoparticle (tILN) array design has been successfully developed and tested.  We have also successfully 

designed  two advanced molecular probes,  locked nucleic acid based molecular beacon  (LNA‐MB)  for 

microRNA  and  nuclease  resistant  molecular  beacon  (NR‐MB)  for  messenger  RNA.    They  can  be 

encapsulated  inside the tILN array to carry out simultaneous cell capture and  intra‐cellular biomarker 

(e.g. specific microRNAs and messenger RNAs) detection in individual living cells with high stability and 

low ‘false positive’ effects.  The same tILN array can also capture and detect intra‐cellular biomarkers in 

circulated microvesicles such as exosomes in serum samples.   

In  addition,  we  are  integrating  our  nanofibers  based  cell  race  tracking  technique  with  this  ACBA 

platform  to  achieve broader  applications.    In  collaboration with our modeling  group, we have built 

molecular  structures  of  the  different  components  of  tethered  bilayers,  tethered  nanoparticles,  and 

densely  and  loosely  packed  tethered  bilayers  with  perforations  and  with  attached  vesicles,  which 

mimic the structures thought to be present  in our electroporation system.   We are now preparing to 

simulate  the  dielectric  properties/conductivity  as  a  function  of  the  system  structure.   Goals  in  the 

upcoming  year  are  to  simulate  the  electro‐impedance  spectroscopy  (EIS)  of  these  structures  and 

compare the predictions to experimental results.  The end goal is to establish, through computations, a 

method  for  inferring  likely membrane  structures  from  the EIS  spectrum.   For  the  first  time,  this will 

allow  EIS  to  be  used  for  quantitative  measurement  of  membrane  structures,  and  thereby  aid  in 

designing electroporation strategies for drug delivery. 

NANOFIBER‐BASED MIGRATIONAL CHROMATOGRAPHY 

For Nanofiber‐based migrational chromatography, we have begun  to  finalize both  the highly aligned 

nanofiber array and  the conditions needed  to guide  the motion of migrating metastatic  tumor cells.  

Key  to  progress  in  this  area  has  been  the  investigation  of  different  fiber moduli  enabling  potential 

improvements  in  migration.    In  this  area,  we  have  utilized  “core‐shell”  electrospinning  to  create 

elegant  combinations  of  fibers  having  the  same  surface  chemistries,  but  different  internal  ‘core’ 

compositions,  and  thus,  different  overall moduli.    The  surprising  discovery:    nanofiber moduli  both 

higher and  lower  than  that of polycaprolactone  (PCL) display evidence of decreased motility.   This  is 

IMR Fiscal Year 2011 -2012 Annual Report

Page 16

Page 22: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

actually in line with recent measurements of brain matter indicating that the modulus of these delicate 

in vivo structures is in fact most similar to that of PCL.  Therefore we will continue to utilize PCL as the 

nanofiber composition providing for the best, most rapid migration.   

As  a  natural  complement  to  this, we  have  been  examining  the  effects  of  different  oxygen  content 

media given biological  reports  suggesting  that cancer cells migrate  in  response  to oxygen gradients.  

We are interested in determining exactly which oxygen contents provide for the most rapid migration.  

Our  results  show  that  the  presence  of  bovine  or  earthworm  hemoglobin  improves  individual  cell 

viability and growth at  low O2  levels.   On  the other hand, human hemoglobin adversely affects  cell 

growth and viability at increased hemoglobin concentrations and decreased oxygen levels.  Decreasing 

oxygen content from 5 to 1% O2 decreases aggregate dispersion on aligned fibers. Addition of bovine 

hemoglobin at 5% O2 significantly increased aggregate dispersion.  

Sensors  that  can  rapidly  determine  locally  dissolved  oxygen  levels  under  biologically  relevant 

conditions provide critical real‐time information about local oxygen contents that could be lower than 

those applied systemically and could alter cell velocity.   Using electrospun PCL containing an oxygen‐

sensitive  probe,  tris(4,7‐diphenyl‐1,10‐phenanthroline)  ruthenium(II)  dichloride,  we  observed  an 

oxygen  response  time of 0.9+/‐0.12  seconds. The  t95  for  the corresponding  film was more  than  two 

orders of magnitude  greater.    The  response  and  recovery  times of  larger diameter PCL  fibers were 

1.79±0.23 s and 2.29±0.13 s, respectively.  Response time is statistically different from that of ‘normal’ 

electrospun fibers.  A more than 10‐fold increase in PCL fiber diameter reduces oxygen sensitivity while 

having minor effects on  response  time;  conversely, decreases  in  fiber diameter  to  less  than 0.5 µm 

would  likely  decrease  response  times  even  further.    Leaching  of  the  oxygen‐sensitive  probe  was 

observed, necessitating a shift to PES or PES‐PCL core‐shell nanofibers providing 2‐ and 3‐fold slower 

response  times,  respectively.   At  exposures  up  to  3600s  in  length,  PCL  photobleaching was  largely 

eliminated by the use of either PES or PES‐PCL compositions.  

A critical aspect of the aligned fiber racetrack is that the cells currently migrate in both directions.  We 

seek to develop a ‘lure’ capable of biasing cell motion in one direction.  Key to this concept is the use of 

supercritical/subcritical fluids as a means of infusing bioactive molecules into the polymeric nanofiber 

at defined  locations such  that  these  infused depositions guide  the cells  in  the appropriate direction.  

PCL‐gelatin blends were explored as a bioactive electrospun scaffold in examining increased pressures 

and  temperatures on Rhodamine B  loading and  release.   The presence of  the gelatin  renders  these 

electrospun fibers far less sensitive to supercritical CO2 exposure. PCL swelling and gelatin compression 

occur  simultaneously, and  this volumetric  compensation  stabilizes  the PCL within  the blend without 

overall  deformation.    ATR  observations  suggest  that  these  exposures  increase  the mobility  of  the 

amorphous content.    In cases where XRD shows no crystalline content peaks prior to CO2 treatment, 

post‐exposure crystalline regions are detected. PCL‐gelatin scaffolds infused at either 1200 or 1500‐psi 

subcritical  conditions  increase  Rhodamine  B  loading  concentrations  5‐fold  compared  to  scaffolds 

infused  at  only  at  900  psi.    PCL‐gelatin  scaffolds  infused  supercritically  at  either  1200  or  1500  psi 

IMR Fiscal Year 2011 -2012 Annual Report

Page 17

Page 23: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

showed  increased  loading  of  Rhodamine  B  compared  to  scaffolds  infused  at  900  psi  but  produce 

significantly  lower  released  concentrations  compared  to  1200  or  1500  psi  subcritically  infused 

scaffolds.  These are likely a result of Rhodamine B’s solubility being significantly greater in liquid CO2 

compared to gaseous or supercritical CO2.    

 

Investigations  aimed  at  assessing  the  effectiveness  of  femtosecond  (FS)  laser  ablation  of  these 

electrospun  PCL‐gelatin  blends  were  initiated.    Statistical  comparisons  of  the  fiber  diameter  and 

surface porosity on  laser‐machined  and  as‐spun  surfaces were made  and  results  showed  that  laser 

ablation did not change fiber surface morphology.  The minimum feature size that could be created on 

electrospun  nanofiber  surfaces  by  direct‐write  ablation was measured  over  a  range  of  laser  pulse 

energies.   The minimum  feature  size  that could be created was  limited only by  the pore  size of  the 

scaffold  surface.    The  chemical  states of PCL/gelatin nanofiber  surfaces were measured before  and 

after  FS  laser  machining  by  attenuated  total  reflectance  Fourier  transform  infrared  (ATR‐FTIR) 

spectroscopy and X‐ray photoelectron spectroscopy  (XPS) showing  that  laser machining produced no 

changes  in  the  chemistry  of  the  surface.  FS  laser  ablation  is  an  effective  process  for  microscale 

structuring of electrospun PCL‐gelatin.  

This novel  “cell  race  track”  technology  requires  that we establish  the optimal  conditions needed  to 

guide the cells to achieve separation as quickly and efficiently as possible.  Beyond supercritical CO2, an 

Nano/biotechnology for high school students at St. Charles Preparatory School 

Through the CANPBD‐sponsored Research Experience for Teachers (RET) program at Ohio State during the summer of 2010, 

high  school  physics  teacher  Dr.  Sarah  Vandermeer  was  introduced  to  techniques  of  nanofiber  synthesis  and  their 

applications  in biotechnology.   After her summer  research experience  in  the  lab of Professor  John Lannutti, a member of 

CANPBD, Dr. Vandermeer created her own electrospinning apparatus at St. Charles High School. Since then, Dr. Vandermeer 

and her students have performed original research on the physical properties of nanospun fibers, and observed cell mobility 

on nanofiber scaffolds. 

A PC microscope (left, in front of the computer) is focused on a petri dish containing amoebazoan slime mold on an aligned 

nano‐fiber sheet.  The student is programming the computer to record time‐lapse images of cell motion under various 

conditions.

IMR Fiscal Year 2011 -2012 Annual Report

Page 18

Page 24: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

additional  technology  is  localized  electroosmotic  delivery  that  could  induce  a  well‐characterized 

gradient of chemoattractants.  Once at the end of the array, we will utilize a combination of polymeric 

surfaces and surface  treatments  to decrease cell adhesion allowing easy removal of cells  from  these 

surfaces.    In  addition, we  have  already  shown  how  localized  electroosmotic  delivery  of  trypsin  or 

collagenase can decrease cell adhesion from these surfaces to allow for easy removal.   

The  current  ACBA  system  has  satisfied  our  Level  1  and  Level  2  technical metrics  requirements  for 

system  integration.   We  are  now  working  towards  Level  3  technical metrics,  i.e.  to  sort  out  ~10 

targeted cancer cells from a mixture of 5~8,000,000 white blood cells (typical PBMC cell number per 1 

mL  human  blood  sample)  and  to  achieve  the  detection  of more  than  two  targeted microRNAs  an 

messenger RNAs at the single cell level with a user friendly and low‐cost ACBA system.  We have also 

started  a  small  scale  patient  blood  study  to  capture  and  detect  lung  cancer  circulating  tumor  cells 

(CTCs)  using  this  platform.    To  further  reduce  the  cost,  a micro‐lens  array  is  being  developed  to 

facilitate cell manipulation and a comprehensive and automated DCI process will be completed soon.   

MAGNETIC TWEEZERS BASED ACBA 

The magnetic  tweezers  based  ACBA,  on  the  other  hand,  focuses  on  silicon‐polymer  hybrid micro/

nanoengineering  for  chip and  sensor  fabrication, magnetic based  cell  sorting and manipulation, and 

semiconductor nanowire based cell  lysis and biomarker detection.   We have demonstrated that cells 

can be  rapidly  (within  seconds)  conjugated  to  labeled magnetic  beads on  a microarray platform of 

Permalloy  (NiFe)  disks.    The  labeled  cells  are  then  introduced  into  a microfluidic  channel with  an 

embedded array of zigzag FeCo wires or circular NiFe disks whose highly localized, permanent magnetic 

field  gradients  have  been  used  to  separate  labeled  cells  from  unlabeled  ones.    This  separation  is 

achieved  through  directed magnetic  forces  by  combining  externally  controlled  programmable weak 

(~60 Oe) fields with the magnetic fields originating from the surface patterned wires or disks.  In order 

to  interrogate  the  sorted  cells,  we  have  shown  that  individual  magnetically  labeled  cells  can  be 

introduced into an ionic droplet and transported for further interrogation.  We have also quantified the 

capture efficiency encapsulating magnetic microparticles and  cells with  individual droplets.   We are 

continuing our progress to achieving our ultimate metric of sorting out ~10 targeted cancer cells from a 

mixture of about 30,000 cells and to subsequently detect one to five targeted microRNAs at the single 

cell level with a biocompatible and low‐cost magnetic tweezers based system. 

In order to achieve more efficient cell labeling within the “on‐chip” ACBA platform, we are developing 

a microfluidic “cell‐labeler” that directly links to the magnetic separation stage.  In this labeling stage, 

magnetic polymeric beads labeled with specific antibodies are introduced, along with a parallel input of 

the mixture of cells, to a designed central channel that promotes nanointerfacial folding for enhanced 

labeling.  An attractive feature of this approach is its direct integration to the magnetic traps/ tweezers 

stage where both, positive or negative, selection can be promoted during separation. The experimental 

work on the different platform stages is supported by modeling and simulations related to microfluidic 

IMR Fiscal Year 2011 -2012 Annual Report

Page 19

Page 25: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

flow and droplet formation. 

In the third distinct stage of this ACBA platform,  label‐free microRNA detection will enable evaluating 

the biochemical character within the captured cells to enable diagnosis and treatment of tumors that 

are linked to the source of the cancer cells.  The detection is being mainly advanced through nanowire 

charge sensor based arrays.  In this effort, single cells (magnetically labeled or unlabeled) are precisely 

moved to  lie directly above the nanowire sensor using a new nanomagnetic tweezers that guides the 

cell to the desired  location.   Once  located, we have successfully performed  localized heating and cell 

lysing at the single cell level using the nano‐wire heaters.  We have calibrated the temperatures using 

FRET  probes  in  the  solution  above  the  nano‐wire  heaters  and  determined  the  voltage  and  the 

corresponding temperature needed for cell lysing.  We are currently pursing measurement of localized 

thermal cycling at the single cell level towards target miRNA amplification and optical detection.  

The  two  ACBA  platforms  complement  each  other  and  represent  two  major  cell  sorting  and 

characterization concepts with the Optical  tweezers based ACBA relying on the non‐cleanroom, soft 

materials  fabrication  technologies and  cell  in‐situ biodetection, while  the Magnetic  tweezers  based 

ACBA  relying more  on  the well  established  cleanroom  semiconductor  fabrication  technologies  and 

conventional cell  lysis biodetection.   The  former has advantages of  low‐cost potential and  living cell 

characterization; however,  its reliability needs to be carefully evaluated because both the fabrication 

and  sensing  methods  are  new.    The  latter  has  advantages  of  more  robust  fabrication  and  high 

automation potential; however, its affordability needs to be addressed. 

Through  a  collaboration  with  Edheads  (www.edheads.org),  an  award‐winning  501(c)  (3)  educational  web  development company,  the  NSF‐supported  CANPBD  Center  at  Ohio  State  has  been  able  to  explain  the  benefits  and  excitement  of nanotechnology  to many  thousands of potential  future  scientists.   CANPBD’s  collaboration with Edheads  teaches  curious minds of all ages about nanotechnology and biotechnology through unique, educational Web experiences designed to make hard‐to‐teach  concepts  understandable.    The  hallmarks  of  the  Flash‐based  Edheads  activities  are  a  focus  on  real‐world applications,  and  involve  the  viewer  in  interactive problem‐solving.    The online  activities motivate  young participants  to consider  careers  in  science  and  engineering  and  the  response  to  this  web‐based  education  project  has  been  very enthusiastic. 

The Edheads project has made a major  impact on  the education of young people about science  ‐  the “Nanoparticles and 

Brain Tumors” activity was launched online in December 2011 and in the year since the launch, over half a million different 

viewers participated in the activity.  A cell phone design activity produced in collaboration with the College of Engineering at 

Ohio State has involved over 10.9 million users since June 2009.   

Above:  The introduction to the Edheads online nanoparticle activity, featuring an animation of OSU Professor Jessica Winter 

IMR Fiscal Year 2011 -2012 Annual Report

Page 20

Page 26: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

We  have  also made  progress  in  developing  and  evaluating  promising  alternative  technologies  for 

enhanced detection of target miRs that can be incorporated into the third stage of either ACBA system.  

These alternative technologies are: electrochemiluminescence (ECL), the capture and profiling of miR‐

containing  tumor  cell‐secreted  microvesicles  including  exosomes  secreted,  and  bioseparation  by 

nanofluidics.  

In our work to selectively capture miR‐containing cell‐secreted microvesicles (MVs) and detect the miR 

content of specific sub‐populations of these MVs, we have selectively captured the cancer‐specific MV 

sub‐populations of  interest on antibody microarrays, and characterized this sub‐population based on 

MV size, size distribution, and morphology.    In addition, we have shown that miRs contained  in MVs 

secreted  from  the  cancer  cells  can  be  distinguished  from  those  in  MVs  secreted  from  the  non‐

malignant  cells,  suggesting  that measuring  the miR  content  of  cell‐secreted MVs may  enhance  the 

sensitivity of miR detection compared to detecting miRs expression levels within the parent cells.  We 

are now testing a novel idea of using tILN microarray to capture and detect MVs. Promising preliminary 

results have  been  generated using  both  lung  cancer  cell  lines  and  patient  blood  samples. Absolute 

abundances  (copy  number  per  cell)  of  the  five  target miRs  in  cells  have  been  quantified,  and  cell‐

secreted MVs that have been identified for distinguishing breast cancer cells from non‐malignant cells.  

The  isolation/purification  of  miR‐containing  MVs  has  also  led  to  biophysical/biochemical 

characterizations  of MVs  that will  enable  optimizing  Stage  III  biodetection methods  based  on  cell‐

secreted exosomal miR assays, as alternatives to cellular miR assays. 

MNDS SYSTEM 

For  the  MNDS  system,  significant  advances  have  been  made  on  both  chemistry  and  engineering 

aspects of nanoparticles.  Novel cationic lipids (TRENL series) have been synthesized and co‐lipids have 

been identified (based on polyunsaturated fatty acids and based on SPAN80), which, when combined, 

provided exceptionally efficient delivery of siRNA, miRNA and anti‐miR oligos, both in vitro and in vivo.  

Targeted  nanoparticles  based  on  dual  antibody  targeting  have  been  synthesized  to  improve  the 

efficiency and selectivity of cellular delivery.  Novel methods have been developed, based on molecular 

beacon  and  QDot‐FRET,  to  elucidate  the  intracellular  trafficking  pathways  of  different  types  of 

nanoparticles.   On engineering, microfluidics has been  integrated with electrospray  for nanoparticle 

synthesis.    In  addition,  a  novel  gene‐loaded  nanoparticle  synthesis method  based  on microfluidics 

assisted  picoliter  droplet  generation  was  developed  that  provided  improved  process  control  in 

nanocarrier  synthesis  and  transfection  efficiency.    Furthermore,  a microwell‐nanochannel  array  has 

been explored to synthesize multifunctional nanoparticles  in a highly controlled manner.   We plan to 

further  integrate  innovations  in  chemistry with  engineering,  together with  intracellular mechanistic 

findings, to determine the structure‐function relationships related to multifunctional nanoparticles and 

enable  rationale design of  the next generation of nanoparticles.   We have  close  collaborations with 

several  labs at  the OSU Comprehensive Cancer Center, which have  carried out bioevaluation of  the 

newly  developed  nanoparticles  carrying  therapeutically  relevant miRNA/anti‐miRs,  as well  as  small 

IMR Fiscal Year 2011 -2012 Annual Report

Page 21

Page 27: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

molecule drugs,  in  several cancer  types using  cell  lines and animal models,  including  leukemia,  liver 

cancer and lung cancer. 

COMMERCIALIZATION EFFORTS 

A key to eventually realizing the commercialization of nanoengineered biomedical devices is engaging 

in industry‐recognized systems engineering processes for the three platforms that are being integrated 

(ACBA  I, ACBA  II and MNDS) early enough  in  the development process so  that key  technical risks are 

retired and  interface  issues resolved by the end of NSEC Phase II.   This approach should facilitate the 

next  phase  of  investment  (e.g. NIH  P41  Center  and Bioengineering Research  Partnerships  (BRP),  as 

described in Section 22) to allow further development of these platforms.   

For  each  of  the  three  system  platforms,  ACBA  I,  ACBA  II  and  MNDS,  we  have  put  in  place  five 

documents to assist teams in system integration activities:  System Description, System Block Diagram, 

System  (and  subsystem) Requirements, Risk Management Plan  and  System  Integration Plan.   These 

documents are  in a common  repository  to which all  students,  faculty and  staff  in  the CANPBD have 

access.  As well, there are faculty teams forming for each platform who will meet regularly to maintain 

these documents as well as discuss issues related to system integration on their respective platforms.  

A similar competitive analysis platform will be established for the aforementioned three systems. 

To  facilitate a structured approach  to system  integration  that  reduces programmatic  risk  for each of 

the system platforms  (ACBA  I, ACBA  II and MNDS), we have put  in place a system of documentation 

and  processes  in  three  critical  areas:    Requirements Management,  Risk Management  and  System 

Integration Planning.  We have disseminated the work products associated with these efforts, including 

transitioning  ownership  and maintenance,  to  the  respective  platform  teams  consisting  of  students, 

post‐docs and faculty.  The work products generated include (for each of the three platforms): system 

requirements,  system description  and  architecture,  subsystem  requirements,  risk management plan 

and system integration plan.   

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 22

Page 28: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

Funding Agency: Ohio Department of Development 

Principal  Investigators:  PI:  Steven  Ringel,  Co‐PIs:  Peter  March,  Divisional  Dean,  Natural  and 

Mathematical  Sciences,  College  of  Arts  and  Sciences;  David  B. Williams,  Dean  of  Engineering  and 

Executive  Dean  for  the  Professional  Colleges;  Bruce  A. McPheron,  Dean  of  Food,  Agricultural  and 

Environmental Sciences and Vice President of Agricultural Administration 

Duration: 8/18/2009 – 8/17/2013 

Amount: $18,153,846 ($8,953,846 to Ohio State) plus cost share of $17.2 million 

Description:    The  OSU  Institute  for  Materials  Research  is  the  lead  organization  for  a  state‐wide 

materials program  funded by the State of Ohio, the $18.1M Ohio Research Scholars Program  (ORSP) 

award entitled Technology‐Enabling and Emergent Materials  ‐ TEEM.   This award creates a university 

coalition consisting of The Ohio State University, the University of Akron and the University of Dayton 

and  funds  the creation and support of a research cluster comprised of  five endowed chairs with  the 

title  of  Ohio  Research  Scholar  –  three  at  OSU  and  one  each  at  the  University  of  Akron  and  the 

University of Dayton.  IMR Director Steven Ringel serves as that award’s Principal Investigator and IMR 

performs all program management and research administration for the award.   

The  technical  goal  of  this  program  through  targeted  faculty  hiring  is  to  pioneer  revolutionary 

approaches  to  accelerate  the  development  of  materials  for  technological  impact,  by  evaluating 

emergent  materials  at  an  early  stage  through  the  application  of  advanced  characterization  and 

predictive  modeling.    By  targeting  the  Scholars  positions  toward  advanced  microscopy,  including 

applications toward biomaterials, chemical synthesis from bio‐based sources, and scalable processing 

based on nanostructure‐enhanced composite and also bio‐based materials, this unique cluster aims to 

build  upon  and  coordinate  strategic  strengths  existing  at  the  partnered  universities  in  areas  of 

international impact.  A prime area of focus is the exploration and development of innovative materials 

that possess tailored functionalities and are derived from nontraditional (including bio‐based) sources, 

with  the  state’s  universities  and  industries  being  the  prime  beneficiaries.    IMR  has  established  a 

Materials Innovation Council that includes leaders from the three state universities and a wide range of 

industry  leaders  and other  state‐supported  industrial  consortia,  in order  to maintain  alignment  and 

communications  up  and  down  the  value‐chain  from  basic  science  to  commercialization,  which  is 

chaired by Dr. Ringel.  

RESEARCH SCHOLARS CLUSTER ON TECHNOLOGY‐ENABLING AND EMERGENT  MATERIALS (TEEM)   OHIO DEPARTMENT OF DEVELOPMENT OHIO RESEARCH SCHOLARS PROGRAM  AWARD  

IMR Fiscal Year 2011 -2012 Annual Report

Page 23

Page 29: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

HIGHLIGHTS  AND ACCOMPLISHMENTS  OF  THE  TEEM ORSP  FOR 

FY2012 

During  FY12,  4  of  the  5  total  TEEM  Scholars  all  have made  substantial  progress  in  initiating  and 

advancing their research thrusts, with several of the scholars already initiating collaborative research.  

Their individual highlights are provided below.  The fifth Scholar position is currently in the process of 

being filled at the time of this writing, via the Department of Chemistry at Ohio State.  With 4 of the 5 

scholars now in place, several of the TEEM plans are taking shape.  Our initial kick‐off meeting was held 

on March  7,  2012,  during which  the  IMR  Director  reviewed  the  TEEM  program  objectives  and  its 

structure,  the  importance and  intended  role  for  the Materials  Innovation Council  (MIC),  the need  to 

engage  partner  industries  around  the  state,  and  led  a  discussion  of  just  what  are  reasonable 

expectations for the cluster to create multi‐institutional  interactions.   Each of the Scholars presented 

an overview of  their  individual  technical expertise and activities, and all of  this was done with OSU 

academic leadership from the College of Engineering, the Division of Natural and Mathematic Sciences 

of the College of Arts and Science, and the Office of Research.  The technical presentations were given 

by the four Research Scholars – Profs. David McComb and Katrina Cornish (OSU), Scott Gold (University 

of  Dayton)  and  Nita  Sahai  (University  of  Akron).    The  very  successful  kickoff  meeting  led  to  an 

agreement to have an annual meeting of this group, with the next one planned for Fall of 2012, and 

thereafter to coordinate meetings at the annual Materials Week conference hosted by IMR, which will 

be run at the end of spring semester starting  in 2013 (shifted to spring due to OSU’s change from an 

academic quarter to semester system).   

A  summary  of  each  Scholar’s  activities  during  FY  2012  is  provided  below,  and  a  full  listing  of  their 

publications,  invited  talks  and  other  professional  accomplishments  is  included  in  the  report’s 

appendices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ohio Research Scholars Nita Sahai, Scott Gold, Katrina Cornish, and David McComb at the March 7, 2012 meeting 

IMR Fiscal Year 2011 -2012 Annual Report

Page 24

Page 30: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

KATRINA  CORNISH,  OHIO  RESEARCH  SCHOLAR  IN  BIO‐BASED 

EMERGENT MATERIALS 

Dr. Katrina Cornish joined the faculty at OSU’s Horticulture and Crop Science department in 2010 as an 

Ohio Research  Scholar  in Bio‐based Emergent Materials. Dr. Cornish  is widely  considered  to be  the 

leading U.S. scientific expert, and  is  internationally recognized as a principal authority, on alternative 

natural rubber production, properties and products, and on natural rubber biosynthesis in general. Her 

research  focuses  on  bioemergent  materials  including  exploitation  of  opportunity  feedstocks  from 

agriculture  and  food processing wastes  for  value‐added products  and biofuels.   Dr. Cornish holds  a 

joint appointment with the Department of Horticulture and Crop Science and the Department of Food, 

Agricultural and Biological Engineering.  She leads a multidisciplinary team in the creation of innovative 

industrial  materials  from  plant‐based  sources  and  associated  biological,  chemical  and  physical 

processes.    Dr.  Cornish  is  based  on  the  Wooster  campus  of  the  Ohio  Agricultural  Research  and 

Development Center  (OARDC)  ‐ which  is  the  research arm of OSU’s College of Food, Agriculture and 

Environmental Sciences and the largest university agricultural bioscience research facility in the United 

States.   

Since  joining OSU as an Ohio Research Scholar, Dr. Cornish has been busy establishing her  research 

group and  laboratory space  in Wooster.   She has hired five students,  including two Masters students 

working on medical  scaffolds  research and  three Ph.D. candidates  to  support  research  in weediness 

and  gene  flow  issues  and  GMOs  for  increased  crop  yield.    This  year,  renovations  continued  for  a 

replacement processing space used  for her group’s research, and major  instrumentation acquisitions 

included a DMA800 dynamic mechanical analyzer  from TA  Instruments  for  rubber analysis, a Partec 

flow cytometer for ploidy analysis, and a Field Spec Pro Near Infra Red Spectrophotometer (ASD).  

Dr.  Cornish  has  been  awarded  three  externally  funded  research  grants  totaling  nearly  $1.5 million, 

including an ARPA‐E award with Chromatin LLC, and three OARDC Research Enhancement seed awards 

totaling $200,000.  She also filed an Invention Disclosure for a novel process for sequential extraction 

of  rubber  and direct utilization of  inulin  from  Taraxacum  koksaghyz  and  trademarked  the DamSafe 

dental  dam  deproteinizer.    This  fiscal  year  she  also  chaired  the  Terminology  subcommittee  of D11 

Rubber at  the ASTM conference, and presented papers at  three conferences  ‐  the 14th  International 

Latex Conference, The International Symposium on Establishment of Carbon‐Cycle‐System with Natural 

Rubber, and the Association for the Advancement of Industrial Crops Annual meeting.  

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 25

Page 31: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

DR. KATRINA CORNISH, RESEARCH AWARDS: 

U.S. Department of Energy ARPA‐E:  Plant‐Based Sesquiterpene Biofuels, with Chromatin LLC, 

Total award is $5,769,590, OSU Portion $1,200,000 

PanAridus:    Guayule  germplasm  improvement  by  plastidic  transformation  to  produce 

isoprenoid substrates for rubber biosynthesis, $224,992 award 

Bridgestone/OSU  Guayale  Research  Agreement:    $32,000  award  for  Solvent  extraction 

activities contracted to Crown Iron Works 

SEEDS:    The  OARDC  Research  Enhancement:    Novel  biopolymer  substrates  for  medically‐

relevant cell differentiation and tissue growth, $50,000 award 

SEEDS:  The OARDC Research Enhancement:  Russian dandelion (TKS) and guayule germplasm 

improvement  by  plastidic  transformation  to  produce  isoprenoid  substrates  for  rubber 

biosynthesis, $50,000 award 

SEEDS  The  OARDC  Research  Enhancement  –  Interdisciplinary  Award:    Development  and 

environmental regulation of rubber particles among species, $100,000 award  

 

DAVID  MCCOMB,  OHIO  RESEARCH  SCHOLAR  IN  NANOSCALE 

MATERIALS CHARACTERIZATION 

In February 2011, Professor David McComb joined The Ohio State University as the fourth of five total 

TEEM Ohio Research Scholars.  Dr. McComb is a Professor of Materials Science and Engineering and is 

the Ohio Research Scholar  in Nanoscale Materials Characterization.   Dr. McComb  is a world  leader  in 

electron microscopy and the application of such methods to biological and structural materials, and at 

Imperial  College  London  he  was  responsible  for  the  establishment  of  the  first  monochromated 

analytical  electron microscopy  facility  in  the UK.   At  Imperial, Dr. McComb  led  a  research  group of 

seventeen people and served as Co‐Director of the London Centre for Nanotechnology.  He is a Fellow 

of  the Royal Society of Chemistry and a Member of  the  IOM3, Council of Royal Microscopial Society 

and the Institute of Physics, and has over 90 publications and patents.  Dr. McComb’s specific research 

concentrates on  the development and application of nanoanalytical electron microscopy  techniques 

for the study of chemistry, structure and bonding at the interfaces of atoms.  His work also includes the 

synthesis of novel, multifunctional three‐dimensionally ordered solids. 

Since joining OSU, Dr. McComb has focused largely on establishing the Center for Electron Microscopy 

and  AnalysiS  (CEMAS),  a  unique,  state‐of‐the‐art  structural  characterization  facility  that  centers  on 

electron microscopy and multiscale modeling  that will support advancement of structural, electronic 

and  biological materials.   Dr. McComb  founded  CEMAS with  the  intent  of  it  becoming  the  hub  for 

business and academia for materials characterization.   A point of difference  in this facility will be the 

world‐class multidisciplinary  approach  that  enables  academic  and  business  partners  to  “see” more 

IMR Fiscal Year 2011 -2012 Annual Report

Page 26

Page 32: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

than ever before.   Current and  future  challenges  in medicine, healthcare, environment, energy and 

technology need increasingly to be addressed on length scales ranging from millimetres to the scale of 

individual atoms.  The delivery of novel solutions in cancer therapies, diseases of an aging population, 

sustainable development of functional and structural materials demands a multidisciplinary approach 

to research.  The mission of CEMAS is to disrupt the stratification of disciplines in the characterization 

of materials.   CEMAS will do this by bringing together multidisciplinary expertise to drive synergy and 

amplify  our  characterisation  capabilities,  and  thus  challenge what  is  possible  in  analytical  electron 

microscopy.   CEMAS will be the center that breaks through the current characterization  limitations  in 

medicine, environmental science, energy materials and beyond. 

It  is anticipated that CEMAS will become one of the world’s finest advanced microscopy facilities and 

one  that  will  facilitate  the  application  of  electron  microscopy  to  incredible  breadth  of  materials 

science, from biomaterials and bio‐based materials, to nanoelectronics, energy materials and advanced 

structural materials.    CEMAS will  enable  the  entire  research  scholar  cluster  to  advance  beyond  its 

already  strong  plan,  since  the  facility  will  create  an  easy‐access,  user‐based  infrastructure  for 

collaborative research and development where industries can be brought closely to the ORSP activities 

that  are  focused  on  explorative materials.    CEMAS will  have  one  of  the  largest  concentrations  of 

electron and ion beam analytical microscopy instruments in any North American institution.  These will 

include  two  aberration  corrected  scanning  transmission  electron  microscopes  (S/TEM).    One 

instrument  is optimized for high spatial resolution  imaging and analysis with the capability to provide 

sub‐angstrom  resolution,  while  the  second  instrument,  delivered  in  June  2012,  is  designed  for 

investigation of soft materials and biomaterials with  the ultimate  in chemical analysis capabilities as 

well as high resolution imaging performance. 

 

 

 

 

 

 

 

 

 

Some of the extensive renovations underway at the future home of CEMAS include specialized flooring modifications to support custom anti‐vibration panels.  CEMAS will be the premier advanced microscopy 

facility in North America when it opens in September 2013. 

IMR Fiscal Year 2011 -2012 Annual Report

Page 27

Page 33: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Central to the mission of CEMAS  is to educate the next generation of electron microscopy users and 

experts.   To achieve  this,  it  is  the goal of CEMAS  to make every  instrument  in  the  facility accessible 

through remote access.  This will enable instruments to be used and demonstrated in a world‐leading 

digital  lecture  theatre within  the CEMAS  facility.   Students and educators will be able  to control and 

interact with every instrument to facilitate teaching of the theory of electron microscopy and training 

users in all aspects of the use and operation.  This will also provide a foundation for distance learning, 

in  particular  to  provide  electron microscopy  training  to  other  OSU  campuses  and  other  academic 

institutions in Ohio and elsewhere.  The use of electron microscopes by users at sites outside CEMAS is 

also  a  key  enabler  of  remote  collaboration  with  academic,  government  and  industrial  research 

partners.   

CEMAS  will  be  housed  in  a  custom‐designed  environment  located  approximately  100  yards  from 

Nanotech West  Laboratory  in  the Kinnear Road west  campus  research  complex, a  strategic  location 

that  will  encourage  substantial  industry  interaction  and  will  leverage  the  large  base  of  existing 

materials  processing,  fabrication  and  biomaterials  capabilities  at  Nanotech West,  next  door.    This 

facility will provide a world‐class environment for five transmission electron microscopes (TEM), three 

scanning electron microscopes (SEM) and two dual‐beam focused ion beam (FIB) instruments.  Sample 

preparation  laboratories for  life sciences, physical sciences and engineering will be provided with full 

technical support.   The provision of comprehensive computer facilities for data processing and  image 

simulation will allow academic and  industrial users  to carry out  their entire microscopy and analysis 

program at CEMAS.  A support team of technical, research, administrative and academic staff based at 

CEMAS,  including an  IMR MTS, will provide comprehensive  support  to all users  through a variety of 

mechanisms  from contract  research  to collaborative projects.   Open plan desk space  is provided  for 

research  students  and post‐doctoral  researchers based  at  the  facility with  “hot‐desks”  available  for 

occasional users.    Long‐term  industrial and  commercial partners  can be provided with  secure office 

space for semi‐permanent staff. nDr McComb has led a team of architects, engineers and scientist sin 

the design of the facility on West Campus.   Construction of the new facility will start  in August 2012 

and it is anticipated that the space will be opened in September 2013.            

SCOTT  GOLD,  OHIO  RESEARCH  SCHOLAR  IN  MULTISCALE 

COMPOSITES PROCESSING, UNIVERSITY OF DAYTON 

During the Fall 2010 semester, the University of Dayton School of Engineering hired Dr. Scott Gold as 

an Associate Professor in chemical and materials engineering and Ohio Research Scholar in Multiscale 

Composites Processing.  His research interests include surface chemistry and the development of novel 

nanostructured materials, with a focus on energy related applications.   Gold's area of expertise is the 

processing of nanoscale materials and composites using surface tension, or how a liquid interacts with 

solid surfaces.   Applications  include  the  fabrication of nano‐structured materials  that can be used  in 

electronic devices, batteries, fuel cells or composite materials. Dr. Gold is the owner of five inventions 

and the journal Synthetic Metals has profiled his work.  For six years, Gold served in the chemical and 

IMR Fiscal Year 2011 -2012 Annual Report

Page 28

Page 34: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

nanosystems  engineering  programs  at  Louisiana  Tech  University,  where  he  earned  the  College  of 

Engineering and Science Outstanding Teacher award in 2008.  Gold also led the development of online 

engineering courses and is a certified peer reviewer for online courses. 

Since  joining  the University  of Dayton, Dr. Gold  has  hired  a  postdoctoral  researcher  to  support  his 

research  activities,  and made  instrumentation  purchases  including  a  Kruss  DSA  100  contact  angle 

measurement  system  to  enable modeling  of  direct  digital manufacturing  processes,  and  an  optical 

microscope for materials characterization from Carl Zeiss.  He has begun a research collaboration with 

fellow  Ohio  Research  Scholar  Katrina  Cornish,  reached  an  intellectual  property  agreement  with  a 

vendor to purchase of a Fortus 400 fused deposition modeling system for direct digital manufacturing, 

and is actively meeting with an Ohio industry partner to pursue SBIR/STTR funding in the near future. 

NITA SAHAI, OHIO RESEARCH SCHOLAR  IN POLYMER SCIENCE, 

UNIVERSITY OF AKRON 

Dr. Nita Sahai  joined  the University of Akron during Fall 2011 semester as an Ohio Research Scholar 

and Professor of Polymer Science within the College of Polymer Science and Polymer Engineering.  Dr. 

Sahai  is  an  expert  on  biomolecule  and  cell  interactions  at  mineral  surfaces,  environmental 

geochemistry,  biomineralization,  and  biomaterials.  Dr.  Sahai’s  research  falls  within  the  field  of 

interfacial  biogeochemistry, which  includes medical mineralogy  and  biomineralization,  bioceramics, 

and environmental geochemistry.  The unifying theme of this work is organic and inorganic interactions 

at mineral  surfaces on  the molecular‐ and nano‐scale.   Specific  research projects  she and her group 

work on include the self‐assembly of phospholipids as model cell membranes at mineral surfaces, cell 

adhesion  to mineral  surfaces, protein‐mediated biomineralization of  calcite,  silica and apatite, bone 

growth  on  silicate  bioceramic  prosthetic  implants,  and  biomimetic  silica  synthesis.    Sahai  was 

previously at the University of Wisconsin‐Madison, where she was a professor of geochemistry  in the 

Materials  Science  and  Environmental  Chemistry  and  Technology  programs.    As  a  University  of 

Wisconsin  member  of  the  NASA  Astrobiology  Program,  her  research  was  also  involved  in 

understanding biomineral morphologies  as potential biosignatures on Mars.    In order  to determine 

thermodynamically  feasible  reactions  and  to  identify  kinetic  reaction  pathways,  the  group  used 

theoretical modeling (quantum chemical‐molecular orbital calculations and classical thermodynamics), 

aqueous  analytical  methods  (ICP‐OES,  AA,  etc.),  spectroscopic  and  microscopic  techniques  to 

characterize  solid,  sorbed  and  aqueous  phases  (NMR,  HRTEM,  AFM,  XAS)  and  thermochemistry 

(microcalorimetry).  Dr. Sahai is a Fellow of the Mineralogical Society of America and was the recipient 

of a National Science Foundation CAREER Award. 

Since  joining  the  University  of  Akron,  Dr.  Sahai  has  focused  on  establishing  her  research 

laboratory and group.   Her research  team now  includes  three postdoctoral researchers who 

have helped her renovate and set up her research lab, as well as one Ph.D. candidate and one 

IMR Fiscal Year 2011 -2012 Annual Report

Page 29

Page 35: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

undergraduate  student  to  conduct  research.    Dr.  Sahai  was  awarded  nearly  $350,000  in 

external research funding to date, and also chaired a session at Gordon Research Conference 

on the Origin of Life in January 2012 

DR. NITA SAHAI, RESEARCH AWARDS: 

NSF  CAREER:  Mineral  Surface  Mediated  Organization  of  Biological  Macromolecules:  

Geobiology and Low‐Temperature geochemistry, $75,585 award 

NASA Astrobiology  Institute (NAI):   Detection of  the  signatures and environments of  life on 

Earth and other planetary bodies from their organic and mineralogical records, Sub‐contract 

to University of Akron  from Awardee  ‐ University of Wisconsin‐Madison, P.I. Clark  Johnson; 

$71,789 award to Dr. Sahai  

NSF DMR Biomaterials Program. Silicate Bioceramic Structure Control on Mesenchymal Stem 

Cell Proliferation and Differentiation, Sub‐contract to University of Akron from University of 

Wisconsin‐Madison, P.I. William Murphy; $198,117 award to Dr. Sahai 

 

 

 

 

 

 

 

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 30

Page 36: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

Funding Agency: Ohio Department of Development  

Principal  Investigators:  PI:  Robert  J. Davis,  Co‐PIs:  Paul  Berger, Malcolm  Chisholm,  Arthur  Epstein, 

Joseph Heremans, Nitin Padture, Steven Ringel 

Duration: 2/16/2007 – 11/30/2011 

Amount: $18.3 million total ($6.8 million to Ohio State) and $30M in cost sharing from Ohio industries 

and participating universities 

Description: IMR’s first major sponsored block grant created the current Wright Center in solar energy 

– the Wright Center for Photovoltaics Innovation and Commercialization ‐ which is co‐directed with the 

University of Toledo.  PVIC was established in early 2007 through an $18.6 million award from the Ohio 

Department  of  Development,  along  with  matching  contributions  of  $30  million  from  universities, 

federal  agencies,  and  industrial  collaborators.  PVIC  is  a  scientific  partnership  of  the  University  of 

Toledo, Bowling Green State University, and The Ohio State University, and more than 20 Ohio‐based 

companies  engaged  in  various  aspects  of  photovoltaics  technology.    PVIC  has  a  primary  goal  of 

enabling  Ohio  to  become  the  nation’s  leader  in  photovoltaics  research,  development  and 

commercialization.  The overall PVIC mission is to accelerate the photovoltaic (PV) industry in Ohio by 

reducing  solar  costs,  improving  technologies,  and  transferring  these  new  techniques  from  the 

laboratory  to  the production  line.   The OSU/IMR node of PVIC has a  specific  focus on  so‐called 3rd 

generation  photovoltaics,  which  inherently  involves  advanced materials  and  nanotechnology  using 

both inorganic and organic materials.  Primary thrust areas are multijunction solar cells, heterogeneous 

integration  of  high  efficiency  PV  with  low  cost  platforms,  nanostructured  solar  cells,  polymer 

photovoltaics and basic optical‐thermal processes.  IMR administers the Ohio State University PVIC site 

and IMR Associate Director Dr. Robert J. Davis as its Principal Investigator. 

 

 

 

WRIGHT CENTER FOR PHOTOVOLTAICS INNOVATION AND COMMERICIALIZATION  (PVIC)   OHIO DEPARTMENT OF DEVELOPMENT OHIO RESEARCH SCHOLARS PROGRAM  AWARD  

IMR Fiscal Year 2011 -2012 Annual Report

Page 31

Page 37: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

HIGHLIGHTS AND ACCOMPLISHMENTS OF PVIC FOR FY2012  

The Ohio State node of the Wright Center for Photovoltaics Innovation and Commercialization, or PVIC, 

entered its fifth year of operation in FY12, also the final year of its initial Ohio Third Frontier funding. 

As of November 2011, spending of the initial PVIC funding from Third Frontier (three initial years plus 

two no‐cost extensions) was completed.  At the end of FY12, PVIC listed 28 organizations as members; 

three universities, four not‐for‐profit organizations, and twenty‐one  industrial members (Table 1).   In 

addition, a  small number of  industrial members  chose not  to be publicly  listed, and PVIC  is moving 

towards having Case Western Reserve University listed as a member in FY13.  Other organizations that 

are  not members  but  are  often  attendees  to  PVIC meetings  include  the  Edison Welding  Institute 

(Columbus,  OH),  the  Bricker  and  Eckler  Law  Firm  (Columbus,  OH),  GreenField  Solar  (Oberlin,  OH), 

Process  Technology  (Mentor,  OH),  Graco  Ohio  (North  Canton,  OH),  and  the  Ohio  Department  of 

Development.  The members consider the PVIC nodes to be core organizations in PV activities in Ohio, 

and in FY13 both PVIC‐OSU and PVIC‐UT will continue operations based on member fee income.  This is 

a highly successful outcome of the initial state funding and is an organization that IMR is committed to 

sustaining as appropriate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Over 50 PVIC members attended the Solar Durability Workshop in September 2011, which included ten talks on innovations in the photovoltaics industry 

IMR Fiscal Year 2011 -2012 Annual Report

Page 32

Page 38: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Table 1. List of industry members of the Wright Center for Photovoltaics Innovation and Commercialization (PVIC)

 

 

Member  Ohio Location 

Primary Affilia‐tion  Main Activity 

The Ohio State University  Columbus  ‐‐  University research and industrial outreach 

University of Toledo  Toledo  ‐‐  University research and industrial outreach 

Bowling Green State University  Bowling Green  UT  University research 

Battelle Memorial Institute  Columbus  OSU  Alternative energy systems 

Edison Materials Technology Center (EMTEC)  Dayton  UT/OSU  Alternative energy systems design 

Green Energy Ohio  Columbus  UT/OSU  Alternative energy policy 

Honda Research Partnership  Columbus  OSU  Alternative energy for transportation 

Advanced Distributed Generation  Toledo  UT  PV installer 

Calyxo Inc.  Perrysburg  UT  PV module manufacture 

Cornerstone Research Group  Dayton  UT/OSU  Advanced PV device designs 

Decker Homes  Lambertville (MI)  UT/OSU Energy‐efficient home construction including NW OH 

DuPont Inc.  Circleville  UT/OSU  Backsheet and other materials for PV modules 

Ferro Electronic Material Systems  Independence  UT/OSU  Advanced materials for PV 

Lake Shore Cryotronics  Westerville  OSU  Sensor power and sensor materials development 

Marshall and Melhorn LLC  Toledo  UT Public  policy  and  legal  issues  in  alternative  en‐ergy 

MetaMateria Technologies  Columbus  OSU  Materials in PV and advanced energy 

Owens‐Corning Inc.  Granville  UT/OSU  PV for roof systems 

Natcore Solar (formerly NewCyte),  Oberlin  OSU Advanced AR coatings and nanostructured mate‐rials for PV 

Nippon Sheet Glass (formerly Pilkington)  Toledo  UT/OSU  Glass for PV 

PPG Industries  Numerous locations  UT/OSU  Glass for PV 

Plasma Si Inc.  Toledo  UT  Materials for PV 

Replex Plastics  Mt. Vernon  OSU  Low‐cost PV systems development 

Solar Spectrum LLC  Toledo  UT  Materials for PV 

SSOE Group Several  OH  loca‐tions  UT/OSU  Energy‐efficient architecture and building design 

Tosoh SMD Inc.  Columbus  OSU  PV materials 

Willard and Kelsey Solar Group  Perrysburg  UT  CdTe panel manufacture 

Xunlight Corporation  Toledo  UT  a‐SiGe:H panel manufacture 

Xunlight 26  Toledo  UT  CdTe on polymer technology development 

IMR Fiscal Year 2011 -2012 Annual Report

Page 33

Page 39: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

A  key  event  of  the  PVIC  OSU  node  during  FY12  was  the  sponsorship  and  organization  of  a  Solar 

Durability  Workshop  held  in  late  September  at  the  Longaberger  Alumni  House  on  Ohio  State‘s 

Columbus  campus.    The  event  attracted more  than  50  attendees,  over  half  of  which  were  from 

industry.  Mr. Alex Kawczak of StrateNexus Technologies LLC (Dublin OH) was a great help in organizing 

the agenda which included 10 talks after an initial introduction by Robert Davis of Ohio State: 

“Developing  an  Ohio  Technology  Roadmap  For  Advanced  Durability  Photovoltaics,”  Alex 

Kawczak, President, StrateNexus Technologies, LLC, Dublin, OH 

“Durability of Poly(Methyl Methacrylate) in Concentrating Photovoltaic Modules,” David Miller, 

Program Lead and Staff Scientist, National Renewable Energy Laboratory, Golden, CO 

“Ohio  Third  Frontier Wright Project Program:  The  Solar Degradation  and  Lifetime  Extension 

Center (s‐DLE),” Roger French, Professor and s‐DLE Founder, Case Western Reserve University, 

Cleveland, OH 

“Mirror‐Augmented  Solar  Photovoltaic  Systems:  Durability  and  Performance  Case  Studies,” 

Scott Brown, Manufacturing/Project Engineer, Replex Plastics, Mt. Vernon, OH 

“Accelerated Durability Testing of Thin‐Film Solar Systems,” Sean Fowler, Program Manager, Q‐

Lab Corporation, Westlake, OH 

“Exploring  the Durability and Performance of Organic Photovoltaic  (OPV) Cells,” Paul Berger, 

Professor, The Ohio State University, Columbus, OH 

“Nanostructured  Materials  Research  for  Next  Generation  Improvements  in  Photovoltaics,” 

Professor  Stanislaus Wong,  State  University  of  New  York  and  Joint  appointment  with  the 

Materials and Chemical Sciences Department, Brookhaven National Laboratory, Stony Brook, 

NY 

“Durability and Performance of Flexible Thin‐Film Silicon Photovoltaics:   Emerging Needs and 

Specification  Development,”  Aarohi  Vijh,  Director  of  Process  Development,  Xunlight 

Corporation, Toledo, OH 

“Innovative Transparent Conductive Oxides for Thin Film Solar Applications,” Eduardo del Rio, 

Tosoh SMD, Inc., Grove City, OH 

“New  Substrate Materials  for  Thin  Film  CIGS  and  CdTe  Photovoltaic Modules,”  Thomas  E. 

Carney, Research Fellow, DuPont Electronics & Communications, Circleville, OH 

“Ohio  Third  Frontier  PV  Program:  Development  of  Advanced  Durability  Sealants  for  Solar 

Cells,” John Maloney, Senior Scientist, Ferro Corporation, Independence, OH 

The Workshop concluded with a discussion of a possible materials‐centric roadmap for solar durability 

research and development in Ohio, and input from the attendees on the future path of PVIC. 

International visitors to the OSU PVIC site during FY12  included Dr. Beatriz Galiana  from Universidad 

Politécnica de Madrid, Spain, who spent much of her time at the OSU Nanotech West Lab as a Visiting 

Scientist.   She worked extensively with  IMR MTS Dr.  John Carlin on MOCVD of  III‐V photovoltaic cell 

growth  in  support of  three programs.   Her visit was partly  funded by  the Government of Spain and 

IMR Fiscal Year 2011 -2012 Annual Report

Page 34

Page 40: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

partly by one of the PVIC PIs, Steven A. Ringel. 

As  of  its  report  at  the  end  of  its  Third  Frontier  funding,  PVIC  in  total  (both  nodes,  at OSU  and  at 

University of Toledo) had created 172 for‐profit and 64 not‐for‐profit jobs in Ohio, and had resulted in 

$88.7M of follow‐on funding across its membership.  The latter dollar figure included $33M in Federal 

funds  that  came  from  a  broad  spectrum  of  programs  including  Departmetn  of  Development, 

Department of Energy, NIST, and multiple‐agency SBIR programs, a high  impact to the state of Ohio.  

This total follow‐on funding represents a ratio of 4.8 new dollars for every initial dollar of Third Frontier 

PVIC funding.  

PVIC INDUSTRY‐OSU RESEARCH COLLABORATIONS FY12 

Even though the state funding for PVIC has now completed its cycle, seven industry‐OSU collaborations 

involving PVIC member companies continue to thrive and grow, demonstrating the lasting success and 

sustainability  of  the OSU  node  of  the  PVIC Wright  Center  in  initiating  innovation.    In  FY12  Replex 

Plastics  (Mt. Vernon, OH)  continued  its work on  low‐concentration  (>20x) PV  systems,  collaborating 

with Robert  J. Davis  (Director, OSU Nanotech West Lab and Associate Director of  IMR) and also with 

Prof. Roger French of Case Western Reserve University; the team also includes Dovetail Solar and Wind 

(Athens,  OH),  a  highly  experienced  installer  of  alternative  energy  systems,  as  a  customer 

representative.   While  the  current world PV  economic  situation has become more  challenging with 

regard  to deployment of commercial PV systems, design and manufacturing knowledge gained  from 

the program has already spun‐off other products in, for example, the commercial daylighting and high‐

performance mirror arenas.  When their collaboration with OSU began in 2007, Replex personnel knew 

little or nothing about photovoltaics; as of the end of FY12 their personnel were lead authors on three 

PV‐related publications including a paper in the new IEEE Journal of Photovoltaics.  

GreenField Solar (Oberlin, OH) continued its collaborative development work on high concentration PV 

devices  and  systems  with  the  help  of  several  Nanotech  West  staff  members  and  engineering 

improvements to its Vertical Multijunction (VMJ) solar cells and associated modules; that work that will 

continue through FY13 and indeed into FY14.  

Four other PV‐related projects included PVIC‐OSU in FY12 and will continue to do so into FY13. Energy 

Focus  (Solon, OH) continued  its collaboration with the research group of Prof. Steven A. Ringel  (ECE, 

also  IMR  Director)  and  with  Nanotech West  Lab  /  IMR  Research  Scientist  Dr.  John  Carlin  in  the 

development of an off‐grid  lighting system based on the  III‐V on silicon technology developed by the 

Ringel group.  Natcore Solar (Oberlin, OH) continues to have two personnel based at OSU’s Nanotech 

West, working on  a  variety of PV‐related  coatings.   Process Technology  (Mentor, OH)  continued  its 

development of a liquid solution heater for ultrapure process applications, based on easier‐to‐control 

positive  temperature  coefficient  (PTC)  heating  elements.    Testing  of  the  beta  version  of  the  new 

IMR Fiscal Year 2011 -2012 Annual Report

Page 35

Page 41: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

product is planned to occur at OSU in FY13.  While the initial designs were targeted for the PV industry, 

it is now more likely instead that the largest first customers for the new product will be in other thin‐

film industries.  Prof. Paul Berger (ECE) continued his collaboration with Ferro Inc. (Independence, OH), 

StrateNexus  Technologies  LLC  (Dublin, OH)  and  the  Edison Welding  Institute  (Columbus, OH)  in  the 

development of advanced polymer sealants for PV module applications. 

 

Funding Agency: National Science Foundation  

Principal  Investigators:  PI: Ezekiel  Johnston‐Halperin, Co‐PIs: Siddharth Rajan, Roberto Myers, Harris 

Kagan, Steven A. Ringel, Fengyuan Yang 

Duration: 10/01/2009 – 09/30/2012 

Amount: $601,890 ($421,323 from NSF plus $180,576 cost share from The Ohio State University and 

Ohio Board of Regents Action Funds) 

Description:  Though  not  a  block  grant, we  include  this NSF Major  Research  Instrumentation  (MRI) 

award due to the strategic nature of this multi‐user  instrumentation and  its  joint  location within two 

IMR‐supported facilities housed in two colleges, and because it is a collaboration of three of the young, 

outstanding faculty members who were recruited as part of the IMR’s strategic faculty cluster hires in 

Materials Science and Engineering, Electrical and Computer Engineering and Physics.   

Figure 3 shows a conceptual diagram of how the diamond synthesis tool and the customized ammonia 

molecular  beam  epitaxy  (MBE)  system  acquired  through  this MRI  interface with multiple  research 

centers and groups.   The  locations of the systems within two  IMR major user  facilities, will allow  for 

their  long‐term prosperity as core  infrastructure resources.   Because the acquisition enables a strong 

path  forward  for  future  collaborative  and  externally  funded  projects  through  a  unique  coupling  of 

materials  systems  that  many  in  the  field  are  only  now  realizing  may  be  possible,  IMR  provided 

significant funding for lab renovation so that the necessary equipment  integration could be achieved.  

IMR  also  provided  cash  towards  cost  share  for  some  of  the  equipment,  and  IMR  is  providing  the 

necessary administration of all aspects of the grant itself.  IMR looks to this effort to be one of several 

key paths forward for OSU leadership in the next generation of materials research. 

 

MRI: ACQUISITION OF A HYBRID DIAMOND/III‐N SYNTHESIS CLUSTER TOOL   NATIONAL SCIENCE FOUNDATION MATERIALS RESEARCH INSTRUMENTATION  AWARD  

IMR Fiscal Year 2011 -2012 Annual Report

Page 36

Page 42: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

HIGHLIGHTS AND ACCOMPLISHMENTS OF THE MRI FOR FY2012 

The two growth tools purchased through this award add significant new functionality to Ohio State’s 

materials  synthesis  program.    For  example  Figure  4  shows  electron  microscopy  and  Raman 

spectroscopy of a poly‐diamond  film deposited on a  silicon  substrate.   Since  June 2011 Dr. Camelia 

Margineau,  a  Research  Associate  in  the NSL  facility,  has  led  the  effort  to  commission  this  tool  by 

“dialing  in”  the  growth  parameters  for  this  benchmark  growth.    This  diamond‐on‐insulator  (DOI) 

growth has  applications  ranging  from  high‐frequency micromechanical  systems  (MEMS),  to  thermal 

dissipation  layers for high power electronics, to radiation‐hard detectors for the  large hadron collider 

(LHC) at CERN.  Of course, this work only scratches the surface of the materials that this new tool will 

ultimately be  able  to produce, with OSU  researchers  already working on projects  ranging  from  the 

growth  of  perfect  single  crystals  of  diamond  for  experiments  that  push  the  frontiers  of  quantum 

measurement to the synthesis of diamond nanowires only tens of nanometers  in diameter but many 

microns  long.   For example, Dr. Margineau has  recently demonstrated  the  incorporation of nitrogen 

impurities into these polycrystalline films without significant degradation in the material quality.  This 

is a necessary step  in  forming nitrogen‐vacancy defects, which have been shown  to have  interesting 

Figure 3. Diagram of how the new equipment acquisitions through the MRI integrate across various traditional disciplines and other interdisciplinary centers within the IMR purview, in addition to international collaborations.

IMR Fiscal Year 2011 -2012 Annual Report

Page 37

Page 43: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

room‐temperature  quantum  properties  that make  them  useful  for  quantum  information,  and  have 

direct bearing on ongoing research at Ohio State ranging from single‐molecule measurements of DNA‐

protein complexes to fundamental studies of the interaction of heat and magnetism. 

Figure 4 SEM image of polycrystalline diamond film (scale bare is 3 micron). Inset is Raman spectroscopy revealing a peak width of 7 cm-1.

While  the  diamond  synthesis  tool was  ordered  as  a  “turn  key”  system  the  second major  piece  of 

equipment purchased through this proposal, an ammonia‐based molecular beam epitaxy (MBE) system 

for the synthesis of nitride semiconductors, was designed according to custom specification provided 

by Profs. Roberto Myers and Siddharth Rajan.   This  system will  complement  their existing  synthesis 

tool,  a  nitrogen‐plasma  based  system,  by  allowing  the  synthesis  of  high‐luminosity  electro‐optical 

devices  in  addition  to  the  high‐mobility,  high‐power  devices  already  being  produced.    The 

customization of the new tool will provide the ability to not only grow new material, but enables joint‐

growths between the two systems (i.e. a sample is started in one chamber and then transferred to the 

other). 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 38

Page 44: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Collaborations with industry are essential for providing true impact to the advancement of innovation in 

technology.   Within IMR’s purview we have extensive and pervasive  industry  involvement  in a number 

of  research  areas.   Total  annual  research  expenditures  from  industry  sources  to OSU was over $120 

million  in FY2010 according  to National Science Foundation  reports  released  in September 2012, and 

NSF  ranked  OSU  2nd  of  all  U.S.  universities  for  industry‐sponsored  research  that  year.    Joint  R&D 

activities with  industry  come  in many  forms  – major  externally  funded  consortia  driven  to  advance 

innovation as well as  the  local economy, externally‐funded partnerships  that are  targeted  to  specific 

technologies,  internally‐created  consortia,  partnerships  through  existing  centers  and  their  activities, 

partnerships to enable industry access to shared experimental and core facilities, and individual faculty‐

company collaborations for funded research that are too numerous to  list.   Some of the primary areas 

for  large  industry  interactions  are  in  biobased  materials  and  products,  photovoltaic  technologies, 

advanced manufacturing processes,  including  integrated  computational materials engineering  (ICME), 

lightweight alloys, advanced polymers and composites, micro‐and nano‐fabrication of devices, materials 

characterization and teraherz measurement techniques.  Many of the larger consortia are long standing 

programs now supported by IMR, and IMR was  instrumental  in developing the Industrial Liaison Office 

(ILO), located at IMR’s Nanotech West facility and led by Dr. Sharell Mikesell, former Co‐director of the 

Center  for Multifunctional Polymer Materials and Devices  (CMPND) and  founding director of the Ohio 

Polymer Strategy Council  (CMPND was OSU’s  first Wright Center of  Innovation, which  included more 

than  50  companies  as  active  partners  during  its  core  funding  cycle  and  was  headquartered  at  the 

Nanotech West Lab.).    

This  section  of  the  report  provides  a  representative  listing  of  some  of  the  more  major  industry 

collaboration activities, and we provide some expanded discussion on several of our newer initiatives of 

the past year that were strategic targets identified by IMR in the past year or two.  Note that extensive 

discussion of industry collaborations are also found in other sections of this report, particularly for PVIC, 

Nanotech  West,  the  ENCOMM  Nanosystems  Lab,  and  through  the  IMR  Industry  Challenge  Grant 

Program (see pages 31, 67, 72, and 66). 

 

 

 

 

 

 

INDUSTRY COLLABORATIONS AND PARTNERSHIPS 

IMR Fiscal Year 2011 -2012 Annual Report

Page 39

Page 45: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Members  of  the  OSU  materials  community  are  actively  involved  in  three  NSF  Industry/University 

Cooperative Research Centers  (I/UCRCs),  leading  two and collaborating on  the  third.   The NSF  I/UCRC 

program develops long‐term partnerships among industry, academia, and government.  The centers are 

catalyzed by a small investment from NSF but are primarily supported by industry center members, with 

NSF taking a supporting role in the development and evolution of the center.  Each I/UCRC contributes 

to  the nation's  research  infrastructure base and enhances  the  intellectual capacity of  the engineering 

and science workforce through the integration of research and education. 

SMART VEHICLES CONCEPTS (SVC) I/UCRC PROGRAM 

The Ohio State University and Texas A&M University, Center Director: Rajendra Singh, Mechanical and 

Aerospace  Engineering;  Center  Deputy  Director:  Marcelo  Dapino,  Mechanical  and  Aerospace 

Engineering 

Description: The Smart Vehicles Concepts Center was successfully launched by the lead institution (The 

Ohio  State University)  in  July  2007  and was  formally  granted  Phase  II  status  beginning  July  1,  2012 

through June 30, 2017.  Support for the SVC comes through a grant by the National Science Foundation 

and  through  industry  sponsorship.   Current projects  include  the development of  smart materials and 

devices for vehicle use.   This pre‐competitive technology  is shared among contributing members.   The 

mission of the Smart Vehicle Concepts Center (SVC) is as follows: (1) Conduct basic and applied research 

on  the  characterization of  smart materials,  and  the development of  adaptive  sensors,  actuators  and 

devices  (based  on  active materials  and  control methods)  for  application  to  vehicle  sub‐systems  and 

components; (2) Build an unmatched base of research, engineering education, and technology transfer 

with  emphasis  on  improved  vehicle  performance;  and  (3)  Develop  well‐trained  engineers  and 

researchers (at the MS and PhD levels) with both experimental and theoretical viewpoints.  The Center 

focuses  on  novel  and  emerging  trends  in  vehicle  design  where  smart  structures,  next‐generation 

suspension or mounting devices, vastly  improved actuators or valves,  intelligent sensors and  improved 

health monitoring and diagnostic systems are  integrated to develop ground and aerospace vehicles of 

the future. Fundamental and applied research  is conducted to analyze, model, characterize and design 

innovative  engineered  components  capable  of  providing  built‐in  actuation,  precision motion  control 

features,  self‐diagnostics,  and  self‐healing  capabilities  while  satisfying  increasingly  stringent  vehicle 

design requirements.  

SVC  sponsors  currently  include  8  industrial  members  (2  with  2  memberships  each  and  1  with  3 

memberships), 2 affiliate members, and 3  invited observers.     Industrial Members at OSU: Bridgestone 

Americas Tire Operation, LLC; Eaton; Honda R&D; Hyundai‐Kia Motors; MIT Lincoln Laboratory; Moog 

CURRENT NATIONAL  SCIENCE  FOUNDATION  INDUSTRY/UNIVERSITY COOPERATIVE RESEARCH CENTERS (I/UCRCS) INVOLVING IMR MEMBERS 

IMR Fiscal Year 2011 -2012 Annual Report

Page 40

Page 46: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Inc.;  Toyota  Research  Center;  Transportation  Research  Center  Inc.; Affiliate Members  at OSU:  YUSA, 

F.tech R&D; and Invited Observers at OSU: MSC Software; LMS Software; Romax. 

CENTER  FOR  INTEGRATIVE  MATERIALS  JOINING  SCIENCE  FOR 

ENERGY APPLICATIONS (CIMJSEA) 

The Ohio State University  , Lehigh University  , University of Wisconsin  ‐ Madison  , Colorado School of 

Mines  ;  funding  began  July  2009;  Center  Director:  Sudarsanam  Suresh  Babu, Materials  Science  and 

Engineering; Center Deputy Director: John C Lippold 

Description:    This  I/UCRC  focuses  on  scientifically  based methodologies  for  assessing material weld‐

ability/join‐ability  that span  length  (nm  to micron) scales.   Global demand  for energy will continue  to 

push  the  envelope  on  existing materials  and  stimulate  the  development  of  advanced materials with 

desirable engineering properties.   Throughout  the history of materials  innovation,  there are  instances 

where  the  application  of  new,  high  performance materials  has  been  limited,  or  precluded,  by  the 

inability to join them.  A basic problem along the path from development to implementation is the lack 

of a structured, scientifically based methodology for determining material “weldability.”  The concept of 

weldability occurs at the  intersection of the  joining process and the materials’ reaction to the thermal 

and mechanical conditions that are imposed by the process.  Considering the diverse need for materials 

in energy industries, it is critical to develop scientific methodologies to join these materials.  The center 

will work on research projects that will include one or more of the following topics: (1) advanced joining 

processes, (2) innovative process control and automation, (3) material development, (4) weldability and 

characterization,  as  well  as,  (5)  integrated  process modeling.    Two  broad  application  areas  will  be 

related to (1) extending the life of material joints within the aging energy infrastructure, as well as, (2) 

reduction  of  the  time  and  cost  of  deploying  advanced/hybrid  materials  for  the  new  energy 

infrastructure.  The center will also address the critical need for engineering graduates with welding and 

joining background.   

Center  Members:  American  Engineering  Manufacturing  Inc;  Applied  Optimization  Inc;  Cameron 

Computherm  LLC;  Cummins;  Edison Welding  Institute;  ESI  North  America;  GE  Energy  Infrastructure; 

Hobart  Brothers  Co  (ITW);  Honda;  Idaho  National  Laboratory;  Los  Alamos  National  Laboratory; 

Medtronic  Inc; NASA; Oak Ridge National Laboratory; PPL Generational LLC; Pratt and Whitney; Rolls‐

Royce  Corporation;  SFP Works  LLC;  Special Metals;  The  Babcock  and Wilcox  Company;  The  Lincoln 

Electric Company; Thermo‐Calc Software Inc; UW Foundation; Wolf Robotics LLC 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 41

Page 47: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

TELECOMMUNICATIONS (CONNECTION ONE) 

Arizona  State  University,  The  Ohio  State  University,  University  of  Hawaii,  Rensselaer  Polytechnic 

Institute,  University  of  Arizona;  funding  began  2002; OSU  Co‐Directors:  John  Volakis,  Electrical  and 

Computer Engineering and Mohammed Ismail, Electrical and Computer Engineering 

Description: Connection One is a National Science Foundation Industry/University Cooperative Research 

Center working closely with private  industry and  the  federal government on various projects  in  radio 

frequency (RF) and wireless communication systems, networks, remote sensing, and homeland security.  

The Center’s mission  is to develop the technology to enable end‐to‐end communication systems  for a 

variety of applications, ranging  from cellular to environmental and defense applications.   The  focus of 

the  center  is  to  carry  out  collaborative  and  interdisciplinary  activities  with  a  focus  on  the  next 

generation wireless telecommunication systems (passive and active components).  Ohio State supports 

these  areas  with  long  standing  expertise  in  communication  systems,  signal  processing,  integrated 

circuits and  systems, antennas, electromagnetics and device physics.   As part of  the Center,  the OSU 

team concentrates on: (1) focus on the experimental realization and evaluation of wireless components 

and  systems,  and  (2)  integration  with  industry  needs  and  accommodate  transitions  using  long 

established industry collaborations and working relationships. 

Center Members: Agilent Technologies; Altera; Berrie‐Hill Research; Commscope; Esensors; Hydronalix; 

Intel;  NeWave  Sensor  Solutions;  Orton  Ceramic;  Qualcomm;  Raytheon;  Ridgetop  Group;  Samsung 

Telecommunications;  Sensor  Electronic  Technology;  Space Micro;  Texas  Instruments;  U.S.  Air  Force 

Research Laboratory; U.S. Army; U.S. Army – CERDEC; U.S. Central Intelligence Agency; U.S. Department 

of Energy; U.S. Navy; Zomega Terahertz 

 

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 42

Page 48: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

A major  component of  the Ohio Department of Development  is  the Ohio Third Frontier program, an 

internationally  recognized  technology‐based  economic  development  initiative  that  is  successfully 

changing the trajectory of Ohio's economy.   The $2.3 billion  initiative supports existing  industries that 

are transforming themselves with new, globally competitive products and fostering the  formation and 

attraction of new companies in emerging industry sectors.  Ohio Third Frontier provides funding to Ohio 

technology‐based  companies, universities, nonprofit  research  institutions,  and other organizations  to 

create new technology‐based products, companies, industries, and jobs.  The Ohio State University has 

benefited  greatly  from  the  Ohio  Third  Frontier’s  investments  in  innovation,  and  the  following  OTF‐

funded projects were actively engaged in materials research during the reporting period: 

These 15 OTF awards include 8 projects directly awarded to The Ohio State University, and 7 projects to 

the private sector with whom OSU researchers are collaborating. 

CAR  Center  of  Excellence  for  Electric  and  Plug‐in  Hybrid  Vehicle  Technology,  Principal 

Investigator: Giorgio Rizzoni, July 2009 – June 2012; $3,000,000 

Development of thermal management solutions for  lithium  ion batteries, Principal Investigator: 

Yann Guezennec, January 2010‐January 2012, $50,000 

Center of Excellence for Energy Storage Technology, Principal  Investigator: Giorgio Rizzoni, July 

2010‐July 2013, $3,000,000 

Center  for high performance power electronics  (CHPPE), Principal  Investigator: Longya Xu,  July 

2010‐2013, $3,000,000 

Integrated ultrasonic additive manufacturing and laser machining for realization of novel smart 

structures, Principal Investigator: Marcelo Dapino, May 2011‐January 2012, $1,551,987 

Low‐cost  low‐concentration photovoltaic  (LC2PV)  systems  for mid‐northern  latitudes, Principal 

Investigator: Robert Davis, May 2011‐January 2012, $257,500 

Commercialization  of  Bio‐Based  and  Nano‐Tailored  Composites  for  Industrial  Applications, 

Principal Investigator: Stephen Myers, July 2009‐July 2012, $499,977 

Ohio  Research  Scholars  Program:  Technology  Enabling  and  Emergent  Materials,  Principal 

Investigator: Steven A. Ringel, August 2008 – November 2013, $18,153,846 

Wires and Coils  for Superconducting Fault Current Limiters, through Hyper Tech Research,  Inc., 

OHIO THIRD FRONTIER FUNDING  

IMR Fiscal Year 2011 -2012 Annual Report

Page 43

Page 49: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

OSU PI: Michael Sumption, May 2009 – May 2012, $250,000 

Advanced Composites: The New Generation of Materials Powered by Nanotechnology, through 

Zyvex Performance Systems, OSU PI: Sharell Mikesell, May 2009‐May 2012, $150,600 

Magnesium  Diboride  for  Next  Generation MRI,  through  Hyper  Tech  Research,  Inc.,  OSU  PI: 

Michael Sumption, May 2009 – May 2012, $650,000 

Cell Manufacturing  for  100+kW  SOFC  Power Generation  System,  through NexTech Materials, 

Ltd., OSU PI: Mark Walter, April 2008‐April 2013, $150,000 

Agile Hybrid Joining of Fuel Cell Bipolar Plates, through American Trim LLC, OSU PI: Glenn Daehn, 

April 2008‐April 2013, $160,000 

Advanced Materials: Granule‐Based Delivery Systems, through The Andersons, OSU PI: Stephen 

Myers, February 2008‐December 2011, $2,402,470 

High Efficiency Photovoltaic Enabled Off‐Grid Solar/Led Lights, through Energy Focus, Inc., OSU PI: Steven 

A. Ringel, November 2011 – October 2013, $345,000 

 

 

The mission of CAMM  is  to develop research  tools  for  the accelerated  insertion of new materials and 

optimization of existing ones.   This  is done by developing and  integrating computational modeling and 

simulation  with  advanced materials  characterization  focused  on  electron micrsocopy methods.    An 

integration  of  academia  and  industry,  CAMM  performs world  class  R&D  and  develops  technologies 

which  are  captured  in  products  that  create wealth  and  jobs,  and  provides  an  enhanced  educational 

process.  Inputting significant effort in developing and integrating electron microscopy characterization 

methods  and modeling,  CAMM  develops  new  research  tools  and methodologies  to  accelerate  the 

insertion of new materials  into commercial products.   CAMM  is part of a world‐class characterization 

facility with  remote  access  capabilities  to  assist  our  industrial  and  academic  colleagues who  do  not 

possess such equipment.   CAMM provides novel contribution  to educational outreach  for high school 

students with an emphasis on enhancing the learning of STEM.  Taking part in an industrial partnership 

program,  CAMM  includes  support  of  students,  providing  access  to  equipment  and  technologies 

developed.  There are 20 active industrial CAMM members. 

 

CENTER FOR THE ACCELERATED MATURATION OF MATERIALS (CAMM) 

IMR Fiscal Year 2011 -2012 Annual Report

Page 44

Page 50: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

Funding Agency: Alcoa Foundation  

Principal Investigators: PI: Glenn Daehn, Co‐PI: Anthony Luscher 

Awarded: July 1, 2011 

Amount: $400,000 

Description:    The  Ohio  State  University  Institute  for  Materials  Research  was  awarded  a  $400,000 

development  grant  by  the  Alcoa  Foundation  in  support  of  innovative  design  and  manufacturing 

technologies  that will enable  the creation of  lighter, more environmentally  friendly vehicle structures.  

The  grant will  further  research  in  the  area of material  lightweighting  for  transportation  applications.  

Professor Glenn Daehn of Ohio State’s Department of Materials Science and Engineering  is serving as 

project  lead,  with  Professor  Anthony  Luscher  in  the  Department  of  Mechanical  and  Aerospace 

Engineering serving as co‐investigator.  There is a growing recognition that the lightest weight and most 

affordable  vehicles  in  the  future will  not  be made  from  one material,  but many  different  ones.    In 

addition, there  is a pressing need to reduce the mass of all classes of wheeled vehicles,  including  light 

automobiles,  trucks,  and  passenger  busses.   Mass  reduction  directly  improves  fuel  economy  and  is 

especially  important  to electric and alternative powertrains.   Vehicles  in  the  future will need  to have 

unique  structural  designs  in  order  to  achieve  these  weight  savings.    This  grant  to  The  Ohio  State 

University  is  part  of  Alcoa  Foundation’s  $4  million  “Advancing  Sustainability  Research:  Innovative 

Partnerships  for Actionable Solutions”  initiative  that  funds 10 global sustainability research projects  in 

Australia, Brazil, Canada, China, Russia and  the United States.   The Alcoa Foundation grant will allow 

OSU to study new and  innovative joining strategies that are tailored to each material combination and 

each loading type.   

HIGHLIGHTS AND ACCOMPLISHMENTS OF THE ALCOA FOUNDATION 

AWARD DURING FY 2012 

Led by Dr. Daehn and Dr. Luscher,  the  research conducted  this year  through Alcoa Foundation award 

funds has provided demonstrator projects  for novel  joining methods and  innovate uses of aluminum 

through  both  traditional  research  and  student  engagement.    To  date,  this  project  has  shown  the 

following successes:   

CURRENT  ADVANCING  SUSTAINABILITY  RESEARCH:  INNOVATION PARTNERSHIPS FOR ACTIONABLE SOLUTIONS   ALCOA FOUNDATION AWARD 

IMR Fiscal Year 2011 -2012 Annual Report

Page 45

Page 51: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Research: New results have been developed on the strength and fatigue resistance of conformal 

interference joints, which can be used to join arbitrary dissimilar materials.   

Student Engagement:   15 OSU undergraduate and graduate students have engaged (research/

senior capstone projects) with  the research related  to  this project. Research spin‐off activities 

will reach high school students.   

Outreach:    A  Sustainable  Design  and  Manufacturing  lecture  series  launched  which  hosted 

traditional  and  Pecha‐Kucha  short  format  presentations  to  students  and  practicing 

professionals.    

Facilities:  Two OSU  laboratories  are being upgraded  to  support work on  light  structures  and 

equipment to support innovative forming and joining has been added.   

Lasting Impact: This work was instrumental in nucleating OSU commitment to a new Center for 

Design and Manufacturing Excellence  (CDME)  that  is now being planned as a  long‐term multi‐

million dollar per year research and outreach activity.   

 

 

 

 

 

 

 

 

 

 

 

 

The Alcoa Foundation award allows OSU faculty and students to design lightweigh, affordable vehicles.  The research includes modeling (example above) and studying new and innovative joining strategies that are tailored to each material combina‐

tion and each loading type  

IMR Fiscal Year 2011 -2012 Annual Report

Page 46

Page 52: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

RESEARCH 

Research  has  led  to  the  creation  of  several  optimal  structures  for  crash  test,  repeated  loading  and 

fatigue with fatigue and overload modes being demonstrated.  With this, methods of joining aluminum, 

magnesium,  steel,  and  composites  are  being  optimized.   Most  recently,  research  on  vaporization  of 

metal  foil  for  collision  welding  dissimilar  metals  has  been  proven  as  a  viable  joining  solution.  

Concurrently, crash analysis of multi‐material vehicle structures using LS‐DYNA are being developed and 

improved upon in order to develop safe designs efficiently.  

Completed  research demonstrator projects  include  the creation of a multi‐material  innovative bicycle 

design  as  well  as  a  multi‐material  motorcycle  frame.    The  later  design,  once  fully  complete,  will 

demonstrate transfer of load between two planes as well as structural members in bending.  As research 

is being completed, related  technical publications have been completed and  include one  invited book 

chapter and three papers written and presented at International Conference on High Speed Forming in 

Dortmund, Germany (full citations provided in Appendix B).   

STUDENT ENGAGEMENT 

SAE BAJA DEMONSTRATOR PROJECT 

A  team of OSU engineering  students was able  to demonstrate  the effectiveness of a new  lightweight 

multi‐material (Aluminum‐Steel) control rod developed as part of this research with application on the 

recent Society of Automotive Engineers (SAE) Baja vehicle.  The design was joined using electromagnetic 

forming and resulted in a 55% weight savings over the original design.  The team was advised by Dr. Leo 

Rusli of Dr. Anthony Luscher’s research group.   Highlights and results of this project were published  in 

the SAE MOMENTUM Magazine in November 2011.   

UNDERGRADUATE STUDENT CAPSTONE PROJECT 

Research  has  been  devoted  to  increasing  the  sustainability  of  shipping  goods  around  the world  by 

reducing the mass of the shipping pallets and using materials that  last  longer and are  fully recyclable.  

Wooden  shipping pallets deforest up 100 million acres of  forest each year and are generally  “single‐

use,” leading them to be discarded and occupy 4 percent of solid waste in landfills.  They can also carry 

invasive  species  from  one  region  to  another.   Aluminum  shipping  pallets  are  lighter,  stronger,  fully‐

recyclable and have a  longer  life  span  that  should be  in  the decades,  rather  than months.   However, 

current aluminum shipping pallets cost about $200 each – 10 times the cost of wooden pallets. 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 47

Page 53: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

 

 

 

 

 

 

Based on this need, a group of OSU engineering undergraduate students advised by Dr. Glenn Daehn, as 

part of their Senior Capstone Project developed and built two prototype designs of aluminum shipping 

pallets that meet the international standard of load bearing capacities of 2000 lbs (Dynamic) & 6000 lbs 

(Static).  And the design leverages highly‐automated manufacture that should reduce cost by half.  These 

new  pallets  will  be  100%  recyclable  made  of  a  widely  available  aluminum  alloy  and  will  use 

manufacturing methods that maximize efficiency.  

STUDENT RESEARCH PROJECTS  

Development of a hybrid press and electromagnetic forming method to improve the formability of high‐

strength sheet metal is being done by Ryan Brune who is advised by Dr. Glenn Daehn.  This will enable 

more energy efficient,  local and agile production of components such as door  inner panels  from high 

specific strength materials such as aluminum and high strength steels thus enabling mass reduction  in 

vehicles.   

Development of new test methods for measuring the flow strength of materials at high strain rates  is 

being done by Shweta Gupta who is advised by Dr. Glenn Daehn.  Preliminary results were presented at 

an  invited presentation: "Metals Far from Equilibrium  ‐ Bridging the Divide Between Experimental and 

Atomistic‐Modeling  Scales"  at  the  International  Conference  on  Computational  and  Experimental 

Engineering and Sciences 2012, which was held  from April 30  ‐ May 4, 2012,  in Crete, Greece.   Glenn 

Daehn’s  presentation  “Thoughts  on  Easily‐Simulated  Tests  for  Plastic  Behavior  (i.e.,  high  strain  rate 

tests),” covered the novel material testing performed for a range of high strain rates as being developed 

by Shweta.  

 

 

 

 

This shipping pallet design is just one of the actionable solutions 

resulting from this research, and will have further implication in the 

automotive supply chain and beyond. 

IMR Fiscal Year 2011 -2012 Annual Report

Page 48

Page 54: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

OUTREACH 

In  2012,  a  new  Sustainable Design & Manufacturing  (SDM)  Seminar  Series was  launched  to  provide 

ongoing education of both engineers in training and practicing engineers on a holistic approach to multi‐

material structural joining.  Three seminars took place this year by representatives from General Motors 

and  Alcoa,  and  various  speakers  took  part  in  a  Pecha  Kucha‐style  seminar  on  topics  related  to 

sustainable design, materials and manufacturing. 

FACILITIES 

Development  is  underway  of  targeted  multi‐material  structure  building  facilities,  which  will  be 

designated as Alcoa Foundation gifts.  Two research facilities on OSU’s Columbus campus are currently 

being  upgraded,  renovated,  and  used  for  housing  new  related  equipment.    The OSU  Edison  Joining 

Technology  Center  is  obtaining  laser  impact welding  equipment  offering  a  joining  process with  the 

potential  to  metallurgically  join  almost  arbitrary  dissimilar  metals.    Prof.  Daehn’s  research  lab  is 

acquiring a RivTac Machine  in order to demonstrate high velocity self‐piercing rivets for multi‐material 

structures.   

LASTING IMPACT 

The Alcoa  Foundation  gift has  helped  to nucleate  the  development of  the OSU Center  for Design & 

Manufacturing  Excellence  (CDME)  which  is  currently  underway  and  will  serve  as  a  targeted multi‐

material  structure  building  facility.    This  center will  serve  the manufacturing  community  through  a 

unique  partnership with  The  Ohio  State  University,  and more  details  are  anticipated  in  next  year’s 

annual report.   

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 49

Page 55: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Toward the end of FY2011,  IMR along with several other key technology areas within Ohio State, was 

named by the Ohio Board of Regents (OBR) as a Center of Excellence, which was broadly aligned with 

manufacturing from the perspective of the State and thusly named the Ohio State Center of Excellence 

in Materials, Manufacturing Technologies and Nanotechnology.   To  that end,  the Ohio Manufacturing 

Institute  (OMI)  was  organized  by  IMR  member  Prof.  Glenn  Daehn  to  service  the  needs  of  Ohio 

manufacturers by connecting these needs with the technical resources available at OSU, including labs, 

equipment,  faculty and students,  in order  to provide  technical solutions.   One of  the earlier  IMR‐OMI 

actions was the successful creation of a strategic partnership with Alcoa Foundation, which is described 

separately  in  this  report  in  the  previous  section.    OMI  serves  as  a  single  point  of  entry  for  Ohio 

manufacturers  to  easily  access  the  deep  technical  university  resources  and  promote  collaborative 

relationships  through  teamed  research and development projects.   OMI has been working  to develop 

mechanisms  to  allow  operation  at  the  speed  of  business  due  to  its  lean  staff,  simple  contract 

mechanisms with low overhead, and its one‐stop‐shopping experience for customers to access a wealth 

of resources through one entity.  The intent has been that mechanisms and procedures would be piloted 

at Ohio  State and  could be adapted or ported  to other universities  in  the University  system of Ohio 

(USO).    OMI  is  working  to  reach  its  goal  of  improving  local  manufacturing  capabilities  by  making 

university resources more user‐friendly for industry, providing deep technical development offerings to 

industry  through  industry  partnerships,  and  offering  unique  technical  outreach  and  engagement 

opportunities. 

ENGINEERING SERVICE CONTRACTS 

Last  year,  the Ohio Manufacturing  Institute  (OMI)  successfully  created and  launched  the Engineering 

Service  Contract  (ESC),  a mechanism  that  has  since  been  used many  times  in  the  OSU  College  of 

Engineering  in order  to expedite  technical contract work between  industry and universities.   The ESC 

provides  a quick  and  effective way  to  engage with university  resources  through  a no‐nonsense  easy 

contract  process where  contracts  can  be  executed  in  less  than  24  hours,  enabling  collaborations  to 

move at the speed of business.  The contract is simple and the project scope is described in a simple one

‐page  attachment  to  the  contract.    A  customer  satisfaction  survey  was  created  and  distributed  to 

industry  collaborators  to  capture  satisfaction  in working with OMI,  and  100% of  survey  respondents 

were  satisfied with  the  speed of  completion of  their project  and  results of  their  project,  and would 

recommend an industry colleague to OMI for future technical services.  Year‐over‐year growth has been 

seen in Engineering Service Contract engagements with over $200K invoiced this past year.   

 

THE OHIO MANUFACTURING INSTITUTE 

IMR Fiscal Year 2011 -2012 Annual Report

Page 50

Page 56: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

CO‐LOCATED INTERNSHIPS 

OMI launched a unique student‐industry engagement program in spring 2011, the Co‐Located Internship 

(C‐LI) program.  This internship program is structured such that OSU students are employees of an Ohio 

manufacturing company and subject to its supervision and human resource rules.  The student works on 

a pre‐determined project under the guidance of an OSU faculty mentor while maintaining full access to 

all OSU resources  including  labs, equipment, and computer programs  in order  to  further enhance  the 

project impact.  This structure gives an unprecedented and efficient mechanism for technology transfer 

from  the  university  to manufacturers.    Companies  that  have  participated  in  this  pilot  year  program 

include: Sutphen (Hilliard, OH) and Hendrickson (Canton, OH) with additional anticipated engagements 

from Abrasive Technology  (Lewis Center, OH) and others.   The program has gained  the  financial seed 

support  of  a  $45K  two‐year  pilot  fund  through  the  Honda‐OSU  Partnership.    Plans  are  in  place  to 

develop  this  into  a  self‐sustaining  long‐term  program.    Both  the  Sutphen  and  Hendrickson  C‐LI 

engagements resulted in positive industry feedback and job offers extended to both students.   

QUANTITATIVE LEAN 

The Ohio Manufacturing  Institute  is playing a valuable role  in deploying quantitative  lean  initiatives to 

Ohio manufacturers through a partnership with OSU’s Dr. Shahrukh Irani and his Job Shop Lean research 

group.  OMI has recruited Dr. Irani to serve as a faculty mentor to several Co‐Located Internships in the 

pilot year.  In addition, OMI has played an integral role in facilitating the launch of the Polymer Ohio e‐

portal  by  investing  in  software  development  to make Dr.  Irani’s  PFAST  software  easily  accessible  to 

manufacturers.    PFAST  is  a  unique  software  package  developed  at  OSU  and  utilized  to  determine 

optimum plant layout and work flow.   

TECHNICAL SEMINARS, CONFERENCES & MEETINGS 

In  addition  to  the  technical  thrust  areas  identified,  OMI  has  played  host  to  a  number  of  technical 

seminars, conferences and meetings including the following:   

Co‐hosted  the 2011  Job  Shop  Lean Conference  at  The Ohio  State University,  September  5‐7, 

2011.   

Hosted  Kevin  Kramer,  President  of  Alcoa  Growth  Initiatives,  for  a  lecture  on  Corporate 

Sustainability on January 13, 2012. 

Hosted  unique  technical  exchange  with  the  Pecha  Kucha  on  Sustainable  Manufacturing, 

Materials & Design on January 19, 2012. 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 51

Page 57: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Hosted Harry Moser, Founder of  the Reshoring  Initiative,  to  speak about benefits of bringing 

manufacturing back to the U.S. on January 26, 2012.   

Hosted  Dr.  Alan  Luo,  Technical  Fellow  at  General Motors  for  seminar,  “Alloy  Development, 

Manufacturing and Design for Light Metals Applications” on April 10, 2012.   

TECHNICAL SHORT COURSE DEVELOPMENT 

OMI  is developing non‐credit short courses targeted towards Ohio manufacturers’ technical workforce 

needs.  Surface Modeling & Design Using CATIA v6 is the first in this series of short courses that will be 

launched in July 2012.  With this short course, OMI is pursuing a collaborative partnership with the Ohio 

Supercomputer Center (OSC) to host virtual CATIA seat  licenses.   OMI short course participants will be 

given  Ohio  State  University  certificates  of  completion.    In  addition,  OMI  is  pursuing  state  of  Ohio 

recognition  of  completed  courses  with  support  from  the  ODoD  Workforce  Development  group.  

Additional  courses are being developed and  include  topics  such as  casting, assembly design, and  job 

shop lean implementation.   

POLICY AND MANUFACTURING ENVIRONMENT 

The Ohio Manufacturing Institute is serious about affecting policy decisions at the state and federal level 

in order to ease the burden on US manufacturers and grow the  local manufacturing economy.   Due to 

this commitment, OMI has hosted, presented, and played a key role in the following meetings:   

Manufacturing Policy Forum ‐ OMI has been making strides towards establishing a core team of 

manufacturing  policy  experts  which  can  work  towards  influencing  the manufacturing  policy 

environment.  In collaboration with the OSU John Glenn School of Public Policy and OSU’s Fisher 

College  of  Business,  OMI  plans  to  host  a Manufacturing  Policy  Forum  in  fall  2012  to  bring 

together  policy  influencers  as  well  as  manufacturing  thought  leaders  to  discuss  why 

manufacturing  is  important and what we can do  to  improve  the manufacturing climate  in  the 

state  and  the  region.    The  anticipated  result  of  this  forum  will  be  white  papers  including 

recommendations for path forward.   

Company Recruitment – OMI   s a strong collaborator with Columbus2020 and as part of that 

collaboration has been actively  involved  in meetings and tours with several  industrial partners 

considering relocation to the central Ohio region.   Access and understanding of the deep OMI 

facilities and expertise offer a powerful non‐cash incentive to companies relocating to Ohio.   

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 52

Page 58: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

FUTURE OF OMI 

OMI desires to continue bringing value to the Ohio Department of Development and the OSU College of 

Engineering and as we  look ahead to our next year of operation, we aim to serve as a state pilot for a 

University MEP  in  order  to  further  deploy  technical  university  resources  to Ohio manufacturers  for 

economic development.   Specifically, OMI plans to focus on the following  initiatives, while maintaining 

the current activities and support services:   

Align with the state MEP in order to provide further technical assistance to Ohio manufacturers 

in order to improve competitiveness and foster economic development.   

Continue focus on development and deployment of technical short courses in order to serve the 

Ohio  manufacturing  workforce  development  needs  at  the  technical  professional  level.  

Collaborate with Board of Regents and  the ODoD Workforce Development group  to  find new 

and innovative ways to further address current and future technical workforce needs.    

Further  our web  presence  in  order  to  act  as  a  portal  between manufacturers  and  the  deep 

research assets including the USO and other national labs.   

Deepen our partnership with the Ohio Department of Development, Ohio Board of Regents, and 

the Ohio Department  of  Education  goals  and  initiatives  in  order  to  attract,  retain,  and  grow 

manufacturing and technical competency in the State.   

Our NSF‐funded MRSEC  is  engaged  in  targeted  industrial  collaborations with  three  companies:  Lake 

Shore Cryotronics, Westerville, OH; Traycer Diagnostics, Columbus, OH; and IBM, Yorktown Heights, NY.  

Lake  Shore  Cryotronics  is  a  local  company,  spun  out  of OSU more  than  25  years  ago,  that  holds  a 

dominant position  in  the  field of  sensors and electronics  instrumentation.    In autumn 2011 CEM and 

Lake Shore were jointly awarded a grant from the Ohio Department of Development Ohio Third Frontier 

funds  to  develop  a  cost‐effective  terahertz‐based  characterization  system  which  will  be  used  for 

semiconductor research.  This collaboration entails the development of a proto‐type instrument by Lake 

Shore  and  alpha‐  and  beta‐testing  by  CEM  scientists.    The  instrument  will  be  installed  in  the 

NanoSystems  Laboratory  (NSL),  a  core  facility  supported  by  IMR, which will  allow  the  cutting‐edge 

instrument to be available to all IMR researchers.  

CENTER FOR EMERGENT MATERIALS INDUSTRY INTERACTIONS  

IMR Fiscal Year 2011 -2012 Annual Report

Page 53

Page 59: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Traycer Diagnostics is another, more recent OSU spin‐off company, that focuses on using terahertz (THz) 

materials to develop instruments for non‐destructive evaluation. Traycer is involved in the development 

of the terahertz spectrometer in coordination with Lake Shore.  CEM has submitted joint proposals with 

Traycer to support THz sensor development. CEM’s experience with high frequency magnetics positions 

it well to both support and benefit from this technology.  

CEM’s  collaboration  with  IBM  focuses  on  better  understanding  charge  and  spin‐injection  into  Si 

nanostructures.    CEM  is  applying  expertise  in  STM  studies  of  charge  injection  in  conjunction  with 

techniques for detecting spin transport.  IBM is providing high quality Si nanowires.  

During this period CEM hosted an industry seminar that was a candid conversation about research and 

career paths in science.  This seminar featured Ohio State alumnus, Dr. David Daughton, who is currently 

employed with Lake Shore Cryotronics.   This seminar was well received by the students, post‐doctoral 

researchers,  faculty and staff members who attended  from nine departments and  three Centers.   Dr. 

Daughton’s  seminar emphasized networking  and  the  steps  involved  in beginning  an  industrial  career 

upon  completing a Ph.D.   This  is a particularly  important  topic  for  students engaged  in basic  science 

research as their primary emphasis. 

 

 

 

 

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 54

Page 60: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

Recognizing that many of our faculty members are  independently engaged  in dozens of collaborations 

with colleagues around the globe, this section will briefly summarize two highlighted activities that have 

been recently formalized at a center level.  

In order to better exploit research opportunities enabled by international collaborations, the Center for 

Emergent Materials MRSEC (CEM) has established the International Materials Research Alliance (IMRA), 

a vibrant  center‐to‐center  collaborative  interaction with  the  Leibniz  Institute  for Solid State Research 

(IFW), Dresden, Germany.   The  IMRA  is built on  the  common  scientific  interests and  complementary 

technical expertise and instrumentation of the CEM and IFW.  Both centers have major research efforts 

in spin transport, complex oxides, Heusler compounds, superconductors, carbon nanotubes, nanowires, 

organic magnetic and electronic materials.   The  IMRA consists of  three major components:  individual 

collaborations, annual  joint workshops, and  international  internships.    IMR financial support to CEM  is 

targeted for this exciting partnership. 

This broad interaction started from a collaboration between a CEM/IFW pair of researchers over several 

years.  In 2011, a new NSF Materials World Network (MWN) grant was awarded to study two groups of 

half metals, Heusler films and double perovskite single crystals by  leveraging the unique capabilities of 

complex film deposition at OSU and single crystal growth at  IFW.    In addition, two more collaborative 

projects have developed, including low‐temperature STM and EPR studies of semiconductor nanowires. 

 

 

 

 

INTERNATIONAL COLLABORATIONS 

CENTER  FOR  EMERGENT  MATERIALS  INTERNATIONAL  MATERIALS RESEARCH ALLIANCE (IMRA)  

IMR Fiscal Year 2011-2012 Annual Report

Page 55

Page 61: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

A  second  international  initiative  that  was  recently  initiated  by  IMR  targets  the  creation  of  several 

linkages between IMR and the Institute of Optoelectronics Systems and Microtechnology (ISOM) of the 

Universidad  Politécnica  de  Madrid  (UPM).    First  initiated  in  2009  through  a  memorandum  of 

understanding between IMR and the UPM Vice Rector (Provost), the list of activities focused two areas, 

electronic  oxide materials  and  III‐V  compounds  for  optoelectronics.   At  the  outset  of  FY12,  the  first 

visiting student from UPM, Ms. Gema Tabares, completed a three month stay, with her work resulting in 

two joint journal publications and with that, efforts to locate third party funding between IMR and the 

ISOM group are underway: 

A  second  visiting  scientist  from  ISOM, Dr.  Javier Grandal,  spent  a  year  as  a  postdoctoral  researcher 

working  in the Semiconductor Epitaxy and Analysis Lab (SEAL) on the second core topic of the original 

MOU, which  is  the  study  of  novel  III‐V  quantum  dot  structures  for  optoelectronic  and  photovoltaic 

applications.  This effort also resulted in published research and helped to land a new DoD project in this 

same area for a new assistant research professor, Tyler Grassman.   Dr. Grandal returned to Europe at 

the  end  of  FY12  and  is  now  a  research  scientist  at  the  Paul  Drude  Institute  in  Germany,  and  IMR 

members  are  engaged  in  discussions  for  continued  collaboration.    With  the  success  of  the  initial 

collaborations, IMR Director Ringel visited UPM to discuss an expansion of the program and to plan for 

joint funding.  After meeting with Professor Adrian Hierro of ISOM and with Professors Carlos Algora and 

Ignacio Rey‐Stolle of UPM’s highly  regarded Solar Energy  Institute  (IES), an agreement  to expand  the 

formal  IMR‐UPM document was made  (formalization  is now  in progress)  to  include  certain  activities 

related  to  III‐V  photovoltaics.    A  result was  hosting  Dr.  Beatriz Galiana‐Blanco  of  UPM  as  a  visiting 

scientist, spending a full year collaborating with IMR Member of Technical Staff Dr. John Carlin and the 

broad  III‐V  photovoltaics  group within  IMR.   Her  research  focused  on metal  organic  chemical  vapor 

deposition of III‐V/Si solar cells and she made substantial contributions to the IMR effort in this area.  Dr. 

Galiana  recently  returned  to  Spain where  she  became  a  tenure‐track  faculty member  in  the  physics 

department of Universidad Carlos III de Madrid, and she  is continuing her collaboration with Dr. Carlin 

and others  in  the area of microscopy of  III‐V/Si photovoltaic materials.   Her efforts will  yield  several 

publications, currently in preparation, which will be reported in future IMR annual reports.  Due to the 

initial grass‐roots success of  the UPM collaboration,  IMR  is planning an NSF Materials World Network 

proposal for the next cycle, which will greatly expand these interactions. 

To date the UPM‐IMR collaboration has led to the following publications in print: 

1)  J. Grandal, T. J. Grassman, A. M. Carlin, M. R. Brenner, B. Galiana, J. A. Carlin, L.‐M. Yang, M. J. 

Mills,  S.  A.  Ringel,  “Growth  and  characterization  of  InGaAs  quantum  dots  on metamorphic 

GaAsP  templates  by  molecular  beam  epitaxy,”  Proceedings  of  the  38th  IEEE  Photovoltaic 

UNIVERSIDAD POLITÉCNICA DE MADRID 

IMR Fiscal Year 2011-2012 Annual Report

Page 56

Page 62: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Specialists Conference, 001783 (2012). 

2)  E. Gur, G. Tabares,   A. Arehart,    J.M. Chauveau,   A. Hierro   and S.A. Ringel, “Deep  levels  in a‐

plane, high Mg‐content MgxZn1‐xO epitaxial layers grown by molecular beam epitaxy,” J. Appl. 

Phys. 112, 123709 (2012). 

3)  S.A.  Ringel,  T.  J.  Grassman,  A. M.  Carlin,  J.  Grandal,  C.  Ratcliff,  L.‐M.  Yang  and M.  J. Mills, 

“Spectrum‐optimized  Si‐based  III‐V multijunction  photovoltaics,”  Proceedings  of  SPIE:  Physics, 

Simulation, and Photonic Engineering of Photovoltaic Devices, 82560R (2012). 

4)  Emre  Gür,  G.  Tabares,  A.  Arehart,  J.M.  Chauveau,  A.  Hierro,  S.A.  Ringel,    High  Level  of Mg 

Alloying Effects on  the Deep  Level Defects  in MgxZn1‐xO, AVS 58th  International Symposium & 

Exhibition, Nashville, Tennessee, USA, 30 October‐4 November 2011. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 57

Page 63: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IMR's  Research  Enhancement  Program  provides  different  funding mechanisms  to  support  innovative 

research at The Ohio  State University.  Fiscal  year 2012  introduced  the OSU Materials Research  Seed 

Grant program, an exciting new program that allows IMR and other materials‐related centers within the 

IMR umbrella on campus to better leverage resources and effectively seed innovative research projects, 

as  detailed  below.    IMR  also  continued  its  Facility Grant  program,  awarding  two  rounds  of  internal 

research funding to assist OSU faculty with facility user access fees and related minor charges. Finally, 

the  IMR  Industry Challenge Grant program  continued  to  gain  visibility, with  another new  award  this 

year. 

Since 2007,  IMR has funded 158 awards with a total of $2,069,065 through  its Research Enhancement 

Program.   As  seen  in Appendix B,  IMR  seed  funding  through  the various  components of  its Research 

Enhancement Program has generated $20.3 million in new externally sponsored funding as of FY12, and 

promises to successfully seed even more major research projects  in the near future.   It  is  important to 

note that this 10:1 return on investment figure does not include the large block centers that were either 

developed,  led,  or  significantly  contributed  to,  by  IMR  (e.g.  the  NSF MRSEC  –  Center  for  Emergent 

Materials  ($10.8M/6  years),  the  NSF  NSEC  ‐  Center  for  Affordable  Nanoengineering  of  Polymer 

Biomedical Devices ($12.5M/5 years), the $18.1M Ohio Research Scholars Program, the $18.3M Wright 

Center for Photovoltaics Innovation and Commercialization, etc). The seed program is vital for initiating 

the early  stage work necessary  for block programs of  the  future.   Figure  5  shows  the distribution of 

cumulative funds from IMR Seed grant programs based on the primary affiliation of the lead investigator 

for  each  project.    Note  that  the  expectation,  and  in  many  cases  requirement  that  two  or  more 

investigators must be affiliated with two or more departments, is not reflected in this figure.  However, 

even taking that into account the breadth of awards which is one expression of IMR’s multidisciplinary 

impact is clear. 

IMR RESEARCH ENHANCEMENT PROGRAM  

IMR Fiscal Year 2011 -2012 Annual Report

Page 58

Page 64: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

The  OSU Materials  Research  Seed  Grant  Program  provides  internal  research  funding  opportunities 

through three distinct Funding Tiers designed to achieve the greatest impact for seeding and advancing 

excellence in materials research of varying scopes.  The OSU Materials Research Seed Grant Program is 

jointly  funded  and managed  by  IMR,  along with  leadership  from  the  Center  for  Emergent Materials 

(CEM)  and  the  Center  for  Electronic  and  Magnetic  Nanoscale  Composite  Multifunctional Materials 

(ENCOMM).   As detailed  in IMR’s Fiscal Year 2011 Annual Report, IMR’s goal  in  leading the creation of 

this integrated seed program was to ensure that the most effective seed program was broadly available 

to achieve better leveraging of valuable financial resources and to combine the best practices developed 

by previously independent seed programs of IMR (Interdisciplinary Materials Research Grants – IMRGs), 

and of ENCOMM and CEM  The result was the creation of a united OSU Materials Research Seed Grant 

Program, which is comprised of three Funding Tiers designed to achieve the greatest impact for seeding 

Figure 5: Distribution of awards directly supported by IMR through the IMR Research Enhancement Program, Fiscal Years 2007 – 2012, as tracked by department affiliation of lead principal investigator per project. Includes IMR’s cash support of IMR Facility Grants, IMR Industry Challenge Grants, IMR Interdisciplinary Materials Research Grants, and IMR’s contributions to the OSU Materials Research Seed Grant Program (Exploratory Materials Research Grants, Multidisciplinary Team Building Grants, and Proto-IRGs).

OSU MATERIALS RESEARCH SEED GRANT PROGRAM 

IMR Fiscal Year 2011 -2012 Annual Report

Page 59

Page 65: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

excellence  in materials research of varying scopes:   Proto‐IRG grants for  large teams, Multidisciplinary 

Team Building Grants for smaller teams, and Exploratory Materials Research Grants that target higher 

risk,  individual  investigator  grants  with  a  bias  toward  junior  faculty  members.    The  former  IMR 

Interdisciplinary Materials Research Grants (IMRG) program has been integrated specifically through the 

Multidisciplinary Team Building Grants and the Exploratory Materials Research Grants.   

In  its first year, the OSU Materials Research Seed Grant Program awarded three Exploratory Materials 

Research Grants  ($40,000 each), one Multidisciplinary Team Building Grant  ($60,000 each) and  three 

Proto‐IRG  ($100,000  each)  awards.    These  awards  totaled  $480,000  in  direct  funding  to  fifteen OSU 

researchers in seven departments.  The Proto‐IRG grants are awarded directly through OSU’s Center for 

Emergent Materials (CEM). 

 

Figure 6. Distribution of 2011-2012 OSU Materials Research Seed Grant Program awards, by department affiliation of the lead principal investigator per project. Includes all funding to the OSU Materials Research Seed Grant Program awards by ENCOMM, CEM, and IMR.

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 60

Page 66: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

2011‐2012 EXPLORATORY MATERIALS RESEARCH GRANTS  

Exploratory Materials  Research  Grants  provide  funds  up  to  $40,000/year  per  award  in  direct  costs, 

require  one  PI,  and may  have  Co‐PIs  and/or  unfunded  collaborators.    The  goal  of  the  Exploratory 

Materials  Research Grants  is  to  enable  nascent materials  research  to  emerge  to  the  point  of  being 

competitive for external funding.  Three Exploratory Materials Research Grants were awarded this year:  

Towards Si‐ Graphene Analogues: Development of Air‐ and Water‐Stable Layered Polysilanes, Principal 

Investigator: Joshua Goldberger, Chemistry  

Abstract:  Since  the discovery of  single‐layer graphene’s unique electronic properties,  there has been 

great  interest  in  the  synthesis,  properties,  and  application  of  single  layers  of  graphene  and  other 

inorganic  two‐dimensional  layered  sheets.    Even with  graphene’s  success,  there  are many  potential 

applications  that would benefit with  the advent of single‐layer sheet materials  that have a direct and 

tunable band gap, and can be chemically  functionalized.   These properties can be achieved  in  layered 

polysilanes,  the  singleatom  thick  silicon  sp3‐hybridized  analogue  of  graphene.    Application  of  these 

layered  polysilanes  has  been  limited  due  to  their  relative  ease  of  oxidation  in  air  and  water 

environment.    The  focus of  this proposal  is  to  establish  the  synthetic  chemistry of passivating  these 

layered polysilanes with organic functional groups for the purpose of increasing their resistance towards 

oxidation  in air and water.   We will also study how the electronegativity of the passivating component 

can be used to tune the band gap of the material.   Creating air‐ and water‐stable derivatives of these 

graphene  analogues  would  enable  their  integration  and  study  into  a  host  of  applications  including 

photovoltaics, spintronics, molecular electronics, and thermoelectrics.  

Atomic Scale Characterization of Defects  in Wide Bandgap Semiconductors, Principal Investigator: Jay 

Gupta, Physics; Co‐Investigator: Leonard Brillson, Electrical & Computer Engineering  

Abstract: A microscopic understanding of interfacial defects is important in a variety of emerging fields, 

from silicon‐based nanoelectronics  to advanced structural materials  to next‐generation catalysts.   The 

principal objective of  this  seed proposal  is  to build  core  synergies  for multi‐scale  characterization of 

interfacial  defects  in  oxides  and wide‐gap  semiconductors. We  propose  to  integrate  scanned  probe, 

electron beam and optical methods to study interfacial defects in TiO2, with nm‐scale depth and lateral 

resolution.   Molecular beam  epitaxy will be used  to  grow  thin  films with  a  variety of  interfaces  and 

defect  distributions.  These  studies  will  lay  a  foundation  for  understanding  photocatalysis,  charge 

transport,  and  ferromagnetism  in  such materials.    The  target  and  scope  of  this  seed  research were 

chosen to enhance future block funding proposals built on existing local programs.   

Sonochemical Synthesis of Metal Hydrides, Principal Investigator: Yiying Wu, Chemistry  

Abstract:  The  objective  of  this  proposal  is  to  understand  the  fundamental  mechanism  of  the 

sonochemical  synthesis  of  metal  hydrides  and  to  develop  sonochemistry  into  a  general  synthetic 

IMR Fiscal Year 2011 -2012 Annual Report

Page 61

Page 67: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

method.  This exploratory proposal represents the first effort to utilize sonochemistry for the synthesis 

of  hydrides,  which  have  well  known  applications  in  organic  synthesis,  rocket  propellant,  hydrogen 

storage  and  rechargeable  batteries.    The  proposal  is  based  on  our  recent  discovery  that  ultrasound 

irradiation of an aqueous Cu2+ solution can produce pure CuH products.   This  is  the  first  time  that a 

metal hydride has been synthesized through sonochemistry.   We believe new materials chemistry can 

come out  from  this  study, which will expand our knowledge of  sonochemistry and  its applications  in 

materials synthesis.  In the proposal, a reaction mechanism is proposed and a research plan is outlined 

to examine  this mechanism and  to optimize  the production yield of CuH.   Moreover, we will explore 

sonochemistry  in non‐aqueous  solutions  in order  to expand  the  synthetic method  to other materials 

such as LiNH2 and hydrazine, N2H4.   These materials have  important applications  in hydrogen storage 

and  rocket propellant.   Results  and  publications obtained  from  this  seed project will  help  us pursue 

external funding from NSF, AFOSR and DOE. 

2011‐2012 MULTIDISCIPLINARY TEAM BUILDING GRANTS  

Multidisciplinary  Team  Building Grants  provide  funds  up  to  $60,000/year  per  award  in  direct  costs, 

require one PI and one Co‐PI  from  two different departments, and may have unfunded collaborators.  

The goal of  the Multidisciplinary Team Building Grants  is  to  form multidisciplinary materials  research 

teams that can compete effectively for federal block‐funding opportunities.  One Multidisciplinary Team 

Building Grant was awarded this year:  

Engineered Heart  Tissue: A Multidisciplinary  Team  Centered  on  Scaffold  Structure  and Mechanics, 

Principal Investigator: Jianjun Guan, Materials Science & Engineering; Co‐Investigators: Gunjan Agarwal, 

Biomedical Engineering; Peter Anderson, Materials Science & Engineering  

Abstract: A multidisciplinary team spanning three academic departments  is proposed to enhance both 

the  intellectual  merit  and  broader  impacts  of  engineered  heart  tissue  research  at  The  Ohio  State 

University.  The intellectual merit is to understand how the material design of 3D fiber scaffolds, coupled 

with  cells  that  can  secrete  collagen  with  tunable  properties,  can  be  used  to  direct  stem  cell 

differentiation  into heart  cells.   A  structured  set of  key aims will demonstrate  the ability of 3D  fiber 

arrays to regulate differentiation, and then correlate this differentiation with the material properties of 

the  collagen  matrix  and  the  material  design  of  the  fiber  scaffold.    This  effort  draws  on  recent 

developments of how 2D material environments affect cell differentiation, by expanding to 3D fibrous 

structures that are inherent in heart tissue.  The broader impacts are to support two graduate students 

in a unique educational setting not available in a single academic setting.  It will identify and strengthen 

a multidisciplinary team for future block grant funding not currently available to OSU researchers, and 

foster new interaction between the medical and physical sciences at OSU. 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 62

Page 68: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

2011‐2012 PROTO‐IRG GRANTS 

The Proto‐IRG research awards were integrated into the 2011‐2012 OSU Materials Research Seed Grant 

Program.   The Proto‐IRG grants have the goal of forming new  Interdisciplinary Research Groups (IRGs) 

that could be  incorporated  into  the Center  for Emergent Materials’  renewal proposal  to  the National 

Science  Foundation Materials Research  Science  and  Engineering  Center program  in  2015.    Proto‐IRG 

Grants provide funds up to $100,000/year per award  in direct costs, require one Principal  Investigator 

(PI) and two Co‐Principal Investigators (Co‐PIs), and may have unfunded collaborators.  Three Proto‐IRG 

Grants were awarded this year: 

Thermal Spintronics: Engineering Spin Currents and Dissipation, Principal Investigator:  Roberto Myers, 

Materials  Science  &  Engineering;  Co‐Investigators:  Joseph  Heremans,  Mechanical  and  Aerospace 

Engineering; Ezekiel Johnston‐Halperin, Physics 

Abstract:   This proposal aims to continue the proto‐IRG begun last year to study the thermodynamics 

of  spin  transport and magnetism  in  semiconductors  through  the development of new materials and 

measurement schemes  that combine spintronic materials with high sensitivity  thermal  transport and 

calorimetry.  In  one  year  of work we  have  studied  the  thermal  generation  of  local  spin  currents  in 

several  materials,  uncovering  a  material  dependence  to  the  spin‐Seebeck  effect  as  well  as 

experimentally  revealing  the phonon‐driven nature of  the microscopic physics. Additionally we have 

begun  development  of  new  experimental  schemes  for  studying  thermal  dissipation  due  to  spin 

injection/transport,  as  well  as  developed  new  materials  for  spin  injection  and  magnetism  in 

semiconductors.  In  the  second  year, we will  expand  the  scope  of  our  experimental  and  theoretical 

efforts through a team of internationally renowned collaborators. Projects include theoretical modeling 

of  our  spin‐Seebeck  data  taking  into  account  the  recently  uncovered  phononspin  physics,  spin 

calorimetry using  free  standing membranes  to examine  the dissipation due  to optical  spin  injection, 

and  microwave  spin‐injection  into  wide  band  gap  semiconductors.  Our  proto‐IRG  team  will  be 

strengthened  through  continued  co‐authored  publication  of  our  results  in  high  impact  journals  and 

their dissemination at international conferences. 

Characterization  &  Synthesis  of  Mimetic  Cell‐Secreted  Exosomes  for  Cell  Signaling,  Principal 

Investigator:   Michael Paulaitis; Chemical & Biomolecular Engineering; Co‐Investigators: Andre Palmer, 

Chemical & Biomolecular Engineering; Chia‐Hsiang Menq, Mechanical & Aerospace Engineering 

Abstract:   We propose to design and assemble synthetic vesicles that have the structural, mechanical, 

and  biophysical/chemical  characteristics  of  cell‐derived  exosomes  –  small  (<  200  nm  diameter) 

membrane  encapsulated  particles  secreted  by  cells  in  response  to  specific  intracellular  signals.  

Exosomes have biological significance as  intercellular signaling complexes, most notably, through their 

ability  to  transmit genetic  information  that  can effectively  trigger  the  reprogramming of  target  cells.  

Although  the  cell  signaling  functions  attributed  to  exosomes  depend  critically  on  their  specific 

interactions  with  target  cells  and  subsequent  internalization  of  their  contents,  the  targeting 

mechanisms,  as  well  as  the  biophysics  of  membrane  adhesion  and  fusion,  in  general,  are  poorly 

IMR Fiscal Year 2011 -2012 Annual Report

Page 63

Page 69: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

understood.    The  overall  objective  of  this  project  is  to  resolve  these  exosome‐specific  targeting 

mechanisms.   To meet this objective, we will create synthetic exosomes that mimic properties of cell‐

derived  exosomes  considered  to  be  important  factors  controlling  these  mechanisms,  and  then 

systematically study how  these properties affect exosome binding and  fusion  to cell membranes.   An 

important component of the project is to devise cell‐membrane models to study exosome binding and 

fusion, and to measure the kinetics of these processes.  Our long‐range goal is to predict the target cells 

of biological exosomes as a means to control this mode of intercellular communications. 

Magnetic  Resonance  Studies  of  Chromatin  Dynamics  and  Function,  Principal  Investigator: Michael 

Poirier, Physics; Co‐Investigators: Chris Hammel, Physics; Christopher Jaroniec, Chemistry 

Abstract:  Each human cell contains a complete genome where all of our genetic information is encoded 

within DNA molecules that total a meter  in  length.   Normal functioning cells use only a fraction of the 

genes encoded  into  their DNA, which  implies  that each cell must control which genes are expressed.  

This  is  accomplished  by  changes  in  the  physical  compaction  of  the  DNA  molecules  into  a  highly 

conserved  structural  polymer,  chromatin.    This  implies  that  changes  in  the  physical  and  material 

properties  of  our  genome  are  a  central mechanism  for  regulating  gene  expression  and  stability.    A 

human  chromosome  contains a  centimeter  length DNA polymer  that appears  to be organized  into a 

multi‐level  structure.    However,  beyond  the  first  level  of  DNA  organization,  little  is  known  about 

chromosome  structure  and  dynamics.  We  are  investigating  the  structure  and  dynamics  of  an 

intermediate  level of  chromosome organization,  chromatin, by using established magnetic  resonance 

techniques,  solid  state NMR  and  EPR,  and  developing  optically  detected magnetic  resonance  at  the 

single molecule level.  Renewal of this seed project will continue the development of a multi‐disciplinary 

group that aims to understand the physical and material properties of entire human chromosomes. 

 

 

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 64

Page 70: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IMR  has  continued  to  offer  the  successful  and  popular  IMR  Facility Grants  program, which  provides 

$2,000  per  award  to  assist  OSU  faculty  with  facility  user  access  fees  and  related  minor  charges 

associated with conducting innovative materials‐allied research.  The goal of this support is to enable a 

key  experimental  result  for  inclusion  in  proposals,  or  to  complete  particularly  critical  research  for 

publication, that can create new funding streams.  To date, IMR has awarded 110 Facility Grants totaling 

$236,916 to support the research of 72  IMR members from 4 colleges and 11 academic departments.   

In  fiscal year 2012,  IMR award 17 Facility Grants  for a  total of $34,000, with distribution by Principal 

Investigator department shown in Figure 6.  A full listing of these twenty new Facility Grants is provided 

in Appendix D, including abstracts for each research project. 

Figure 6. Distribution of Fiscal Year 2011-2012 IMR Facility Grant awards, by department affiliation of the lead Principal Investigator for each project.

IMR FACILITY GRANTS  

IMR Fiscal Year 2011 -2012 Annual Report

Page 65

Page 71: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

The  IMR  Industry  Challenge  Grants  program  was  established  to  enhance  the  already  strong 

collaborations  between  OSU  researchers  and  private  industry  partners  in materials  allied  research, 

targeting topics of particular strategic opportunity beyond existing activities.  These grants provide one‐

to‐one  matching  funds  up  to  $20,000  per  year  to  allow  OSU  researchers  to  conduct  research  in 

collaboration with private industry partners that will lead to major external proposal development.  IMR 

Industry Challenge Grants are eligible for renewal for a second year of funding.  Four research programs 

are currently receiving support through IMR Industry Challenge Grants, and we expect activity will grow 

over  time due  to  the  increasing number of private‐public  collaborations  through  several  centers and 

facilities.  

Due to confidentiality agreements, we are limited in the amount of information we can share regarding 

Industry Challenge Grants.  During the 2012 Fiscal year, one new Industry Challenge Grant was awarded 

to Dr. R. Sooryakumar, Professor of Physics, in support of his externally sponsored research project, also 

providing $20,000  in direct cost share.   This  Industry Challenge Grant was so successful that this fiscal 

year it has already generated a publication in the Journal of Applied Physics and a $345,000, three‐year 

award  from  the Semiconductor Research Corporation  (full citations  for both are  found  in  the  report’s 

appendix).   

These three IMR Industry Challenge Grants received funding from IMR during FY 2012, the Sooryakumar 

award is in its first year of funding and the Bong and Windl awards received second year support: 

Synthesis of amphiphilic core‐shell latex emulsions from soy proteins and delivery of corrosion inhibitors 

and biocides for coatings application, Lead Investigator: Dennis Bong, Chemistry 

Thermo‐Mechanical Billouin Light Scattering Characterization of Nanometer Scale Interconnect Materials 

and Structures, Lead Investigator: R. Sooryakumar, Physics 

HOF Midwavelength Infrared Focal Plane Array Modeling, Lead Investigator: Wolfgang Windl, Materials 

Science and Engineering (supporting a collaboration with L‐3 Communications Cincinnati Electronics) 

 

 

IMR INDUSTRY CHALLENGE GRANTS  

IMR Fiscal Year 2011 -2012 Annual Report

Page 66

Page 72: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

The  core  facilities  within  IMR’s  reach  are  extensive,  and  include  state‐of‐the‐art  research 

instrumentation and  resources.   Core materials  research  facilities on OSU’s campus are  supported by 

IMR in a variety of ways.  The largest core facility, the Nanotech West Laboratory, is fully operated and 

managed  by  IMR,  with Members  of  Technical  Staff,  administrative  oversight  and  lab  leadership  all 

provided by IMR.  Other facilities, such as the ENCOMM NanoSystems Lab and the Center for Chemical 

and Biophysical Dynamics, are supported by IMR through the employment of IMR Members of Technical 

Staff, who provide on‐site technical support and facility management.  IMR is also engaged with support 

of  other  core  facilities  through  prior  Targeted  Investment  in  Excellence  (TIE)  funding,  including  the 

Semiconductor Epitaxy and Analysis  Lab,  the Electrical and Computer Engineering  cleanroom and  the 

Campus Electron Optics Facility.  The IMR is currently collaborating with the College of Engineering and 

the Office of Research  in  the  establishment of  the new Center  for Electron Microscopy  and Analysis 

(CEMAS),  part  of  IMR’s Ohio  Research  Scholars  portfolio  detailed  earlier  in  this  report.    IMR  is  also 

actively working toward unifying the Campus Chemical  Instrumentation Center  (CCIC) within a greater 

network to enhance accessibility across disciplines.  The overall coordination of these and other facilities 

through  IMR’s domain  (see http://imr.osu.edu/research/facilities/) continues  to be a driving  force  for 

IMR activities.   This section provides updates of  the core  facilities  that have been most  involved with 

IMR for this past year.  

 

Located  on  West  Campus,  the  Ohio  State  Nanotech  West  Laboratory  is  the  largest  and  most 

comprehensive micro‐ and nanofabrication user facility  in the state of Ohio.    It houses a 6,000 square 

foot  class  100  cleanroom  with  a  comprehensive  100mm  wafer  process  flow,  a  5,000  square  foot 

Biohybrid Lab, and additional  laboratory, administrative, and support space.   The  impact of Nanotech 

West on  the OSU materials  research  community  is  substantial.    In FY12, over 250 users  representing 

nearly 100 funded projects of 50 OSU PIs used Nanotech West; the total multi‐year research funding of 

these projects is in excess of $49M.  Activities in these projects spanned the entire range of cutting‐edge 

materials  research,  from  high‐frequency  GaN/AlGaN  electronics,  to  solar  cells,  to microfluidics  and 

biotechnology, to the fabrication of structures for use in the study of basic physics and chemistry. 

Fiscal year 2012 was a year of substantial growth of activities at the Nanotech West Lab, perhaps most 

appropriately measured by its total user fee income of $493k, an 18% increase over FY11.  While much 

of this increase was due to increased Ohio State program usage, it is important to note that several OSU 

programs that made new and heavy use of Nanotech West also have significant industry collaborations.  

CORE MATERIALS RESEARCH FACILITIES’ UPDATES 

NANOTECH WEST LABORATORY  

IMR Fiscal Year 2011 -2012 Annual Report

Page 67

Page 73: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

These specific programs include collaborations with Energy Focus (Solon, OH), GreenField Solar (Oberlin, 

OH), and Emcore (Albuquerque, NM), to name a few.  Over twenty companies, nearly all in the state of 

Ohio and nearly all startup, small, or medium‐sized, used Nanotech West directly  in FY12.   Month‐to‐

month,  industry  activities  at Nanotech West  now  consistently  represent  approximately  25%  of  total 

Laboratory  activity,  or  40%  by  user  fee  income.    Five  other Ohio  universities  (Case Western, Wright 

State, University of Dayton, Ohio University, and Denison) and two not‐for‐profits also used the Lab  in 

FY12. 

Figure 7. Nanotech West Laboratory Billed Usage by Fiscal Year Quarter, FY2007-FY2012

Breakdown  of  the  Ohio  State  usage  according  to  user  fees  was  approximately  76%  College  of 

Engineering, 12% Office of Research, and 12% Natural and Mathematical Sciences (an Academic Division 

of the College of Arts and Sciences).  The OSU Medicine and Pharmacy academic groups were each less 

than 1% of usage based on user fee income. 

Nanotech West has a state‐of‐the‐art  fabrication and characterization capability.   Flagship capabilities 

include  a Vistec  EBPG  5000  high‐resolution  electron  beam  nanolithography  tool with  a  resolution  in 

resist  of  sub‐20  nm;  its  registration  (alignment)  accuracy  is  approximately  60  nm  (3‐sigma),  and  an 

IMR Fiscal Year 2011 -2012 Annual Report

Page 68

Page 74: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Aixtron 3x2” metalorganic III‐V chemical vapor (MOCVD) deposition tool designed for university‐industry 

transitions and basic research.  The MOCVD system, which is a accessible to external and internal users, 

has  the  capability  to  grow  In‐, Ga‐, Al – phosphides,  arsenides  and  antimonides  for  solar, electronic, 

optical and basic research.  Other primary capabilities at Nanotech West include: 

I‐line optical stepper photolithography tool capable of ~0.60 micron resolution and the 

handling of odd sized parts [GCA 6100C] 

Atomic layer deposition [Picosun SunALE R‐150B] 

Field‐emission scanning electron microscopy [Carl Zeiss Ultra 55 Plus] 

Inductively  coupled  plasma  (ICP)  reactive  ion  etching  [Plasma‐Therm  SLR  770]  and 

several other plasma etch tools  

A five‐gun RF/DC load‐locked sputter deposition system [AJA International Orion] 

Six‐pocket electron gun evaporator [CHA Solution System] 

Wafer bonding and micro– and nanoimprint lithography [EVG 520HE] 

I‐V, C‐V, L‐I‐V, microfluidic, and solar device testing 

Atomic force microscopy [Veeco 3100, NanoInk, Asylum BioAFM] 

A full‐flow 100 mm process capability  including photolithography, wet/dry etching and 

advanced wafer cleaning, LPCVD nitride deposition, diffusions, oxidation, rapid thermal 

annealing, optical microscopy, and metrology. 

Just as  important as  its equipment  list, Nanotech West  is  supported by 7  full‐time engineering and 1 

administrative Core Staff and three Associate Staff members. Nearly all the Core engineering staff has 

industry experience  in  semiconductor or closely  related  fields; a  list of  former employers of  the Core 

staff includes IBM, Intel, TriQuint Semiconductor, Cree, and Amberwave.  The Associate Staff members 

are NSF NSEC post‐docs who have primary responsibilities in the Biohybrid Laboratory. 

New tool installations in FY12 at Nanotech West included: 

A Plasma‐Therm 790 plasma‐enhanced chemical vapor deposition (PECVD) tool 

An Oxford X‐Max silicon drift detector (SDD) for X‐ray materials analysis on the 

Carl Zeiss field‐emission scanning electron microscope 

An MBraun nitrogen‐purged glovebox 

A Diener Pico low‐damage plasma asher 

A second AG Associates rapid thermal annealing (RTA) system 

IMR Fiscal Year 2011 -2012 Annual Report

Page 69

Page 75: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Funding for all but one these purchases were from the final capital dollars from the Ohio Wright Center 

for  Photovoltaics  Innovation  and  Commercialization  (PVIC)  and  through  industrial membership  fees.  

The RTA was provided by Prof. Marv White, member of the National Academy of Engineering, who has 

joined Ohio State after a long and distinguished career at Lehigh University where he was the director of 

the Sherman Fairchild Microelectronics Center. 

The Plasma‐Therm  tool  (tool code CVD02), a refurbished unit, was purchased and  installed  to provide 

surface  passivations  for  semiconductors,  deposit  anti‐reflective  coatings  for  photovoltaics  and  other 

optical devices, and provide dielectrics for general electronic device fabrication.  Gases plumbed to the 

system  included 2% silane (in 98% helium), nitrous oxide (N2O), and ammonia (NH3).   As of June 2012, 

the end of FY12, the tool was depositing thin films of silicon oxide and silicon nitride for a wide variety of 

projects, and made its first runs of silicon oxynitrides. 

The other new tools fulfill specific needs at Nanotech West.  The fast, sensitive X‐ray detector for SEM02 

greatly expands  the materials analysis  capabilities at  the  Lab, while  the glove box greatly  speeds  the 

changing of precursor sources  for  the Picosun atomic  layer deposition  (ALD)  tool.   The Diener plasma 

asher  fills a need  for  low‐damage plasma  cleaning  (usually before metallizations)  for  sensitive device 

fabrication steps such as ohmic contacts and transistor gate fabrication steps.  The second RTA in the lab 

will be reserved for silicon and (with quartzware changes) other specific clean processing steps. 

In  December  2011  the  Nanotech  West  Lab  went  live  with  its  newly  designed  web  site  based  on 

Wordpress, a content management tool.  The redesigned site allows Nanotech West staff to easily post 

news articles, change and add content, and  link web pages to the Lab database.   Graphically, the new 

site matches the Nanotech West brochure, which was redesigned and printed in the previous year. 

The  Nanotech  West  Biohybrid  Laboratory  (BHL)  continues  to  be  a  very  busy  place,  supporting  a 

significant portion of the activities of the OSU NSF‐sponsored Nanoscale Science and Engineering Center 

(NSEC),  the  Center  for Affordable Nanoengineering  of  Polymeric  Biomedical Devices,  as well  as  four 

startup companies in this research area.  Common use equipment in the BHL and other non‐cleanroom 

space  includes  the  AFMs  mentioned  earlier,  a  Hitachi  S‐3000H  scanning  electron  microscope,  a 

Brookhaven  dynamic  light  scattering  (DLS)  system  for  the measurement  of  nanoparticle  sizes,  two 

biosafety cabinets, an autoclave, and one of two cell culture rooms.  Equipment and facilities particular 

to  the NSEC program  include a dedicated cell culture  room, a scanning  laser confocal microscope, an 

optical  tweezer  setup  for manipulation  of  nanoparticles,  and micromilling  and  femtosecond  ablation 

tools for rapid prototyping of micro‐ and nanostructures, especially for microfluidics.  

FY12 was the second year in which NTW used a “superuser” system to assist in the training of new users 

on tools.  In this system, advanced graduate students or postdoctoral researchers generally perform the 

initial training of new users on tools, and these users are then given a final “check‐out” by the staff  

IMR Fiscal Year 2011 -2012 Annual Report

Page 70

Page 76: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

member  in charge.   The superusers are selected for their proven skills  in the operation of the tools  in 

question, and are modestly compensated for their time with credit toward their monthly user fee bill; in 

addition, they usually cite this role in the lab on their resumes.  The superusers free up regular staff time 

with the primary goal of increasing equipment uptime.  The initial system of six superusers has worked 

out quite successfully, despite turnover of personnel due to graduation  (being mostly senior graduate 

students, superusers are often close to finishing) and the concept will be expanded in FY13 to additional 

tools.  Meanwhile, in FY12 Nanotech West staff hosted a regular “pizza meeting” for lunch that served 

as a  forum  for all users  to communicate with  staff members about  laboratory operational  issues and 

look for ways to improve them, and hear short talks from their fellow users about their projects. 

This year Nanotech West hired a new Laboratory Services Coordinator, Peter Janney III, who has years of 

experience  in  the  DVD  and  CD  replication  industry,  especially  in  the  area  of  major  equipment 

installations  and  maintenance.    Pete  very  quickly  became  an  essential  staff  member,  leading  the 

installations of the new PECVD, plasma ash, and RTA tools. 

Plans  for  Nanotech West  for  FY13  include  hiring  two  part‐time  staff members,  one  of  whom  will 

primarily support MOCVD operations  (and who will be a  full‐time person, cost‐shared with two major 

photovoltaics user projects) and one of whom will support IT operations.  The Lab also plans to greatly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nanotech West staff, Laboratory Services Coordinators Derek Ditmer (left) and Pete Janney (right) stand near the newly installed and operational Plasma‐Therm 790 PECVD installed in Bay 3 of the Nanotech West Cleanroom. The tool began depositing silicon oxides and nitrides for several applications in late 

FY12.  

IMR Fiscal Year 2011 -2012 Annual Report

Page 71

Page 77: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

expand  its online web site with more detailed process and equipment  information targeted at helping 

new and prospective users.   Other priorities  include  increasing Ohio  industry usage, documentation of 

Lab operations and processes, and completing  the revision and streamlining of  its orientation process 

for new users. 

 

During  the  past  year  the  ENCOMM NanoSystems  Laboratory  revised  its  reporting  line  to  become  a 

facility center within the Department of Physics, eliminating  its formal  linkage to ENCOMM, which  is a 

center within  the Division of Natural  and Mathematical  Sciences  (D‐NMS) of  the College of Arts  and 

Sciences,  to  become  a  core  department  facility  within  the  Physics  Department.    This  was  done  to 

streamline various reporting  lines  for several staff positions.   ENSL  is now known as the NanoSystems 

Laboratory (NSL) but otherwise functions fully as a core facility within the IMR network of core facilities, 

as it has since its inception.   

NANOSYSTEMS LABORATORY OVERVIEW 

NanoSystems Laboratory  (NSL)  is an established OSU user  facility  located on  the Columbus campus of 

The Ohio State University  in  the Physics Research Building.   NSL  is one of  the  research  infrastructure 

facilities falling under the IMR umbrella and the NSL Director, Dr. Denis V. Pelekhov, is an IMR member 

of technical staff.  The facility is open to all academic and industrial customers on a user fee basis.  The 

primary goal of NSL is to provide users with access to advanced material characterization and fabrication 

tools  for  research  and  development  applications.    Access  to  equipment  is  granted  to  users  upon 

completion of equipment and safety training, and experienced users are granted after‐hours access.  

NSL  operates  a  diverse  suite  of  research  instrumentation  and  research  capabilities  available  include 

focused  ion  beam/scanning  electron microscopy,  e‐beam  lithography,  nanomanipulation,  EDS  X‐ray 

microanalysis,  X‐ray  diffractometry,  SQUID magnetometry,  conventional  atomic  force/magnetic  force 

microscopy, cryogenic atomic force/magnetic force microscopy, Physical Vapor material deposition, Low

‐Temperature/High  Magnetic  field  magnetotransport  measurements,  Langmuir‐Blodgett  trough 

monolayer deposition and clean room facilities. 

 

 

NANOSYSTEMS LABORATORY  

IMR Fiscal Year 2011 -2012 Annual Report

Page 72

Page 78: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

NANOSYSTEMS LABORATORY HIGHLIGHTS AND ACCOMPLISHMENTS 

DURING FY2012 

During Fiscal Year 2012, NanoSystems Laboratory experienced continued growth in the number of staff 

members,  the number of  available  instruments,  the  volume of provided  services  and  the number of 

customers served.  In FY 2012, NSL supported 163 users – a 39% increase compared to FY 2011 ‐ from 48 

research groups,  including  four  industry partners.   Another notable change  is  that  in FY 2012, 38 NSL 

users  were  women,  a  72%  increase  compared  to  FY2011.    Among  the  OSU  research  groups,  NSL 

benefited 120  funded research projects with an estimated  total  funding of $17 million.   NSL provided 

research  services  to  users  valued  at  $169,000  in  FY  2012,  a  12%  increase  in  the  volume  of  services 

provided to facility users compared to FY 2011. 

Several  new  equipment  acquisitions were made  by NSL  during  FY2012  to  further  enhance  its  broad 

capabilities in material characterization and fabrication.  In October 2011, NSL commissioned a new Kurt 

J. Lesker (Clairton, PA) Lab‐18 physical vapor deposition system that delivers a combined capability for 

magnetron  sputtering  and  e‐beam  evaporation  in  the  same  vacuum  chamber.    The  purchase  of  the 

system  was made  possible  by  funding  through  the  OSU  Targeted  Initiative  in  Excellence  award  in 

advanced materials.   The system  is outfitted with  three 3” sputtering sources and a 6‐pocker e‐beam 

evaporation  source.    In  addition,  a  Kaufman &  Robinson,  Inc.  KDC  40  ion  source  is  installed  in  the 

loadlock of the system.   The source can be used for sample surface etching and cleaning.   The system 

was delivered in September 2011 and is installed in the NSL clean room. 

Page 75 

 

 

 

 

 

 

 

 

 

 

Two new acquisitions this year greatly enhanced the NanoSystems Laboratory’s research capabilities:  the Magneto‐Optical Kerr microscope (left) and the teraherz time domain spectrometer (right) 

IMR Fiscal Year 2011 -2012 Annual Report

Page 73

Page 79: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

In March 2012, NSL commissioned a new Physical Properties Measurement System (PPMS) by Quantum 

Design USA.  Instrument acquisition was funded by a Major Research Instrumentation grant awarded by 

the National Science Foundation to a group of OSU researchers led by Professor P. Chris Hammel.  The 

system  is  capable  of  conducting  resistivity,  AC  transport  (ACT),  AC magnetic  susceptibility  (ACMS), 

Vibrating Sample Magnetometry (VSM) and torque magnetometery measurements.  The VSM capability 

of the PPMS comes with both  large and small bore coil sets and a high temperature oven option with 

the capability for sample heating up to 1100 K.  All measurements can be conducted in magnetic fields 

of up to 14 T and over the temperature range between 1.9 K and 400 K (1100 K if VSM oven is used).  To 

reduce  the  costs  of  system  operation,  the  instrument  is  equipped  with  a  helium  reliquifier  that 

dramatically reduces liquid helium consumption.  An additional component of the PPMS is the cryogenic 

Atomic Force Microscope/Magnetic Force Microscope  (AFM/MFM) delivered by  ION‐TOF GmbH.   The 

instrument will allow scanned probe microscopy surface studies of samples  in magnetic fields of up to 

14 T and over the temperature range between 1.9 K and 400 K.  Such a capability is unavailable on most 

commercial AFM/MFM systems.  Both the PPMS and the cryogenic AFM/MFM have become extremely 

popular among NSL users, with  the  system operating 10‐15 hours a day, on average, during  summer 

2012. 

During FY 2012, NSL has also acquired a new teraherz time domain spectrometer (THz‐TDS) for the study 

of solid state materials.  The instrument has been provided by Lake Shore Cryotronics, Inc. as a part of a 

collaborative effort between Lake Shore and the OSU NSF Center for the Emergent Materials (CEM) to 

develop a commercial THz spectrometer.   This collaboration  is funded through a $1 million Fiscal Year 

2011  Ohio  Third  Frontier  Sensors  Program  award,  Cost‐effective  Terahertz‐based  Characterization 

System  for  Semiconductor Materials Research.    The  current  instrument  is  capable of  conducting  THz 

spectroscopy  at  room  temperature  under  ambient  conditions.    In  the  future  this  instrument will  be 

replaced with a low temperature THz spectrometer prototype that is currently being developed by Lake 

Shore.  

In September 2011, NSL also acquired an Evico Magnetics Magneto‐Optical Kerr microscope, another 

purchase made possible by  the OSU TIE  funding.   The Kerr microscope  is a system  for rapid magnetic 

domain  visualization  in  ferromagnetic  samples.    It  consists  of  a  high  resolution  optical microscope 

combined with a compact electro magnet capable of generating magnetic fields as high as 1 T applied in 

the plane of  the  sample  surface.   Enhanced by  image processing and equipped with electromagnets, 

domains and magnetization processes on all kinds of ferro‐ and ferrimagnetic materials can be studied 

at variable magnifications down  to  the  resolution  limit of optical microscopy, which, with  the current 

optical setup,  is as  low as 300 nm depending on  the sample.   This  is a unique capability  for  real‐time 

visualization of domain formation and evolution in an applied magnetic field that has become available 

to OSU researchers.  

As a part of the NSL mission for assisting the OSU material science community in expanding knowledge 

of  novel material  characterization  techniques,  NSL  staff  also worked with  the  Center  for  Emergent 

Materials  in  the organization of a  three‐day Workshop on Magnetic Domains with Dr. Rudolf Schäfer 

IMR Fiscal Year 2011 -2012 Annual Report

Page 74

Page 80: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

(IFW, Dresden, Germany) on September 19‐21, 2011.  More information on this workshop is detailed in 

the Outreach and Education Activities section of this report.   

 

Through  a  partnership  between  the  IMR  and  the  departments  of  Chemistry  and  Biochemistry,  the 

Center  for  Chemical  and  Biophysical  Dynamics  (CCBD)  operates  as  an  open  user  lab  offering 

instrumentation to perform ultrafast laser spectrometry to reveal the complex evolution of light quanta 

absorbed by matter.   The mission of  the CCBD  is  to provide users with access  to  laser  spectrometry 

instrumentation,  including  all  the  equipment  necessary  to  measure  transient  UV/Vis,  fluorescence, 

infrared, and stimulated Raman spectra on femto‐, pico‐, and nanosecond time scale.  Researchers use 

CCBD  instrumentation  to perform several  forms of ultrafast  laser spectrometry  to  reveal  the complex 

evolution of light quanta absorbed by matter.  By measuring with high temporal precision the changes in 

characteristic  spectral  signatures of photogenerated  intermediates,  the  sequence of  individual events 

can be discerned, the information which otherwise is smeared and integrated over time.  The evolution 

steps provide a rich harvest of knowledge about the energy flow and mechanisms of transformations in 

biological,  chemical,  physical,  and materials  systems.    This  knowledge  is  invaluable  for  learning  how 

photoreactive  systems work  in  nature  as well  as  for  optimizing  the  energy  transfer  and  eliminating 

energy losses in artificial systems and materials. 

CCBD HIGHLIGHTS AND ACCOMPLISHMENTS DURING FY2012 

The Center  for Chemical and Biophysical Dynamics has  seen definite growth and  improvements  in  its 

first full year of operating as an open user research facility.  One of the biggest accomplishments for the 

CCBD  during  Fiscal  Year  2012  is  the  increase  in  user  fee  revenues, which  at  approximately  $12,000 

nearly tripled FY 2011’s billed user fees.  During Fiscal Year 2012, three more research groups joined the 

CCBD as  regular users.   A concept of “superusers” was  implemented and a member  from each active 

research group was thoroughly trained to use the CCBD instruments independently at a high level.  Five 

graduate students defended their Ph.D. theses based on research projects completed at CCBD.   Three 

graduates landed academic jobs as junior professors and two continued research as postdoctoral fellows 

during  this  reporting period.   An  international postdoctoral  researcher and  two  international  scholars 

were  also  trained  this  year  at  CCBD  and  went  on  to  have  professional  success.    The  postdoctoral 

researcher acquired an academic job, and one of the visiting scholars has attained habilitation based in 

part  on  the  research  completed  at  CCBD.    The  research  conducted  at  CCBD  has  inspired  25  peer 

reviewed publications and presentations, and  the corresponding  list of publications  is  included  in  this 

report’s Appendices. 

CENTER FOR CHEMICAL AND BIOPHYSICAL DYNAMICS (CCBD) 

IMR Fiscal Year 2011 -2012 Annual Report

Page 75

Page 81: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

This  year,  a  CCBD Advisory  Committee was  formed  to  oversee major  activities  of  the  facility  and  to 

facilitate  the  alignment of CCBD  capabilities  to  the needs of  IMR  researchers.   Committee members 

include Dr.  Susan Olesik,  Chair of  the Departments of Chemistry  and Biochemistry,  IMR Director Dr. 

Steven Ringel, and several professors whose research groups are current or potential users of the CCBD 

facility.  The group meets monthly to identify user needs, instrumentation upgrades or concerns, priority 

experiments,  and  prospective  users.    CCBD Director,  Prof.  Terry Gustafson  resumed  his  duties  after 

spending  several months  of  his  sabbatical  leave  in Auckland, New  Zealand.   He  continues  his  active 

research focusing on multi‐dimensional femtosecond infrared and Raman spectroscopy.  

On February 8th, CCBD participated in a webinar organized by the NSF Division of Materials Research.  In 

response to the 2011 Committee of Visitors report on the Division of Materials Research, the Advisory 

Committee of  the Mathematical and Physical Sciences Directorate at  the National Science Foundation 

has charged a subcommittee with  looking at future  instrumentation and facility needs  in the materials 

research community.  As members of the chemistry community, CCBD and Research Support Services at 

the Department  of  Chemistry  provided  their  input  based  on  a  long‐term  expertise  running mid‐size 

multiuser  facilities.    Two  key  topics  have  been  discussed:  “What  types  of  research  infrastructure  is 

needed to support the Materials research mission of the Division” and “What instrumentation research 

and development is needed to support the Materials research mission of the Division?” 

Following  2011’s  equipment  acquisitions  which  included  a  PicoHarp  300  picosecond  histogram 

accumulating real‐time processor with USB  interface, an Excelitas Technologies single photon counting 

module,  and  an  Olympus  IX  71  inverted microscope,  the  CCBD  research  facility  continued  to make 

important upgrades and enhancements to its instrumentation. 

The CCBD facility’s time‐correlated single photon counting setup has been upgraded to include a 

newer version of the hardware and more reliable software running on a computer from a recent 

generation of Dell machines. The new  semiconductor  single photon counting module extends 

the  spectral detection  range  from Visible  to near  IR  (ca. 1100 nm) with  sub‐nanosecond  time 

resolution. A confocal microscope attached to the instrument allows more efficient collection of 

fluorescence  from  small‐scale  biological  or  semiconductor  films  and  devices.  An  alternative 

optical pump scheme using a  focusing mirror  instead of the  lens/ microscope objective allows 

one to use UV light below 350 nm to excite photoluminescence. 

A mobile  turn‐key  subnanosecond pulsed  laser‐emitting diode of EPLED  series  from Edinburg 

Instruments  emitting  at  360  nm  (loaned  to  CCBD  by  the  group  of  Prof.  Claudia  Turro  in  the 

department of Chemistry) adds extra convenience to the setup.   The LED  is extremely easy to 

operate.  In  contrast  to  a  laser,  it  does  not  require  any  alignment  and  is  ready  to  fire  in  60 

seconds.  It has been tested as an excitation source for Time‐Correlated Single Photon Counting 

fluorescence  lifetime measurements  in  Rhodamine  6G  solution.    The  test  showed  that  this 

particular LED is suited mostly for highly fluorescent compound due to its limited output energy.  

IMR Fiscal Year 2011 -2012 Annual Report

Page 76

Page 82: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

The femtosecond time‐resolved mid infrared spectrometer was upgraded to extend its infrared 

probe spectral coverage from 3‐9  m to 3‐14  m with the low frequency limit of ca. 700 cm‐1.  

This upgrade makes it possible for researchers to study low energy vibrations characteristic for 

such  processes  as  photochemical  generation  of  alkenes  as well  as  photochemically  induced 

isomerization.  CCBD is proud to be among very few groups in the world capable of doing such 

experiments.    Transient  spectra  at  time  delays  from  100  femtoseconds  to  5  picoseconds  for 

trans‐beta‐methylstyrene  in CCl4 excited by a 100  fs  laser pulse at 270 nm were  recorded  to 

show photoinduced  isomerization.   Based on  this upgrade, a proposal has been  submitted  to 

obtain NSF funding for studying reactive intermediates.  This proposal has been approved.  The 

upgraded setup has been also used during a six‐week visit of a team of international scholars to 

CCBD.    The  team  has  been  experimenting  with  a  series  of  photochemically‐  labile  diazo 

compounds.  The results are being analyzed and prepared for publication. 

Another CCBD  facility enhancement project has been carried out to upgrade  the  femtosecond 

transient  UV/Vis  absorption  spectrometer.    Before,  the  long‐wavelength  probe  limit  for  the 

pump‐probe UV/Vis  transient  absorption  spectrometer was  ca. 750 nm.   On  the other hand, 

several spectral signature bands, especially for transient metal compounds that are of  interest 

as materials for solar photovoltaics, require  longer probe wavelengths.   Integrating a 512‐pixel 

InGaAs array detector  into  the data acquisition  system extends  its  spectral  coverage  into  the 

near IR range (1100 – 1300 nm).  Flexible mathematics of data collection allows one to use the 

spectrometer both  in transmission and reflection mode for materials‐related experiments. The 

InGaAs  array  detector  was  tested  and  the  related  software  has  been  developed  for  data 

collection and analysis at those wavelengths.  A visiting student from Japan has been assigned to 

work on this project under the guidance of the CCBD Manager.  The design and engineering of 

the timed communication with the InGaAs detector via LabView software and the optical layout 

have been completed.  Debugging and tests continue to improve sensitivity and signal‐to noise 

ratio.  As the next step glasses, crystals and photonic optical fibers will be tested to find the best 

near IR continuum generating material.  After that, the new addition will be integrated into the 

existing femtosecond time‐resolved spectrometer. 

In parallel, the Kinetic detection experimental setup at the CCBD has been adjusted to use single

‐wavelength  excitation  and detection  in  the 1500‐2600 nm  spectral  range.   Optical  elements 

have been replaced and set up as well as an InSb detector.  Single‐wavelength near IR transient 

absorption experiments (Excitation: 800; 1300; 1500 nm (various polarizations), Detection: 1500 

nm)  have  been  performed  to  study  relaxation  dynamics  of  GaN  nanowires  on  Si  at  various 

excitation wavelengths.    These data will  also help  to  test  the  InGaAs  array detector  – based 

experimental setup. 

 

IMR Fiscal Year 2011-2012 Annual Report

Page 77

Page 83: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

As a maturing community, IMR and its members are engaged with outreach activities like never before.  

This  is  motivated  by  several  factors,  including  increasing  the  awareness  of  materials  science  and 

engineering  to  K‐12  and  undergraduate  students,  educating  teachers,  providing  mechanisms  for 

broadened appreciation of the breadth of what is materials today both inside OSU and globally, and the 

desire  to  connect  students  with  the  external  community.    Our  signature  conference  event,  OSU 

Materials Week,  is  now  stronger  and  larger  than  ever.    Through  our  partner  centers,  such  as  CEM, 

CANPBD and others, there are now strong and well organized outreach programs for undergraduates, 

including a  large REU (Research Experience for Undergraduates) site.   Several of our faculty have been 

particularly innovative, notably Prof. Glenn Daehn through his leadership of an ASM‐sponsored camp for 

high school teachers.   This section has been expanded compared to prior reports to better reflect the 

significance of these activities.  

 

The  2011 OSU Materials Week  conference  took place  September  12‐14,  2011  at  the Ohio Union on 

OSU’s Columbus  campus.    This  fourth  annual OSU Materials Week was  again organized  by  the  IMR, 

along with the Center for Emergent Materials, OSU’s NSF MRSEC program.  This year’s attendance set a 

new record, with 450 attendees including OSU faculty, staff, and students and representatives from 13 

other universities, 36 industry collaborators, and national labs and state entities.  While our original goal 

for Materials Week was to host a largely internal conference to educate our community on the quality 

and  breadth  of materials  research  at  OSU,  the  growing  inclusion  of  speakers  from  outside  of  OSU 

coupled  with  the  large  external  attendance  is  a  testament  to  the  appeal  and  impact  of  IMR‐wide 

materials research. 

A wide  variety  of materials‐allied  disciplines were  represented  at  2011 OSU Materials Week, which 

included 42 presentations by  international authorities  in plenary  sessions on Carbon‐Based Materials 

and Biological Materials: From the Nano to Macro Scale, and technical sessions on 2‐D Materials Beyond 

Graphene, Materials Design and Catalysis, Thermal Spintronics, and Terahertz (THz) Materials. 

 

OUTREACH AND ENGAGEMENT ACTIVITIES 

2011 OSU MATERIALS WEEK CONFERENCE 

IMR Fiscal Year 2011 -2012 Annual Report

Page 78

Page 84: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

A  highlight  of  this  year’s  Materials  Week  was  a  day‐long  symposium  organized  by  the  Ohio 

Manufacturing  Institute  focused  on New  Approaches  to  Lighter,  Sustainable  Vehicle Materials.    This 

heavily  industry‐focused  day  attracted  dozens  of  attendees  from  automotive  manufacturers  and 

suppliers, who  joined university engineers and national experts to discuss the role of new materials  in 

vehicle structure and design. 

Two evening  student poster  session  receptions provided  a  venue  for OSU  students  and postdoctoral 

researchers  to  show  off  their  recent  contributions  to  research.    Over  100  research  posters  were 

exhibited at the student poster sessions, and ten OSU students received Best Student Poster awards at a 

luncheon reception later that week. 

 

 

 

 

 

 

 

 

 

 

 

 

Highlights of this year’s OSU Materials Week included OSU President Dr. Gordon Gee touring a Lotus lightweight vehi‐cle (top left), a wide range of technical sessions (top right), and two student poster sessions  (middle) resulting in ten 

Best Poster awards (bottom) 

IMR Fiscal Year 2011 -2012 Annual Report

Page 79

Page 85: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

The Institute for Materials Research hosts a colloquia series each academic year, bringing internationally 

renowned materials  researchers  to Ohio State  to  share  the  latest  findings  in  their  research and have 

fruitful discussions with OSU faculty and students.  Recognizing that departments, colleges and centers 

host a variety of seminars, the goal for the  IMR colloquium series  is to bring to campus speakers who 

have  broader  appeal  to  a  multidisciplinary  audience,  to  the  extent  possible.    The  2011‐2012  IMR 

Colloquia Series brought three outstanding, acclaimed materials scientists  in areas of strategic  interest 

to the IMR community:   

Materials  Tomography  and  Femtosecond  Lasers,  Tresa M. Pollock, Alcoa Professor of Materials and 

Department  Chair, Materials  Department,  University  of  California  Santa  Barbara,  Thursday, May  10, 

2012 

Abstract:   Optimization of  the  topological  features of materials  is often  key  to  achieving  exceptional 

material  properties.    Several  examples  of  the  use  of  3‐D  structural  information  for  materials 

optimization  will  be  shown.    A  grand  challenge,  however,  is  efficient  acquisition  of  3‐D  materials 

information.   A new  tomography approach  for nm‐scale characterization of materials over mm3‐scale 

volumes will  be  presented.    The  use  of  femtosecond  lasers  allows  for  in‐situ  layer‐by‐layer material 

ablation with high material removal rates.  The high pulse frequency (1 kHz) of ultra‐short (150 fs) laser 

pulses  can  induce material  ablation with  virtually no  thermal damage  to  the  surrounding  area.    This 

technique  has  been  demonstrated  ex‐situ  with  optical  imaging  and  more  recently  in‐situ  with  a 

“TriBeam” approach that combines the femtosecond laser within a focused ion beam platform to permit 

high resolution  imaging, as well as crystallographic and elemental analysis.   Early 3D datasets from the 

TriBeam  system  demonstrate  acquisition  rates  4  to  6  orders  of magnitude  faster  than  focused  ion 

beam systems. 

2011‐2012 IMR COLLOQUIA SERIES 

The 2011‐2012 IMR Colloquia Series included talks by Dr. Tresa Pollock, UC Santa Barbara, shown at left with IMR Associate Director Michael Mills and Materials Science and Engineering Professor J.C. Zhao, and Dr. Samuel Stupp, Northwestern University, shown right with Chemistry Professor Josh 

Goldberger and IMR Director Steve Ringel 

IMR Fiscal Year 2011 -2012 Annual Report

Page 80

Page 86: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Made  in  the  U.S.A.  –  Photovoltaic  Energy  Solutions,  John  P.  Benner,  Executive Director, Bay Area 

Photovoltaic Consortium and Stanford University, Tuesday, March 6, 2012  

Abstract:   News of excess production capacity, predatory pricing, and bankruptcies  in the solar energy 

business  have  replaced  the  exhilaration  over  65%  compound  annual  growth  rates,  record  stock 

valuations and announcements of large‐scale photovoltaic applications.  However, rumors of the death 

of this industry are greatly exaggerated.  The photovoltaic business is healthy with enviable growth rates 

advancing technology on a trajectory to deliver electricity at prices on par with utility rates before 2020.  

Unfortunately, U.S. market share of photovoltaic module production continues to decline, clouding the 

vision of a nation moving toward energy self‐sufficiency.  To address this challenge, the Department of 

Energy  launched  the SunShot  Initiative.   Advanced Manufacturing Partnerships,  the  largest project  in 

SunShot, include a University‐Focused topic to support universities in industry‐relevant R&D, guided by 

industry members.  The challenge demands great innovation, as the dominant producer, China, provides 

manufacturers with substantial benefits from fewer restrictions, faster permitting processes, lower cost 

labor,  a  complete  and  local  supply  chain  and  substantial  financial  incentives.    U.S.  manufacturing 

leadership must be built upon superior, more innovative technologies delivered at all stages of the value 

chain.    Great  innovation  is  frequently  traced  to  events  bringing  together  individuals  from  diverse 

backgrounds.   The Bay Area Photovoltaic Consortium (BAPVC) provides a vibrant forum for  interaction 

among  industry and academic experts  to address critical challenges  in PV manufacturing.   BAPVC will 

find and fund the best university research teams to develop materials, device structures and processes 

for  manufacturing  by  our  industry  members.    This  presentation  will  discuss  the  innovation, 

infrastructure and  incentives needed to build a  leading photovoltaic manufacturing base  in the United 

States. 

Self‐Assembly  in Materials Chemistry, Samuel  I. Stupp, Departments of Chemistry, Materials Science 

and Engineering, and Medicine, Northwestern University, Wednesday, November 9, 2011 

Abstract:  Self‐assembly  has  emerged  over  the  past  two  decades  as  a  chemical  strategy  to  create 

materials and devices.   Based on  lessons from biological systems, this strategy could be extraordinarily 

useful  to  craft  highly  functional  materials  from  non‐covalent  assemblies  of  molecules  and  hybrid 

structures that imitate biomineralization.  In order to harness the potential of the strategy in materials 

chemistry, the underlying science needed is a deep understanding of self‐assembly codes based on both 

structure and external forces.  So far self‐assembly approaches have been developed mostly to organize 

molecules on surfaces, create supramolecular nanostructures with internal order, and to generate three 

dimensional  patterns  using  phase  separation  of  macromolecules.    This  lecture  will  illustrate  self‐

assembly  strategies  to  create more  complex  structures of  interest  in energy  and medicine  that have 

hierarchical order across scales.  In these systems supramolecular self‐assembly codes act synergistically 

with other forces to generate functional systems. 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 81

Page 87: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Throughout each year, there are occasions where  IMR  is approached regarding special seminars.   This 

section  provides  a  brief  summary  of  those  seminars.   Note  that  the  Center  for  Emergent Materials’ 

seminar series is partially supported by IMR, and therefore is included here. 

IMR SPECIAL SEMINARS  

In addition to the IMR Colloquia Series, the IMR also hosted a special seminar this fiscal year: 

Chemical  Strategies  in  Nanoscience,  Stanislaus  S. Wong,  Professor, Department  of  Chemistry,  State 

University of New York  (SUNY) at Stony Brook and Condensed Matter Physics and Materials Sciences 

Department, Brookhaven National Laboratory, September 30, 2011 

Abstract:  In  the  first  part  of  the  talk, we  update  selected  chemical  strategies  used  for  the  focused 

functionalization of single walled carbon nanotube (SWNT) surfaces. In recent years, SWNTs have been 

treated  as  legitimate  nanoscale  chemical  reagents.  Hence,  herein  we  seek  to  understand,  from  a 

structural and mechanistic perspective, the breadth and types of controlled covalent reactions SWNTs 

can undergo  in solution phase, not only at ends and defect sites but also along sidewalls. Controllable 

chemical  functionalization  suggests  that  the  unique  optical,  electronic  and mechanical  properties  of 

SWNTs can be much more readily tuned than ever before, with key  implications for the generation of 

truly  functional  nanoscale working  devices.    In  the  second  part  of  the  talk,  environmentally  friendly 

synthetic methodologies have gradually been  implemented as viable  techniques  in  the  synthesis of a 

range of nanostructures. In this work, we focus on the applications of green chemistry principles to the 

synthesis of metal‐containing nanostructures. In particular, we describe advances in the use of template

‐directed  techniques as environmentally sound, socially  responsible, and cost‐effective methodologies 

that  allow  us  to  generate  nanomaterials  without  the  need  to  sacrifice  on  sample  quality,  purity, 

crystallinity,  in  addition  to  control over  size  and  shape. We  have  subsequently  created  a number of 

different  potential  architecture  systems  for  gaining  valuable  insights  into  fuel  cell  and  photovoltaic 

performance.  

CEM SEMINAR SERIES 

The Center  for  Emergent Materials hosts  a  seminar  series  annually,  and during  Fiscal  Year  2012  the 

MRSEC  program  hosted  or  co‐hosted  with  other  OSU  departments  five  seminars  featuring  experts 

discussing research relevant to the CEM’s mission.  The Institute for Materials Research provides direct 

cost share support to the CEM, and a portion of those funds cover the CEM Seminar Series’ expenses.  

OTHER IMR‐SUPPORTED SEMINARS 

IMR Fiscal Year 2011 -2012 Annual Report

Page 82

Page 88: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Correlated  Electrons  at  the  Interfaces  of  Complex  Oxides,  Jak  Chakhalian,  Professor  of  Physics, 

University of Arkansas, Wednesday, October 5, 2011 

Abstract: Complex oxides are a class of materials characterized by a variety of competing  interactions 

that create a subtle balance to define the lowest energy state and lead to a wide diversity of interesting 

properties (e.g. high Tc superconductivity, exotic magnetism,…). By utilizing the bulk properties of these 

materials as a  starting point,  interfaces between different  classes of  correlated oxides offer a unique 

opportunity  to break  the  symmetries present  in  the bulk  and  alter  the  local environment. Using our 

ability  to growth multilayered structures with unit cell precision, we can now combine materials with 

distinctly different and even competing orders to create new materials and quantum states. The broken 

symmetry, strain, and altered chemical environments at the interfaces then provide a unique laboratory 

to  manipulate  this  subtle  balance  to  create  novel  states  and  structures  not  attainable  in  bulk. 

Understanding  of  these  electronic  phases  however  requires  detailed  microscopic  studies  of  the 

heterostructure  properties. Here  I will  touch  on  several  recent  examples  of  interfaces  of  correlated 

cuprates, manganites and nickelates to illustrate how the application of synchrotron radiation offers the 

ability to probe bulk vs. interface properties to gain exclusive insight into the exciting underlying physics. 

Listening to the spin noise of electrons and holes in semiconductor quantum structures, Scott Crooker, 

Technical Staff Member National High Magnetic Field Laboratory, Los Alamos National Lab, Thursday, 

January 19, 2012  

Abstract:  This  talk  describes  how  we  measure  electron  and  hole  spin  dynamics  in  semiconductor 

quantum  structures by passively  listening  to  these  small  spin noise  signals.   We employ a  spin noise 

spectrometer based on a sensitive optical Faraday rotation magnetometer that is coupled to a digitizer 

and  field‐programmable  gate  array  (FPGA),  to  measure  and  average  noise  spectra  from  0‐1  GHz 

continuously  in  real  time  (no    experimental  dead  time)  with  picoradian/root‐Hz  sensitivity.  This 

approach, applied originally  to paramagnetic atomic vapors,  is now being used  to measure spin noise 

from  electron  Fermi  seas  in  n‐type GaAs  and, more  recently,  from  electron  and  hole  spins  that  are 

localized  in  self‐assembled  InGaAs quantum dot ensembles. Both  electron  and hole  spin  fluctuations 

generate distinct noise peaks, whose  shift and broadening with magnetic  field directly  reveal  their g‐

factors  and  dephasing  rates.  These  noise  signals  actually  increase  as  the  probed  volume  shrinks, 

suggesting  possible  routes  towards  non‐perturbative,  sourceless  magnetic  resonance  of  few‐spin 

systems. Some very recent data addressing the non‐Markovian dynamics of holes coupled to a nuclear 

spin bath will also be discussed.  

High  sensitivity  (atto‐Newton)  force  detection, magnetic  resonance,  spin  fluctuation  in mesoscopic 

system, low temperature physics, KC Fong, Postdoctoral Scholar, Prof. Keith Schwab’s group, California 

Institute of Technology, Thursday, January 26, 2012 

Spintronics  in  Superconducting‐Ferromagnetic Devices,  among  other  topics  ,  Jim Sauls, Professor of 

Physics, Northwestern University, Monday, February 13, 2012 

IMR Fiscal Year 2011 -2012 Annual Report

Page 83

Page 89: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Nano‐engineered Materials: Opportunities and Challenges, Pulickel M. Ajayan, Benjamin M. and Mary 

Greenwood Anderson Professor in Engineering, Rice University, March 8, 2012 

Abstract: The  talk will  focus on opportunities and challenges  in  the engineering of nano‐materials  for 

various applications. Carbon nanostructures, including carbon nanotubes and graphene, will be used as 

examples  to demonstrate  the perspective  in nanoscale  engineering  and nanomaterials development. 

The  last  couple  of  decades  have  seen  advances  in  nanotechnology with  promises  in many  areas  of 

science and technology. Several exciting developments in recent years allow us to formulate strategies 

to develop the next generation of nanostructured materials  in controllable and scalable ways. The talk 

will  focus  on  various  aspects  such  as  synthesis,  assembly,  nanoscale  junctions  and  interfaces,  3D 

nanostructured materials, 2D  atomic  layers, nanocomposites  etc.,  and discuss  a  variety of  important 

issues in the development of nanomaterials based technologies. 

 Ohio State’s materials community is deeply engaged with and committed to high impact and innovative 

programs  of  outreach  and  engagement,  reaching  K‐12  students,  under‐represented  groups, 

undergraduate  researchers, K‐12  teachers, graduate  students and postdoctoral  researchers.   Many of 

these programs are  required  core efforts within various  centers  (especially NSF  centers), and  several 

programs  have  been  developed  and  run  by  clusters  of  faculty  members.    This  section  provides  a 

collection of these activities by the various IMR‐supported centers along with other activities that fully 

encompass the breadth of materials research and education at OSU.   

CENTER  FOR  EMERGENT  MATERIALS  (CEM)  EDUCATION  AND 

OUTREACH 

The  Center  for  Emergent Materials  (CEM),  an NSF MRSEC  program  at Ohio  State,  is  having  a  broad 

impact  on  materials  research  and  researchers  at  OSU  and  beyond,  and  is  advancing  science  with 

substantial potential to strengthen the US economy and improve well‐being.  In this reporting period the 

CEM as a whole was engaged  in education,  training, and outreach programs  that have  impacted over 

9,000  K‐12  students,  98  K‐12  teachers,  over  1,000  undergraduates  in  classes,  17  undergraduate 

researchers, 38 graduate students, and 8 postdoctoral scholars.  This section provides short updates on 

just a few of the many outreach and engagement activities CEM led during Fiscal Year 2011‐2012.  Full 

details on all CEM programs can be found in CEM’s annual report. 

FACULTY AND STUDENT OUTREACH AND ENGAGEMENT ACTIVITIES 

IMR Fiscal Year 2011 -2012 Annual Report

Page 84

Page 90: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

CEM  SUMMER RESEARCH EXPERIENCE  FOR UNDERGRADUATES 

PROGRAM 

The  Research  Experience  for  Undergraduates  (REU)  program  had  8  students  (5  female,  1  from 

underrepresented minority groups and 1 with a declared disability) during summer 2011.   During  the 

2011‐2012  academic  year,  7  students  (2  female,  and  2  underrepresented minority)  completed  the 

program.    Successful  recruitment  of  high‐quality  REU  students  from  diverse  backgrounds  is  a  key 

accomplishment.   The program ran  June‐August 2011 and was presented  in conjunction with the OSU 

Summer Undergraduate  Research  Institute  (SURI), which  enhances  the  experience  of  undergraduate 

researchers through a series of enrichment programs, both professional and social.    In addition to the 

SURI activities, the CEM summer program offered workshops on machine shop skills, GRE preparation, 

presenting research with posters, a “What can I do with a Ph.D.?” panel discussion with guest speakers 

from  industry, academia and government  laboratories, and weekly  community‐building  lunches.   The 

summer culminated with oral and poster presentations to CEM faculty and students.  

Also during Summer 2011, CEM member and Professor of Electrical and Computer Engineering Leonard 

Brillson  organized  a  research  program  for  high  school  students  from  the  Columbus  School  for Girls 

(CSG).  Five students worked in OSU research labs and one student was supported by CEM.  Throughout 

the summer, all 5 girls, as well as their graduate student mentors, participated in the weekly lunches and 

professional development opportunities offered by  the CEM Summer REU Program. Additionally,  two 

mentoring lunches were organized for the girls with female faculty members. 

CEM  ACADEMIC  YEAR  RESEARCH  EXPERIENCE  FOR 

UNDERGRADUATES PROGRAM 

To encourage OSU undergraduate  students  to become  involved  in  research,  the Center  for Emergent 

Materials offers an Academic Year REU Program.  The Academic Year REU Program students participated 

in workshops  on  presenting  research with  scientific  posters,  to  help  them  prepare  to  present  their 

research  at  the  2012 Denman Undergraduate Research  Forum,  a  university‐wide  poster  competition 

showcasing  outstanding  student  research,  held  on May  9,  2012.    The  students will  submit  research 

papers at the end of the academic year and give an oral presentation to CEM faculty and students. 

CEM‐ASM MATERIALS CAMPS FOR TEACHERS 

During  summer 2011,  the OSU Department of Materials Science and Engineering and ASM Education 

Foundation offered two ASM Materials Camps for High School Teachers, which provide the opportunity 

for  teachers  to  work  hands‐on  with metals,  ceramics,  polymers  and  composites  and  learn  how  to 

incorporate  these activities and demos  into  their science classes.   Led each summer by Professor and 

IMR  member  Glenn  Daehn,  Materials  Science  and  Engineering,  the  ASM  Materials  Camp  teaches 

IMR Fiscal Year 2011 -2012 Annual Report

Page 85

Page 91: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

educators about the real‐world application of materials science and how to share its relevance to their 

students’ lives.   The Advanced Camp was offered a fourth time and was attended by 26 teachers.   The 

basic  form  of  the  camp,  offered  by  the  Education  Foundation  at  over  20  sites  around  the  country, 

provides  teachers  with  an  introductory  exposure  to  materials‐related  topics,  including  hands‐on 

exercises  and  other  curricular  materials.    In  2008,  OSU  initiated  an  advanced  camp  for  alumni  of 

introductory camps to provide deeper exposure and more curriculum development support to teachers 

interested  in  offering  Materials  Science  electives  at  their  schools.    In  Summer  2011,  17  teachers 

primarily from central Ohio attended the introductory camp at OSU, and 27 teachers from 10 states and 

Canada  attended  the  advanced  camp.    Four of  the  advanced  camp  attendees had  already offered  a 

materials course at their schools; 4 more were scheduled to do so  in the 2011‐2012 school year.   The 

Center for Emergent Materials MRSEC program at Ohio State is also participating in the CORE – MRSEC 

Evaluation  Partnership  and  the  Advanced  Camp  has  been  the  area  of  focus  for  the  partnership.  

Specifically, CEM has evaluated the camp activities that the teachers use in their classrooms and begun 

investigating  the  misconceptions  that  high  school  students  and  teachers  have  regarding  materials 

science. Four of the advanced camp attendees had already offered a materials course at their schools; 4 

more were scheduled to do so in the 2011‐2012 school year.   

CEM  INTERACTIONS  WITH  THE  CENTER  OF  SCIENCE  AND 

INDUSTRY (COSI) 

IMR member Professor Nandini Trivedi, Physics, led an effort to collaborate with COSI (Center of Science 

and  Industry), a world‐renowned science museum, to produce  innovative  informal education outreach 

programs that showcase materials science.  Last fall, Prof. Trivedi and OSU students presented physics‐

related demonstrations to over 3,500 visitors during the Festival of Physics celebration held on October 

15 and 16, 2011.   On May 5, 2012, Center  for Emergent Materials’  fellows participated by presenting 

materials‐related demonstrations to over 1,000 visitors during the Nanomaterials Day at COSI.   

CEM LABVIEW SHORT COURSE 

The Center for Emergent Materials sponsored a 3‐week LabVIEW Short Course  in February 2012.   The 

Short Course was taught by Dr. Jan Jacob of University of Hamburg, who has developed many LabVIEW‐

based measurement and control applications for transport measurements in low‐temperature and high‐

magnetic‐field environments.   He has also created control software applications for sample processing 

plants; automated image processing and pattern detection for tracking of magnetic singularities in X‐Ray 

microscopy  experiments;  and  numerical  simulations  for  spin  and  charge  transport  in  semiconductor 

nanostructures.  Dr. Jacob has collaborated with CEM Fellow Andrew Berger (Hammel’s lab) to develop 

LabVIEW control software for an FPGA‐based scanned‐probe microscope controller. 

The LabVIEW Short Course met 9 times over 3 weeks for 2 hours each session.  The topics covered were 

extensive and ranged from general approaches to software development, debugging and error handling, 

IMR Fiscal Year 2011 -2012 Annual Report

Page 86

Page 92: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

data  storage,  data  acquisition,  common  program  architectures,  event  driven  programming,  user 

interface control, and executables/ installers.  Participants were required to bring a laptop with LabVIEW 

installed  (a 30‐day demo  version was  available  for  free)  to  each  session  so  they  could participate  in 

programming exercises and gain first‐hand experience with LabVIEW.  

CEM WORKSHOP ON MAGNETIC DOMAINS 

A  Workshop  on  Magnetic  Domains,  co‐sponsored  by  the  Center  for  Emergent  Materials  and  the 

Nanosystems Laboratory, was held in September 2011. Dr. Rudolf Schäfer, of IFW Dresden, came to OSU 

to  speak  at  the  three‐day  workshop.    Dr.  Schäfer  is  a  world‐renowned  expert  on  magnetism  and 

magnetic  domains.    He  co‐authored  a  monograph,  “Magnetic  Domains.  The  Analysis  of  Magnetic 

Microstructures,”  a  fundamental  book  on  magnetic  domain  theory,  observation  techniques  and 

interpretation.  The workshop covered such topics as the history of magnetic domain research, domain 

formation by energy minimization, magnetization processes, domains in iron(‐like) materials, domains in 

amorphous and nanocrystalline materials, domains  in  soft magnetic  films, and domain  imaging.   The 

average  attendance  over  the  three‐day  workshop  was  25  attendees,  and  was  comprised  of 

undergraduate and graduate students, post doctoral researchers, faculty and research staff. 

 

 

 

 

 

 

 

 

 

 

This Fiscal Year, the Center for Emergent Materials hosted a LabVIEW software course (left) and a Workshop on Magnetic Domains (right) for OSU faculty, research staff, and students. 

IMR Fiscal Year 2011 -2012 Annual Report

Page 87

Page 93: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

CENTER  FOR  AFFORDABLE  NANOENGINEERING  OF  POLYMER 

BIOMEDICAL DEVICES (CANPBD) EDUCATION AND OUTREACH 

The Center  for Affordable Nanoengineering of Polymer Biomedical Devices  (CANPBD),  an NSF NSEC 

program at Ohio State, has also made good progress in teaching, training, outreach and diversity in the 

past year.  In addition to the ongoing three graduate core courses, CANPBD has continued to offer and 

update  20  courses  and  on‐line  modules.    Through  these  course  developments,  the  core  of  an 

undergraduate minor and graduate certificate  in nanobiotechnology continues  to be developed as a 

new option when OSU converts  to  semester  in 2012.   The graduate  fellows of CANPBD continue  to 

participate through a student organization (CONGS) to better  integrate the student researchers, take 

an active role in major center activities, and provide a social fabric for the center. In a newly developed 

program, we have paired many CONGS members with  industrial mentors  from Battelle  to  enhance 

their  understanding  of  technology  transfer  and  commercialization.   Outreach  to  K‐12  reached  522 

students  and  42  teachers  in  the  past  year  through  visits  to  center  laboratories  and  the  teacher 

workshop,  and many  thousands  of  students  through  on‐line  activities  through  the  Edheads  on‐line 

resource  (www.edheads.org).    In  diversity,  the  CEM  continued  growth  in  the  number  of 

underrepresented  faculty  and  student  participants  in  the  past  year,  such  that  the  Center  now 

compares favorably with national averages in nearly every measure.  We continue to work to establish 

a culture that values and promotes diversity, recruit and retain members of underrepresented groups 

among undergraduates, graduate students, and faculty.   We have moved aggressively to recruit new 

graduate students from underrepresented groups to academic departments that participate  in NSEC, 

offer them fellowship support, and mentor them to insure their progress to the PhD.  We are currently 

offering  summer  support  to  three  prospective  graduate  students  from underrepresented  groups  to 

enable  them  to work with  CANPBD  faculty  prior  to  starting  their  graduate  studies.   Our  goal  is  to 

encourage  them  to  choose OSU  for graduate  study, and  to provide a bridge experience  to enhance 

their  chance  for  success  in graduate  school.   We are also actively  seeking external advisors  for our 

students through outreach and collaboration activities taking place with industry and medical doctors.  

One  effort  that  has  achieved  noticeable  results  has  been  the  pursuit  of  a  close  relationship  with 

Battelle Memorial  Institute,  a world‐renown,  non‐profit  research  and  development  organization  in 

close proximity to OSU.  Twelve scientists from Battelle were recruited to individually mentor CANPBD 

graduate students.   Finally, our  international collaboration activities remained strong this past year  in 

Asia, Europe, the Middle East and South America. 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 88

Page 94: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Since  Spring  2009,  the  Institute  for Materials  Research  has  published  IMR  Quarterly,  a  quarterly 

newsletter with  technical articles highlighting materials‐allied  research, and newsworthy  information 

relevant  to  materials  at  The  Ohio  State  University.    IMR  administrative  staff  members  collect 

information  from  various  subject matter  experts  throughout  campus  for  each  newsletter,  including 

activities within  the many  federal,  state  and  industry  supported materials  research  and  innovation 

centers,  updates  on  research  funded  by  IMR  grants,  facility  updates,  recently  awarded  grants,  and 

other materials research news.  The publication highlights one or two IMR members per issue as well, 

with technical overviews of their research and recent discoveries.  This fiscal year, IMR again published 

three  quarterly  newsletters,  all  available  online  at  IMR’s  website  and  distributed  by  mail  to 

approximately 1,500 readers on campus and to 600  individuals from national  labs, other universities, 

and industry partners.  

During  Fiscal  Year  2012,  the  IMR  Quarterly  newsletter  featured  stories  on  several materials‐allied 

research projects conducted by IMR members, including the following articles: 

“MOCVD  Synthesis  of  Semiconductor Nanowire Heterostructures  for  Investigations  of  1D 

Spin  Physics,”  featuring  Fengyuan  Yang,  Physics;  Ezekiel  Johnston‐Halperin,  Physics;  John 

Carlin, Institute for Materials Research 

“Probing High Frequency Acoustics with Light,” featuring R. Sooryakumar, Physics 

IMR QUARTERLY NEWSLETTER 

 

 

 

 

 

 

 

 

Three issues of the IMR Quarterly newsletter were published during FY 2012, featuring articles on OSU researchers working in a wide range of materials‐allied reacrch including biomaterials, semiconductors, lightweight vehicles, and 

acoustics. 

IMR Fiscal Year 2011 -2012 Annual Report

Page 89

Page 95: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

“Exploring  Thermal  Spintronics: OSU  Interdisciplinary  Research  Team  Contributing  to  the 

Spin‐Seebeck  Effect  Knowledge  Base,”  featuring  Roberto  Myers,  Materials  Science  and 

Engineering;  Joseph  Heremans,  Mechanical  and  Aerospace  Engineering;  and  Ezekiel 

Johnston‐Halperin, Physics 

“Faculty Spotlight” features on Gunjan Agarwal, Biomedical Engineering; Malcolm Chisholm, 

Chemistry; and Michael Paulaitis, Chemical and Biomolecular Engineering 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IMR Fiscal Year 2011 -2012 Annual Report

Page 90

Page 96: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

 

The  Institute  for Materials  Research  is  supported  by  the  OSU  Office  of  Research,  the  College  of 

Engineering, and the Division of Natural and Mathematic Sciences of the College of Arts and Sciences, 

through  a  three‐year  renewable memorandum  of  understanding.    Each  entity  provides  equal  1/3 

shares of the base IMR support, which totaled $908,176  in FY12.   As a result of this direct support at 

the  college  and  Office  of  Research  level,  IMR  does  not  receive  cash  from  the  return  on  indirect 

expenses via faculty‐led externally funded research projects, since faculty maintain full appointments 

in their home departments, and are not appointed  into IMR directly.   This  is the current policy of the 

Office of Research with regards to Institute and Center support. 

In the early part of FY11, the formal operation and unit reporting responsibility of the OSU Nanotech 

West Laboratory was transferred from the College of Engineering to the IMR.  This formal move aligned 

the  unit  authority with  the  actual  technical  facility management  that  is  already  in  place,  since  the 

Nanotech  Director  already  reported  to  the  IMR  Director.    The  Nanotech West  operating  budget, 

including  rent  of  the  entire  building,  all  utilities,  personnel,  etc.,  is  supported  by  an  agreement 

between  the Office of Research,  the College of Engineering and  the  IMR, with  the  IMR contribution 

being solely derived from user fee income from the facility. 

Figure 8. Fiscal Year 2011‐2012 Total IMR Expenses by Major Category.  

FINANCIAL REPORT 

Administrative Personnel$ 555,272

22%

Technical Personnel$ 823,730

33%

Equipment/Capital Investment $22,090

1%

FY12 Seed Grants$304,859

12% Proposal Development Support$ 9,500

< 1%

Additional Support of Prime Materials Research Centers

$ 97,1524%

IMR Operating Expenses$ 107,729

4%NTW Operating Expenses

$ 601,09824%

IMR Total Expenses for Fiscal Year 2011‐2012(includes Nanotech West) 

IMR Fiscal Year 2011 -2012 Annual Report

Page 91

Page 97: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Table 2:  IMR total expenses including Nanotech West for fiscal year 2011‐2012. 

I n s t i t u t e   f o r   Ma t e r i a l s   R e s e a r c h Total Expenses Fiscal Year 2011‐2012    

Administrative Personnel 

Includes salary and fringe for IMR and Nanotech West staff (including 1/2 of NTW Director) and student employ‐ees, plus Quarter Off Duty payments for Associate Direc‐

tors 

Total Administrative Personnel  $555,272  

Technical Personnel Includes salary and fringe for 1/2 of NTW Director and 

Members of Technical Staff 

Total Technical Personnel  $823,730  

Equipment/Capital Investment           

  Total Equipment/Capital Investment    $22,090  

Seed Grants Includes IMR Facility and Industry Challenge Grants; OSU 

Materials Research Seed Grant Program 

Total Seed Grants  $304,859  

Proposal Development Support          

Total Proposal Development Support  $9,500 

Additional Support of Prime Materials Research Centers             

Total  Additional  Support  of  Prime Materials  Research Centers  $97,152 

Core Operating Expenses    

IMR Operating Expenses  $107,729  

NTW Operating Expenses    

Administrative Supplies                                                                                        $13,126  

Building Expenses                                                                                        $40,242  

Lab Supplies and Services                                                                                      $229,585  

Lab Equipment and Repair                                                                                      $277,368  

Mailing Services/Communications Expenses                                                                                        $12,008  

Overhead                                                                                        $28,769  

Total NTW Operating Expenses  $601,098  

Total IMR and NTW Operating Expenses  $708,827 

   

Total Expenses  $2,521,430  

IMR Fiscal Year 2011 -2012 Annual Report

Page 92

Page 98: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Appendices

Appendix A: Members of the Institute for Materials Research (IMR) As of July 2012 Appendix B: Research Outputs from OSU Materials Community Directly Resulting from IMR Resources and Activities for Fiscal Year 2011 – 2012 Peer-Reviewed Publications Professional Presentations External Research Funding

Appendix C: Activities of Members of Technical Staff (MTS) for Fiscal Year 2011 – 2012 Dr. John Carlin, Research Scientist, Nanotech West Laboratory Dr. Evgeny Danilov, Senior Research Associate, Center for Chemical and

Biophysical Dynamics Dr. Robert J. Davis, Director, Nanotech West Laboratory and Associate

Director, Institute for Materials Research Appendix D: 2011 – 2012 IMR Facility Grant Awards

IMR Fiscal Year 2011 -2012 Annual Report

Page 93

Page 99: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Appendix A

Members of the Institute for Materials Research (IMR) As of July 2012

IMR Fiscal Year 2011 -2012 Annual Report

Page 94

Page 100: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Sudha Agarwal, Oral Biology

Gunjan Agarwal, Biomedical Engineering

Kristy Ainslie, Pharmacy

Sheikh Akbar, Materials Science and Engineering

Boian Alexandrov, Materials Science and Engineering

Heather Allen, Chemistry

Betty Lise Anderson, Electrical and Computer Engineering

Peter Anderson, Materials Science and Engineering

Mirela Anghelina, Davis Heart and Lung Institute

Sudarsanam Suresh Babu, Materials Science and Engineering

Jovica Badjic, Chemistry

Yakup Bayram, Electroscience Laboratory

Thomas Bean, Food, Agricultural and Biological Engineering

Jim Beatty, Physics

Stephen Bechtel, Mechanical and Aerospace Engineering

Avraham Benatar, Materials Science and Engineering

Paul Berger, Electrical and Computer Engineering

Bharat Bhushan, Mechanical and Aerospace Engineering

Thomas Blue, Mechanical and Aerospace Engineering

Dennis Bong, Chemistry

Leonard Brillson, Electrical and Computer Engineering

Rudy Buchheit, Materials Science and Engineering

Ralf Bundschuh, Physics

Lei (Raymond) Cao, Mechanical and Aerospace Engineering

John Carlin, Institute for Materials Research

Carlos Castro, Mechanical and Aerospace Engineering

Jose Castro, Integrated Systems Engineering

Jeffrey Chalmers, Chemical and Biomolecular Engineering

Malcolm Chisholm, Chemistry

William Clark, Materials Science and Engineering

James Coe, Chemistry

Edward Collings, Materials Science and Engineering

Terry Conlisk, Mechanical and Aerospace Engineering

Stuart Cooper, Chemical and Biomolecular Engineering

Katrina Cornish, Horticulture and Crop Science

Glenn Daehn, Materials Science and Engineering

IMR Fiscal Year 2011 -2012 Annual Report

Page 95

Page 101: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Evgeny Danilov, Institute for Materials Research

Marcelo Dapino, Mechanical and Aerospace Engineering

Robert Davis, Institute for Materials Research

Frank De Lucia, Physics

Suliman Dregia, Materials Science and Engineering

Charles Drummond, Materials Science and Engineering

Prabir Dutta, Chemistry

Arthur Epstein, Physics

Edward Eteshola, Biomedical Engineering

Liang-Shih Fan, Chemical and Biomolecular Engineering

Dave Farson, Materials Science and Engineering

Gerald Frankel, Materials Science and Engineering

Hamish Fraser, Materials Science and Engineering

Richard Freeman, Physics

Josh Goldberger, Chemistry

Keith Gooch, Biomedical Engineering

Jianjun Guan, Materials Science and Engineering

Yann Guezennec, Mechanical and Aerospace Engineering

Prabhat Gupta, Materials Science and Engineering

Jay Gupta, Physics

Terry Gustafson, Chemistry

Nathan Hall, Radiology

P. Chris Hammel, Physics

Derek Hansford, Biomedical Engineering

Richard Hart, Biomedical Engineering

Joseph Heremans, Mechanical and Aerospace Engineering

Anton Heyns, Chemistry

Julia Higle, Integrated Systems Engineering

George Hinkle, Pharmacy

W.S. Winston Ho, Chemical and Biomolecular Engineering

Ezekiel Johnston-Halperin, Physics

Waleed Khalil, Electrical and Computer Engineering

Matt Kleinhenz, Horticulture and Crop Science

Kurt Koelling, Chemical and Biomolecular Engineering

Ashok Krishnamurthy, Electrical and Computer Engineering

Gregory Lafyatis, Physics

John Lannutti, Materials Science and Engineering

L. James Lee, Chemical and Biomolecular Engineering

Robert Lee, Electrical and Computer Engineering

Robert J. Lee, Pharmacy

IMR Fiscal Year 2011 -2012 Annual Report

Page 96

Page 102: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Stephen Lee, Biomedical Engineering

Thomas Lemberger, Physics

Yebo Li, Food, Agricultural and Biological Engineering

John Lippold, Materials Science and Engineering

Wu Lu, Electrical and Computer Engineering

Anthony Luscher, Mechanical and Aerospace Engineering

Peter March, Natural and Mathematical Sciences

Edward Martin Jr., Surgery Oncology

Chia-Hsiang Menq, Mechanical and Aerospace Engineering

Carolyn Merry, Civil, Environmental Engineering and Geodetic Sciences

Fred Michel Jr., Food, Agricultural and Biological Engineering

Sharell Mikesell, Nanoscale Science and Engineering Center and Industry Liason Office

Terry Miller, Chemistry

Michael Mills, Materials Science and Engineering

Nicanor Moldovan, Davis Heart and Lung Institute

John Morral, Materials Science and Engineering

Patricia Morris, Materials Science and Engineering

Randy Moses, Electrical and Computer Engineering

Roberto Myers, Materials Science and Engineering

Stephen Myers, Ohio Bioproducts Innovation Center

Susan Olesik, Chemistry

Michael Ostrowski, Molecular and Cellular Biochemistry

Umit Ozkan, Chemical and Biomolecular Engineering

Andre Palmer, Chemical and Biomolecular Engineering

Wendy Panero, School of Earth Sciences

Jon Parquette, Chemistry

Srinivasan Parthasarathy, Computer Science and Engineering

Michael Paulaitis, Chemical and Biomolecular Engineering

Denis Pelekhov, Institute for Materials Research

Jonathan Pelz, Physics

Matthew Platz, Chemistry

Michael Poirier, Physics

Stephen Povoski, Surgery Oncology

Heather Powell, Materials Science and Engineering

Shaurya Prakash, Mechanical and Aerospace Engineering

Aimee Price, Institute for Materials Research

Siddarth Rajan, Electrical and Computer Engineering

IMR Fiscal Year 2011 -2012 Annual Report

Page 97

Page 103: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Mohit Randeria, Physics

Bill Ravlin, Ohio Agricultural Research and Development Center

Ronald Reano, Electrical and Computer Engineering

David Rigney, Materials Science and Engineering

Matthew Ringel, Molecular Virology, Immunology and Medical Genetics

Steven Ringel, Electrical and Computer Engineering

Giorgio Rizzoni, Mechanical and Aerospace Engineering

Patrick Roblin, Electrical and Computer Engineering

Thomas Rosol, Surgery Oncology

Gang Ruan, Chemical and Biomolecular Engineering

Mark Rudner, Physics

Yogeshwar Sahai, Materials Science and Engineering

Scott Schricker, Dentistry

Kubilay Sertel, Electroscience Laboratory

Sadhana Sharma, Pharmacy

Scott Shearer, Food, Agricultural and Biological Engineering

Sherwin Singer, Chemistry

Ratnasingham Sooryakumar, Physics

Krishnaswamy Srinivasan, Mechanical and Aerospace Engineering

Doru Stefanescu, Materials Science and Engineering

David Stroud, Physics

Vishwanath Subramaniam, Mechanical and Aerospace Engineering

Michael Sumption, Materials Science and Engineering

David Tomasko, Chemical and Biomolecular Engineering

Nandini Trivedi, Physics

Claudia Turro, Chemistry

George Valco, Electrical and Computer Engineering

Murugesan Velayutham, Davis Heart and Lung Institute

Hendrik Verweij, Materials Science and Engineering

Yael Vodovotz, Food Science Technology

John Volakis, Electrical and Computer Engineering

Robert Wagoner, Materials Science and Engineering

Eric Walton, Electroscience Laboratory

Yunzhi Wang, Materials Science and Engineering

Marvin White, Electrical and Computer Engineering

John Wilkins, Physics

IMR Fiscal Year 2011 -2012 Annual Report

Page 98

Page 104: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

James Williams, Materials Science and Engineering

Wolfgang Windl, Materials Science and Engineering

Jessica Winter, Chemical and Biomolecular Engineering

David Wood, Chemical and Biomolecular Engineering

Patrick Woodward, Chemistry

Yiying Wu, Chemistry

Ronald Xu, Biomedical Engineering

Fengyuan Yang, Physics

Allen Yi, Integrated Systems Engineering

Sheng-Tao John Yu, Mechanical and Aerospace Engineering

Yi Zhao, Biomedical Engineering

Ji-Cheng Zhao, Materials Science and Engineering

Yuan Zheng, Electrical and Computer Engineering

IMR Fiscal Year 2011 -2012 Annual Report

Page 99

Page 105: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Appendix B

Research Outputs from OSU Materials Community Directly Resulting from IMR Resources and Activities

for Fiscal Year 2011 – 2012

Peer-Reviewed Publications Professional Presentations External Research Funding

IMR Fiscal Year 2011 -2012 Annual Report

Page 100

Page 106: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Note: This list relies on self reporting and is likely to be underestimated; an asterisk (*) indicates those items obtained through leveraging more than one IMR-supported activity; this list does not include the many publications in preparation or pending publication

Suresh Babu

S. S. Babu, “In pursuit of optimum welding system design for steels,” Science and Technology of Welding and Joining, 2011, Vol. 16, pp. 306 - 312

D. Schick, S. S. Babu, D. Foster, M. Short, M. Dapino, and J. C. Lippold, “Transient Thermal Response in Ultrasonic Additive Manufacturing of Aluminum 3003,” Rapid Prototyping Journal, Vol. 17 Iss: 5, pp.369 – 379, 2011

S. C. Nagpure, R. G. Downing, B. Bhushan, S. S. Babu, L. Cao, “Neutron depth profiling technique for studying aging in Li-ion batteries,” Electrochimica Acta, 2011, Vol 56, No. 13, pp. 4735-4743

S. S. Babu, “Ex-situ and In-situ Techniques for Visualization of Weld Microstructure,” (Translated to Japanese by organizers of the symposium on The Frontline of the Welding Science and Technology in the World), Journal of the Japan Welding Society, 2011, Vol. 80, No. 1, pp. 64 – 69

S. S. Babu and S. A. David “Advanced characterization techniques to understand welded structures,” Editorial for Special Issue on Science and Technology of Welding and Joining, 2011, Vol. 16, pp. 1-2

J. M. Vitek and S. S. Babu, “Multiscale characterization of weldments,” Science and Technology of Welding and Joining, 2011, Vol. 16, pp. 3-11

X. Yu, J. Caron, S. S. Babu, J. C. Lippold, D. Isheim, D. Seidman, “Characterization of microstructural strengthening of the heat-affected-zone of a blast resistant Naval steel,” Acta Materialia, 2010, Vol. 58, pp. 5596 – 5609 & Corrigendum to the paper was published in Acta Materialia, 2011, Vol. 59, pp. 5596-5609

Stephen Bechtel

S. Chakrabarti and M.J. Dapino, “Coupled axisymmetric finite element model of a hydraulically-amplified

magnetostrictive actuator for active powertrain mounts,” Finite Elements in Analysis and Design, Vol. 60, pp. 25-34, November 2012.

S. Chakrabarti and M.J. Dapino, “Nonlinear finite element model for 3D Galfenol systems,” Smart

Materials and Structures, Vol. 20, No. 10, 105034, October 2011

P.J. Wolcott, C.D. Hopkins, L. Zhang, and M.J. Dapino, “Smart switch metamaterials for multiband radio frequency antennas,” Journal of Intelligent Material Systems and Structures, Vol. 22, Issue 13, 1469 - 1478, September 2011

IMR Fiscal Year 2011 -2012 Annual Report

Page 101

Page 107: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

S. Santapuri, S.E. Bechtel, “A Two-Dimensional Theory of Coupled Electro-Magneto-Mechanical Plates as an Application to Load-Bearing Antenna Structures,” Proceedings of the 18th SPIE International Symposium, Vol. 7978, 79781J, 6-10 March 2011, San Diego, CA

Bharat Bhushan

Palacio, M. L. B., Schricker, S. R. and Bhushan, B. (2011), “Bioadhesion of various proteins on random, diblock and triblock copolymer surfaces and the effect of pH conditions,” J. R. Soc. Interface 8, 630-640.

Schricker, S. R., Palacio, M. L. B. and Bhushan, B. (2011), “Protein adhesion of block copolymer surfaces,” Colloid Polym. Sci. 289, 219-225.

Dennis Bong

Y. Zeng, Y. Pratumyot, X. Piao and D, Bong. "Discrete assembly of synthetic peptide-DNA triplex structures from polyvalent melamine-thymine bifacial recognition." J. Am. Chem. Soc, 2012, 134(2), pp 832-835.

M. Ma and D. Bong. "Protein assembly directed by synthetic molecular recognition motifs." Org. Biomol. Chem., 2011 DOI: 10.1039/C1OB05998J

M. Ma and D. Bong. "Determinants of cyanuric acid and melamine assembly in water" Langmuir, 2011, 27, 8841-8853

O. Torres and D. Bong. "Determinants of membrane activity from mutational analysis of the HIV fusion peptide" Biochemistry, 2011, dx.doi.org/10.1021/bi200696s

M. Ma and D. Bong. "Stabilization of vesicular and supported membranes by glycolipid oxime polymers" Chem. Commun., 2011, 47, 2853-2855

M. Ma and D. Bong."Directed peptide assembly at the lipid-water interface cooperatively enhances membrane binding and activity." Langmuir, 2011, 27, 1480-1486

S. Bandyopadhyay and D. Bong. "Synthesis of trifunctional phosphatidylserine probes for identification of lipid-binding proteins." Eur. J. Org. Chem, 2011, 2011, 751-758

S. Bhattacharjee and D. Bong. "Protein-polymer grafts via a soy protein derived macro-RAFT chain transfer agent" J. Polym. Environ., 2011, 19, 203-208

M. Ma, S. Chatterjee, M. Zhang, D. Bong, "Stabilization of vesicular and supported membranes by oxime linked trehalose lipids," Chemical Communications, 2011, 47, 2853-2855

Malcolm Chisholm

Brown-Xu, Samantha E.; Chisholm, Malcolm H.; Gallucci, Judith C.; Ghosh, Yagnaseni; Gustafson, Terry L.; Reed, Carly R., "Furan- and selenophene-2-carboxylato derivatives of dimolybdenum and ditungsten

IMR Fiscal Year 2011 -2012 Annual Report

Page 102

Page 108: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

(M quadrolpe bond M): a comparison of their chemical and photophysical properties," Dalton Transactions (2012), 41(8), 2257-2263*

Alberding, Brian G.; Chisholm, Malcolm H.; Gustafson, Terry L., "Detection of the Singlet and Triplet MM δδ* States in Quadruply Bonded Dimetal Tetracarboxylates (M = Mo, W) by Time-Resolved Infrared Spectroscopy," Inorganic Chemistry (Washington, DC, United States) (2012), 51(1), 491-498*

Chisholm, Malcolm H.; Lear, Benjamin J., "M2δ to ligand π-conjugation: test-beds for current theories of mixed valence in ground and photoexcited states of molecular systems," Chemical Society Reviews (2011), 40(11), 5254-5265

Alberding, Brian G.; Chisholm, Malcolm H.; Lear, Benjamin J.; Naseri, Vesal; Reed, Carly R., "Synthesis and characterization of trans-M2(TiPB)2(O2C-CH:CH-2-C4H3S)2 (M = Mo or W) and comments on the metal-to-ligand charge transfer bands in MM quadruply bonded complexes of the type trans-M2(TiPB)2L2, where TiPB = 2,4,6-triisopropylbenzoate and L = π-accepting carboxylate ligand," Dalton Transactions (2011), 40(40), 10658-10663*

Chisholm, Malcolm H., "Oligothiophenes incorporating MM quadruple bonds: syntheses and optoelectronic properties," Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) (2011), 52(2), 838-839

Alberding, Brian G.; Chisholm, Malcolm H.; Gallucci, Judith C.; Ghosh, Yagnaseni; Gustafson, Terry L., "Electron delocalization in the S1 and T1 metal-to-ligand charge transfer states of trans-substituted metal quadruply bonded complexes," Proceedings of the National Academy of Sciences of the United States of America (2011), 108(20), 8152-8156, S8152/1-S8152/6*

Bunting, Philip; Chisholm, Malcolm H.; Gallucci, Judith C.; Lear, Benjamin J., "Extent of M2δ to Ligand π-Conjugation in Neutral and Mixed Valence States of Bis(4-isonicotinate)-bis(2,4,6-triisopropylbenzoate) Dimetal Complexes (MM), Where M = Mo or W, and Their Adducts with Tris(pentafluorophenyl)boron,"

Journal of the American Chemical Society (2011), 133(15), 5873-5881

Alberding, Brian G.; Chisholm, Malcolm H.; Ghosh, Yagnaseni; Gustafson, Terry L., "Excited state mixed valency in the MLCT states of paddlewheel compounds involving quadruple bonds between molybdenum and tungstenm," Abstracts of Papers, 241st ACS National Meeting & Exposition, Anaheim, CA, United States, March 27-31, 2011 (2011), INOR-1045*

Reed, Carly R.; Alberding, Brian G.; Chisholm, Malcolm H.; Turro, Claudia, "Electronic communication and photophysical properties of the ground and excited states in quadruply bonded dimetal complexes," Abstracts of Papers, 241st ACS National Meeting & Exposition, Anaheim, CA, United States, March 27-31, 2011 (2011), INOR-1044*

IMR Fiscal Year 2011 -2012 Annual Report

Page 103

Page 109: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Katrina Cornish

Linton, D., Chavan, V., Xie, W., McMahan, C.M, Cornish, K., Quirk, R., Puskas, J.E., A study on synthetic

isoprene incorporation into natural rubber. Proceedings International Symposium on Ionic Polymerizations Conference, Akron, Ohio, 2011.

Cornish, K., Performance related biochemical regulation of rubber production in Hevea brasiliensis and/or alternative rubber plants. In:Rubber Latex Technology, Volume 1, 87-98, publ. Rubber Industry Academy. 2011.

Cornish, K., Alternative Natural Rubber Latices: Safety and Performance, In: Rubber Latex Technology, Volume 1, 78-86, publ. Rubber Industry Academy. 2011.

Marcelo Dapino

C.D. Hopkins, P.J. Wolcott, M.J. Dapino, A.G. Truog, S.S. Babu, and S.A. Fernandez, "Optimizing ultrasonic additive manufactured Al 3003 properties with statistical modeling," ASME Journal of Engineering Materials and Technology, Volume 134, Issue 1, 011004, January 2012

D. Schick, S. S. Babu, D. Foster, M. Short, M. Dapino, and J. C. Lippold, “Transient Thermal Response in Ultrasonic Additive Manufacturing of Aluminum 3003,” Rapid Prototyping Journal, Vol. 17 Iss: 5, pp.369 – 379, 2011

C.D. Hopkins, M.J. Dapino, S.A. Fernandez, “Statistical characterization of Ti/Al composites made by Ultrasonic Additive Manufacturing,'' ASME Journal of Engineering Materials and Technology, Volume 132, Issue 4, 041006, 2010

P.J. Wolcott, Z. Wang, M.J. Dapino, and L. Zhang, "Planar RF antenna reconfiguration with Ni-Ti shape memory alloys," Proceedings of ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 18-21, 2011, Phoenix, Arizona.

P.J. Wolcott, C.D. Hopkins, L. Zhang, M.J. Dapino, "Smart switch metamaterials for multiband radio frequency antennas," Journal of Intelligent Material Systems and Structures, Vol. 22, issue 13, 1469-1470, September 25, 2011 1045389X11414085

Arthur Epstein

L. Fang, K.D. Bozdag, C.-Y. Chen, P.A. Truitt, A.J. Epstein, and E. Johnston-Halperin, "Electrical Spin Injection from an Organic-based Magnet in a Hybrid Organic/inorganic Heterostructure," Physical Review Letters 106, 156602-1/4 (2011)

C.-Y. Kao, J.-W. Yoo, and A. J. Epstein, "Molecular Layer Deposition of an Organic-based Magnetic Laminate," ACS Applied Materials & Interfaces 4, 137-141(2012).

IMR Fiscal Year 2011 -2012 Annual Report

Page 104

Page 110: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

B. Li, C.-Y. Kao, J.-W. Yoo, V. N. Prigodin, and A. J. Epstein, "Magnetoresistance in an All-Organic-Based Spin Valve," Advanced Materials 23, 3382-3386 (2011).

J.H. Park, A.R. Carter, L.M. Mier, C.-Y. Kao, S.A.M. Lewis, R.P. Nandyala, Y. Min, and A.J. Epstein, "Organic Photovoltaic Cells with Nano-Fabric Heterojunction Structure," Applied Physics Letters 100, 073301/1-4 (2012).

B. Li, M. Zhou, Y. Lub, C.-Y. Kao, J.-W. Yoo, V.N. Prigodin, and A.J. Epstein, "Effect of Organic Spacer in an Organic Spin Valve using Organic Magnetic Semiconductor V[TCNE]x," Organic Electronics 13, 1261–1265 (2012)

Joshua Goldberger

Y.H. Liu, S. H. Porter, J. Goldberger, “Dimensional Reduction of a Layered Metal Chalcogenide into a 1D Near-IR Direct Band Gap Semiconductor” J. Am. Chem. Soc., 134, 5044-7 (2012)

JianJun Guan

Z. Li, X. Guo, S.Matsushita, J. Guan, “differntiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels”, Biomaterials, 10.1016/j.biomaterials, 2011.

P. Chris Hammel

Wolny, Y. Obukhov, T. Muhl, U. Weissker, S. Philippi, A. Leonhardt, P.Banerjee, A. Reed, G. Xiang, R. Adur, I. Lee, A.J. Hauser, F.Y. Yang, D.V. Pelekhov, B. Buchner and P.C. Hammel, Quantitative magnetic

force microscopy on permalloy dots using an iron filled carbon nanotubeprobe, F Ultramicroscopy 111 1360–1365 (2011) http://dx.doi.org/10.1016/j.ultramic.2011.05.002

Ezekiel Johnston-Halperin

Xuejin Wen, Samit Gupta, Theodore R. Nicholson III, Leonard Brillson, Stephen C. Lee, and Wu Lu. 2011. AlGaN/GaN HFET biosensors working at sub-threshold regime for sensitivity enhancement. Physica Status Solidi C 8: 2489-2491. DOI: 10.1002pssc.201001174

Xuejin Wen, Michael L. Schuette, Samit Gupta, Theodore R. Nicholson III, Stephen C. Lee, and Wu Lu. 2011. Improved sensitivity of AlGaN/GaN field effect transistor biosensors by optimized surface functionalization. IEEE Sensor Journal 11: 1726-1735

Patricia Casal, Xuejin Wen, Samit Gupta, Theodore Nicholson, Andrew Theiss, Yuji Wang, Leonard Brillson, Wu Lu, and Stephen C. Lee. 2012. ImmunoHFET feasibility in physiological salt environments. Journal of the Royal Society A 370: 2474-2488. doi:10.1098/rsta2011.0503.

Xuejin Wen, Samit Gupta, Yuji Wang, Theodore R. Nicholson III, Stephen C. Lee, and Wu Lu. 2011. High sensitivity AlGaN/GaN field effect transistor protein sensors operated in the sub-threshold regime by a

IMR Fiscal Year 2011 -2012 Annual Report

Page 105

Page 111: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

control gate electrode. Applied Physics Letters 99: 043701-043704 NOTE: This article was selected for republication:-The August 1, 2011 issue of Virtual Journal of Biological Physics Research Volume 22, issue (3) (http://www.vjbio.org.), Instrumentation Development Section

D.R. Hoy, Y. Pu, S.D. Carnevale, E. Johnston-Halperin, R.C. Myers, “All-electrical spin injection and detection in an AlGaN/GaN two-dimensional electron gas,” Bulleting of the American Physical Society, vol. 56, Issue 1, (2011).

L. Fang, K.D. Bozdag, C.Y. Chen, P.A. Truitt, A.J. Epstein, E. Johnston-Halperin, “Electrical Spin Injection from an Organic-Based Ferrimagnet in a Hybrid Organic-Inorganic Heterostructure,” Physical Review Letters, vol. 106, Issue 15, (2011),

Y. Pu, A. Swartz, J. Beardsley, V. Bhallamudi, C. Hammel, R. Kawakami, E. Johnston-Halperin, J. Pelz, “Electrical spin injection and detection in Si,” Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

D. Ko, X. W. Zhao, K.M. Reddy, O. D. Restrepo, R. Mishra, I. S. Beloborodov, N. Trivedi, N.P. Padture, W. Windl, F. Y. Yang, E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” Cornell University Library, (2011).

J. Beardsley, Y. Pu, A. Swartz, V. Bhallamudi, R. Kawakami, E. Johnston-Halperin, C. Hammel, J. Pelz, “Spin injection studies on thin Fe/MgO/Si tunneling devices,” Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

T.F. Kent, J. Yang, L. Yang, S.D. Carnevale, B. Niles, D.R. Hoy, Y.-H. Chiu, E. Johnston-Halperin, M.J. Mills, R.C. Myers, “Room Temperature Ferromagnetism in GaN-AlN Quantum Confined Heterostructures,”

Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

D. Ko, X. Zhao, K. Reddy, W. Windl, N. Padture, N. Trivedi, F. Yang, E. Johnston-Halperin, “Role of defect states in charge transport in semiconductor nanowires,” Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

R.M. Teeling, Y.W. Jung, I. Lee, J. North, R. Nakkula, R. Adur, E. Johnston-Halperin, M.G. Poirier, P.C. Hammel, “Imaging the Vector Magnetic Field of Magnetospirillum Gryphiswaldense by Optically Detected Magnetic Resonance using Nitrogen-Vacancy Centers in Diamond,” Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

L. Fang, X. Zhao, Y.-H. Chiu, D. Ko, K.M. Reddy, N.P. Padture, F. Yang, E. Johnston-Halperin, “Comprehensive Control of Optical Polarization Anisotropy in Semiconducting Nanowires,” Cornell University Library, (2011).

Stephen Lee

IMR Fiscal Year 2011 -2012 Annual Report

Page 106

Page 112: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

S. Gupta, H. Wu, K. Kwak, P. Casal, T. Nicholson III, X. Wen, R. Anisha, B. Bhushan, P. Berger, W. Lu, L. Brillson, S. C. Lee, “Interfacial design and structure of protein/polymer films on oxidized AlGaN surfaces,” Journal of Physics D: Applied Physics, vol. 44, no. 3 (2011)

Patricia Morris

Andio, M.A., Beach, E.R., Morris, P.A., Akbar, S.A., "Synthesis and Nano-Structured Metal-Oxides and Deposition via Ink-Jet Printing on Microhotplate Substrates" Science of Advanced Materials Vol. 3, 845-852 (2011)

Andio, M.A., Browning, P.N., Morris, P.A., Akbar, S.A., "Comparison of gas sensor performance of SnO2 nano-structures on microhotplate platforms" Sensors and Actuators B: Chemical Vol. 165, 13-18 (2012)

Roberto Myers

S. D. Carnevale, C. Marginean, P. J. Phillips, T. F. Kent, A. T. M. G. Sarwar, M. J. Mills, and R. C. Myers. Coaxial Nanowire Resonant Tunneling Diodes from non-polar AlN/GaN on Silicon. Appl. Phys. Lett. 100, 142115 (2012).

S. D. Carnevale, T. F. Kent, P. J. Phillips, M. J. Mills, S. Rajan, and R. C. Myers. Polarization-induced pn-diodes in wide band gap nanowires with ultraviolet electroluminescence. Nano Letters 12, 915 (2012).

S. D. Carnevale, J. Yang, P. J. Phillips, M. J. Mills and R. C. Myers. Three-Dimensional GaN/AlN Nanowire Heterostructures by Separating Nucleation and Growth Processes. Nano Letters 11, 866-871 (2011).

T. F. Kent, J. Yang, L. Yang, M. J. Mills, and R. C. Myers. Epitaxial Ferromagnetic Nanoislands of Cubic GdN in Hexagonal GaN. Appl. Phys. lett. 100, 152111 (2012).

D.R. Hoy, Y. Pu, S.D. Carnevale, E. Johnston-Halperin, R.C. Myers, “All-electrical spin injection and detection in an AlGaN/GaN two-dimensional electron gas,” Bulleting of the American Physical Society, vol. 56, Issue 1, (2011).

T.F. Kent, J. Yang, L. Yang, S.D. Carnevale, B. Niles, D.R. Hoy, Y.-H. Chiu, E. Johnston-Halperin, M.J. Mills, R.C. Myers, “Room Temperature Ferromagnetism in GaN-AlN Quantum Confined Heterostructures,”

Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

S.D. Carnevale, J. Yang, P.J. Phillips, M.J. Mills, R.C. Myers, “Controlling Nanostructure Self-assembly for Design of Three-dimensional Semiconductor Heterostructures,” Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

J. Yang, S.D. Carnevale, T.F. Kent, M.R. Brenner, R.C. Myers, “Effect of growth kinetics on intersubband transitions in GaN/AlN multiple quantum wells,” Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

IMR Fiscal Year 2011 -2012 Annual Report

Page 107

Page 113: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, R. C. Myers, and J. P. Heremans, “Spin-Seebeck Effect: A Phonon Driven Spin Distribution,” Physical Review Letters, vol. 106, Issue 18, (2011).

B. Chapler, R.C. Myers, S. Mack, A. Frenzel, B.C. Pursley, K.S. Burch, E.J. Singley, A.M. Dattelbaum, N. Samarth, D.D. Awschalom, D.N. Basov, “On magnetism and the insulator-to-metal transition in $p$-doped GaAs,” Bulletin of the American Physical Society, vol. 56, Issue 1, (2011).

Wendy Panero

Pigott, J. S.*, D. M. Reaman*, W. R. Panero, Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell using focused ion beam technology, Rev. Sci. Inst., 82, doi:10.1063/1.3658482 (2011).

Reaman, D. M.*, G. S. Deahn, W. R. Panero, Predictive mechanism for anisotropy development in the Earth’s Inner Core, Earth Planet Sci Lett, 312, 437-442 (2011).

Reaman, D. M.*, H. O. Colijn, F. Yang, W. R. Panero, Interdiffusion of Earth’s Core Materials to 65 Gpa and 2200 K, Earth and Planet Sci Lett, vol. 349-350 (Oct 2012), pp. 8-14.

Jon Parquette

Self-Assembly of a Donor-Acceptor Nanotube. A Strategy to Create Bicontinuous Arrays. Siyu Tu, Se Hye Kim, Jojo Joseph, David A. Modarelli* and Jon R. Parquette*, J. Am. Chem. Soc. 2011, 133, 19125–19130.*

Aqueous Self-Assembly of L-Lysine Based Amphiphiles into 1D N-Type Nanotubes Hui Shao, Min Gao, Se Hye Kim, Christopher P. Jaroniec and Jon R. Parquette* Chem.-Eur. J. 2011, 17, 12882-12885.*

Intramolecular chiral communication in peptide-dendron hybrids Shao, H.; Bewick, N. A.; Parquette, J. R.. Org. Biomol. Chem. 2012, 10, 2377.

J.W. Drexler, H.M. Powell, “Regulation of Electrospun Scaffold Stiffness Via Coaxial Core Diameter”, Acta Biomaterialia, 7:1133–1139 (2011) *

Jonathan Pelz

W. Cai, Y. Che, J. P. Pelz, E. R. Hemesath, and L. J. Lauhon, Direct Measurements of Lateral Variations of Schottky Barrier Height Across “End-On” Metal Contacts to Vertical Si Nanowires by Ballistic Electron Emission Microscopy, Nano Lett. 12, 694 (2012).(2)

Siddarth Rajan

F. Akyol, D. Nath, E. Gur and S. Rajan, “N-Polar III-Nitride green (540 nm) light emitting diode”, accepted for publication Japanese Journal of Applied Physics (2011).

IMR Fiscal Year 2011 -2012 Annual Report

Page 108

Page 114: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

M. Esposto, A. Chini, and S. Rajan, “Analytical Model for Power Switching GaN-based HEMTs”, Accepted for publication IEEE Trans. Elec. Dev. (2011)

D. Nath, E. Gur, S. A. Ringel, S. Rajan , “Growth model for plasma-assisted molecular beam epitaxy of N-polar and Ga-polar InxGa1-xN”, accepted for publication, JVST B (2011)

Pil Sung Park and Siddharth Rajan, “Simulation of Short-Channel Effects in N- and Ga-polar AlGaN/GaN HEMTs”, Accepted for publication, IEEE Trans. Elec. Dev., (2011).

R. Sooryakumar

Mechanical properties of porous low-k dielectric nano-films, W. Zhou, S. Bailey, R. Sooryakumar, S. King, G. Xu, E. Mays, C. Ege, J. Bielefeld, Journal of Applied Physics 110, 043520 (2011).

Patterned magnetic traps for magnetophoretic assembly and actuation of micro-rotor pumps, T. Henighan, D. Giglio, A. Chen, G. Vieira and R. Sooryakumar, Applied Physics Letters 98, 103505 (2011).

Yael Vodovotz

Modi, S., Koelling, K. and Vodovotz, Y. (2011), Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molecular weight poly(lactic acid) blends determined by thermal analysis. J. Appl. Polym. Sci., 124: 3074–3081

S. Modi, K. Koelling, Y. Vodovotz, “Assessment of PHB with Varying Hydroxyvalerate content for Potential Packaging Applications” European Polymer Journal, 47:2, 179-186, 2011.

John Volakis

Z. Wang, L. Zhang, Y. Bayram, and J.L. Volakis, “Embroidered Conductive Fibers-and-Polymer Composite for Conformal Radio Frequency Applications,”IEEE Trans. Antenn. Propag., vol. 60, no.9 (2012).

David Wood

Wu, W.-Y., Miller, K. D., Coolbaugh, M. J. & Wood, D. W., “Intein-mediated One-step Purification of E. coli Secreted Human Antibody Fragments,” Protein Expression and Purification, Vol. 76, pp. 221-228, (2011).

Yiying Wu

P. Hasin, Y. Wu*, “"Sonochemical Synthesis of Copper Hydride (CuH)", Chem. Comm.,2012, 48, pp 1302-1304 (DOI: 10.1039/C2CC15741A).

Fengyuan Yang

IMR Fiscal Year 2011 -2012 Annual Report

Page 109

Page 115: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

L. Fang, X. W. Zhao, Y.-H. Chiu, D. K. Ko, K. M. Reddy,T. R. Lemberger, N. P. Padture, Fengyuan Yang, and E. Johnston-Halperin, “Comprehensive control of optical polarization anisotropy in semiconducting nanowires,” Appl. Phys. Lett. 99, 141101 (2011).

Ji-Cheng (JC) Zhao

Z. Huang, X. Chen, T. Yisgedu, E.A. Meyers, S.G. Shore, J.C. Zhao, “Ammonium Octahydrotriborate (NH4B3H8): New Synthesis, Structure, and Hydrolytic Hydrogen Release,” Inorganic Chemistry, vol. 50, Issue 8, (2011).

D.T. Shane, L.H. Rayhel, Z. Huang, J.C. Zhao, X. Tang, V. Stavila, M.S. Conradi, “Comprehensive NMR Study of Magnesium Borohydride,” J. Phys. Chem., 115 (7), pp. 3172-3177, (2011).

Z. Huang, X. Chen, T. Yisgedu, J.C. Zhao, S.G. Shore, “High-capacity hydrogen release through hydrolysis of NaB3H8,” International Journal of Hydrogen Energy, vol. 36, Issue 12, (2011).

J.C. Zhao, X. Zheng, D.G. Cahill, “High-throughput measurements of materials properties,” Journal of the Minerals, Metals, and Materials Society, vol. 63, Issue 3, (2011).

T.B. Yisgedu, X. Chen, H.K. Lingam, Z. Huang, A. Highley, S. Maharrey, R. Behrens, S.G. Shore, J.C. Zhao, “Synthesis, Structural Characterization, and Thermal Decomposition Study of Mg(H2O)6B10H10·4H2O,” J. Phys. Chem. C, 115 (23), pp. 11793-11802, (2011).

Yi Zhao

X. Zhang and Y. Zhao. 2012. Programmable Patterning of Polymeric Microparticles By Floating Electrodes-Assisted Electrospray. Journal of Micromechanics and Microengineering. Vol 22, 047001.

S. Xu and Y. Zhao. 2011. Monolithic Fabrication of Nanochannels Using Coresheath Nanofibers as Sacrificial Mold. Microfluidics and Nanofluidics. Vol 11, no. 3. :359-365.

H. Zeng and Y. Zhao. 2011. Microfabrication in Electrospun Nanofibers by Electrical Discharges. Sensors and Actuators A: Physical. Vol. 2, no. 162. : 214-218.

B. Kim, X. Zhang, H. Borteh, Z. Li, J. Guan and Y. Zhao. 2012. Fabrication of Porous Microtent Structures Towards An In Vitro Endothelium Model. Journal of Micromechanics and Microengineering, 22 085001.

B. Kim, X. Zhang, H. Borteh, Z. Li, J. Guan and Y. Zhao. 2012. Fabrication of Porous Microtent Structures Towards An In Vitro Endothelium Model. Journal of Micromechanics and Microengineering, 22 085001.

H. Borteh, B. Kim Y. Zhao. 2011. “Porous Microfluics: A Unique Platform for Transvascular Study”. Technical Digest of the 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS '11), Cancun, Mexico, January 23-27, 2011.

Publications from work at Center for Chemical and Biophysical Dynamics (CCBD)

IMR Fiscal Year 2011 -2012 Annual Report

Page 110

Page 116: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Xue, Jia-Dan; Vyas, Shubham; Du, Yong; Luk, Hoi-Ling; Chuang, Yung-Ping; But, Tracy Yuen-Sze; Toy, Patrick H.; Wang, Jin; Winter, Arthur H.; Phillips, David Lee; Platz,M.S. “Time-Resolved Resonance Raman and Computational Investigation of the Influence of 4-Acetamido and 4-N-Methylacetamido Substituents on the Chemistry of Phenylnitrene” Journal of Physical Chemistry A 2011, 115(26), 7521-7530.

Kubicki, Jacek; Zhang, Yunlong; Vyas, Shubham; Burdzinski, Gotard; Luk, Hoi Ling; Wang, Jin; Xue, Jiadan; Peng, Huo-Lei; Pritchina, Elena A.; Sliwa, Michel; Platz,M.S. “Photochemistry of 2-Naphthoyl Azide. An Ultrafast Time-Resolved UV-Vis and IR Spectroscopic and Computational Study “Journal of the American Chemical Society” 2011, 133(25), 9751-9761.

Xue, Jiadan; Luk, Hoi Ling; Platz, Matthew S. “Direct Observation of a Carbene-Alcohol Ylide” Journal of the American Chemical Society 2011, 133(6), 1763-1765.

Kuzmanich, G., Xue, J., Netto-Ferreira, J.C, Scaiano, J.C., Platz, Matthew S., Garcia-Garibay, M.A. “Steady state and transient kinetics in crystalline solids: the photochemistry of nanocrystalline 1,1,3-triphenyl-3-hydroxy-2-indanone” Chemical Science 2011 2(8) 1497-1501

Kubicki, J.; Luk, H. L.; Zhang, Y.; Vyas, S.; Peng, H.-L.; Hadad, C. M.; Platz, M. S. Direct Observation of a Sulfonyl Azide Excited State and Its Decay Processes by Ultrafast Time Resolved IR Spectroscopy, J. Am. Chem. Soc. 2012, 134, 7036 – 7044.

Kubicki, J.; Zhang, Y.; Vyas, S.; Burdzinski, G.; Luk, H. L.; Wang, J.; Xue, J.; Peng, H.-L.; Pritchina, E. A.; Sliwa, M.; Buntinx, G.; Gritsan, N. P.; Hadad, C. M.; Platz, M. S. Photochemistry of 2-Naphthoyl Azides. An Ultrafast Time-Resolved UV–Vis and IR Spectroscopic and Computational Study, J. Am. Chem. Soc. 2011, 133, 9751 –9761.

Kubicki, Jacek; Zhang, Yunlong; Vyas, Shubham; Burdzinski, Gotard; Luk, Hoi Ling; Wang, Jin; Xue, Jiadan; Peng, Huo-Lei; Pritchina, Elena A.; Sliwa, Michel; Platz,M.S.. "Photochemistry of 2-Naphthoyl Azide. An Ultrafast Time-Resolved UV-Vis and IR Spectroscopic and Computational Study," Journal of the American Chemical Society, v.133, 2011, p. 9751.

Kuzmanich, G., Xue, J., Netto-Ferreira, J.C, Scaiano, J.C., Platz, Matthew S., Garcia-Garibay, M.A.. "Steady state and transient kinetics in crystalline solids: the photochemistry of nanocrystalline 1,1,3-triphenyl-3-hydroxy-2-indanone," Chemical Science, v.2, 2011, p. 1497.

Tu Siyu; Kim Se Hye; Joseph Jojo; et al. Self-Assembly of a Donor-Acceptor Nanotube. A Strategy To Create Bicontinuous Arrays, Journal of the American Chemical Society Volume: 133 Issue: 47 Pages: 19125-19130 DOI: 10.1021/ja205868b Published: Nov. 30 2011

Joseph, Jojo; Tu, Siyu; Kim, Se Hye; Parquette, Jon R.; Modarelli, David A. Photoinduced Electron Transfer studies in Self-assembled Porphyrin-Naphthalenediimide Dyads, Abstracts, 43rd Central Regional Meeting of the American Chemical Society, Dearborn, MI, United States, June 5-9 (2012), CERM-296.

IMR Fiscal Year 2011 -2012 Annual Report

Page 111

Page 117: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

hao, Hui; Gao, Min; Kim, Se Hye; Jaroniec, Christopher P.; Parquette, Jon R. Aqueous Self-Assembly of L-Lysine-Based Amphiphiles into 1D n-Type Nanotubes, Chemistry--A European Journal (2011), 17(46), 12882-12885, S12882/1-S12882/28.

Chisholm Malcolm H. Incorporating MM Quadruple Bonds Into Conjugated Organic Oligomers:

Syntheses and Optoelectronic Properties, Macromolecular Chemistry and Physics Volume: 213 Issue: 8 Special Issue: SI Pages: 800-807 DOI: 10.1002/macp.201100656 (2012)

Keller Julia M.; Glusac Ksenija D.; Danilov Evgeny O.; et al. Negative Polaron and Triplet Exciton Diffusion in Organometallic "Molecular Wires," Journal of the American Chemical Society Volume: 133 Issue: 29 Pages: 11289-11298 DOI: 10.1021/ja202898p (2011) By Hauser, A. J.; Soliz, J. R.; Dixit, M.; Williams, R. E. A.; Susner, M. A.; Peters, B.; Mier, L. M.; Gustafson, T. L.; Sumption, M. D.; Fraser, H. L.; et al Fully ordered Sr2CrReO6 epitaxial films: a high-temperature ferrimagnetic semiconductor, Physical Review B: Condensed Matter and Materials Physics (2012), 85(16), 161201/1-161201/4 Joseph, Jojo; Tu, Siyu; Kim, Se Hye; Parquette, Jon R.; Modarelli, David A.. Photoinduced Electron Transfer studies in Self-assembled Porphyrin-Naphthalenediimide Dyads Full Text , Abstracts, 43rd Central Regional Meeting of the American Chemical Society, Dearborn, MI, United States, June 5-9 (2012) Hauser, A. J.; Soliz, J. R.; Dixit, M.; Williams, R. E. A.; Susner, M. A.; Peters, B.; Mier, L. M.; Gustafson, T. L.; Sumption, M. D.; Fraser, H. L.; et al ; Fully ordered Sr2CrReO6 epitaxial films: a high-temperature ferrimagnetic semiconductor; From Physical Review B: Condensed Matter and Materials Physics (2012), 85(16), 161201/1-161201/4.

Lindsey, J. W.; Scott, T. F.; Lynch, S. G.; Cofield, S. S.; Nelson, F.; Conwit, R.; Gustafson, T.; Cutter, G. R.; Wolinsky, J. S.; Lublin, F. D.; et al; The CombiRx trial of combined therapy with interferon and glatiramer acetate in relapsing remitting MS: design and baseline characteristics; From Multiple Sclerosis and Related Disorders (2012), 1(2), 81-86.

Durr, Christopher B.; Chisholm, Malcolm H.; Brown-Xu, Samantha E.; Spilker, Tomas F.; Gustafson, Terry L.; Synthesis, Characterization and Photophysics of a New Class of Inorganic Ligands for Metal-Metal Multiply Bonded Compounds; From Abstracts, 43rd Central Regional Meeting of the American Chemical Society, Dearborn, MI, United States, June 5-9 (2012)

Wilfong, Erin M.; Kogiso, Yuri; Muthukrishnan, Sivaramakrishnan; Kowatz, Thomas; Du, Yu; Bowie, Amber; Naismith, James H.; Hadad, Christopher M.; Toone, Eric J.; Gustafson, Terry L.; Multidisciplinary approach to probing enthalpy-entropy compensation and the interfacial mobility model; From Abstracts

IMR Fiscal Year 2011 -2012 Annual Report

Page 112

Page 118: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

of Papers, 243rd ACS National Meeting & Exposition, San Diego, CA, United States, March 25-March 29, 2012 (2012)

Wilfong, Erin M.; Kogiso, Yuri; Muthukrishnan, Sivaramakrishnan; Kowatz, Thomas; Du, Yu; Bowie, Amber; Naismith, James H.; Hadad, Christopher M.; Toone, Eric J.; Gustafson, Terry L.; A Multidisciplinary Approach to Probing Enthalpy-Entropy Compensation and the Interfacial Mobility Model; From Journal of the American Chemical Society (2011), 133(30), 11515-11523.

Wilfong Erin M; Kogiso Yuri; Muthukrishnan Sivaramakrishnan; Kowatz Thomas; Du Yu; Bowie Amber; Naismith James H; Hadad Christopher M; Toone Eric J; Gustafson Terry L; A multidisciplinary approach to probing enthalpy-entropy compensation and the interfacial mobility model; From Journal of the American Chemical Society (2011), 133(30), 11515-23.

IMR Fiscal Year 2011 -2012 Annual Report

Page 113

Page 119: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

External Funding Seeded by IMR Research Enhancement Program Grants 2007-2012

Note: This list relies on self reporting and is likely to be underestimated; an asterisk (*) indicates those items obtained through leveraging more than one IMR-supported activity

Conjugated polymer tunneling devices for plastic electronic memory, NSF DIV Elect, Comm, & CyberSystems, PI: Paul Berger, 6/15/2010-5/31/2013, $241,547

GOALI: Passive millimeter-wave imaging using monolithic Si-based square-law detectors for security and transportation safety, , PI: Paul Berger, 9/15/2010-8/31/2013, $412,000

Mechanically reliable surfaces for superhydrophobicity, self-cleaning and drag reduction, NSF Div Civil, Mechanical & Maufact Innv, PI: Bharat Bhushan, 8/15/2010-7/31/2013, $300,000

Synthesis of amphiphilic core-shell latex emulsions from soy proteins and delivery of corrosion inhibitors and biocides for coatings applications, Sponsor Confidential, PI: Dennis Bong, Co-I: Stephen Myers, 8/1/2008-7/31/2011, $150,000

Development of AlGaN biosensor sensitive in physiological saline, NSF Div Chem, Bioeng, Environ, & Trnsp S, PI: Stephen Lee, Co-I: Leonard Billson, Wu Lu, 8/2/2008-5/31/2012, $350,000

Hermetic seals for organic semiconductors, , PI: Paul Berger, 2/26/2008-6/26/2008, $10,000

Conjugated polymer tunneling devices for plastic electronic memory, NSF DIV Elect, Comm, & CyberSystems, PI: Paul Berger, 6/15/2010-5/31/2013, $354,000

Integrated ultrasonic additive manufacturing and laser machining for realization of novel smart structures, Ohio Department of Development, PI: Marcelo Dapino, Co-I: Sudarsanam Babu Suresh, $1,551,987

Collaborative research: Smart Vehicle Concepts Center (NSF I/UCRC), NSF Engineering, PI: Rajendra Singh, Co-Is: Marcelo Dapino, Gregory Washington, 07/01/2007-12/31/2012, $829,184

Smart vehicle concepts center (NSF I/UCRC) - Industrial Membership, Massachusetts Inst Tech - Lincoln Lab, PI: Rajendra Singh, Co-Is: Marcelo Dapino, Gregory Washington, 04/01/2007 – 06/30/2017, $40,000

Smart vehicle concepts center (NSF I/UCRC) - Industrial Membership, Edison Welding Inst Inc., PI: Rajendra Singh, Co-Is: Marcelo Dapino, Gregory Washington, 04/01/2007 – 06/30/2017, $160,000

Electric and magnetic measurements of photomagnet-fullerosome conjugates, UES Inc., PI: Arthur Epstein, 09/23/2010-08/23/2011, $30,000

IMR Fiscal Year 2011 -2012 Annual Report

Page 114

Page 120: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Multifunctional hydrogels as stem cell carriers for cardiac therapy, NSF Div Materials Research, PI: Jianjun Guan, Co-I: Sudha Agarwal, 9/15/2010-8/31/2013, $300,000

MRI: Acquisition of a hybrid diamond/III-N synthesis cluster tool, NSF Div Materials Research, PI: Ezekiel Johnston-Halperin, Co-Is: Harris Kagan, Roberto Myers, Siddharth Rajan, Steven Ringel, Fengyuan Yang, 10/01/2009-09/30/2012, $421,353*

High performance nuclear magnetic resonance imaging using magnetic resonance force microscopy, Army Res Office, PI: P. Chris Hammel, 07/15/2009-07/14/2013, $555,000

Electrical spin injection at chemically modified organic/inorganic interfaces, NSF Div Materials Research, PI: Ezekiel Johnston-Halperin, Co-I: Arthur Epstein, 06/01/2012-05/01/2015, $125,675

Collaborative research: Scaling laws for NanoFET biosensors, NSF DIV Elect, Comm, & CyberSystems, PI: Wu Lu, 10/01/2008-09/30/2013, $228,772

In vivo monitoring of oxygenation in implants: Applications to tissue engineering, National Heart, Lung, and Blood Inst, PI: Nicanor Moldovan, Co-Is: Keith Gooch, Periannan Kuppusamy, John Lannutti, 05/01/2010-04/30/2014, $1,139,938

Gas sensor array devices based on nanostructured metal oxides, Edward J Orton Jr Ceramic Fdn, PI: Patricia Morris, Co-I: Sheikh Akbar, 10/01/2007-12/31/2011, $289,671

Epitaxial growth of highly confined nitride nanostructures toward short wavelength quantum cascaded and ultrafast optical devices, Office of Naval Res, PI: Roberto Myers, 08/12/2009—04/30/2013, $476,969

MRI: Acquisition of high field physical properties measurement system with cryogenic AFM/MFM, NSF Div Materials Research, PI: P.Chris Hammel, Co-Is: Roberto Myers, Nitin Padture, Jessica Winter, Patrick Woodward, 10/01/2010-09/30/2012, $504,129

SPINCATS, an investigation of spin caloric transport in magnetic semiconductors, NSF Div Chem, Bioeng, Environ, & Trnsp S, PI: Roberto Myers, Co-I: Joseph Heremans, 09/01/2011-08/31/2014, $350,000

CAREER: Volatiles in the Earth's interior: A combined theoretical and experimental approach, NSF Div Earth Sciences, PI: Wendy Panero, 12/15/2009-11/30/2014, $225,986

Nanometer-scale studies of contacts to nanowires, advanced oxide films, and molecular layers, NSF Div Materials Research, PI: Jonathan Pelz, 07/01/2008-06/30/2013, $336,216

Modulation of macro and micro ECM mechanics by DDR1, NSF Div Civil, Mechanical & Maufact Innv, PI: Gunjan Agarwal, Co-Is: Peter Anderson, Gregory Lafyatis, Heather Powell, 05/01/2012-04/30/2015, $392,000

AlGaN/GaN 1-dimensional channel HEMT, Office of Naval Research, PI: Siddharth Rajan, 02/25/2009-12/31/2012, $339,348

IMR Fiscal Year 2011 -2012 Annual Report

Page 115

Page 121: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Investigation of electron transport properties in N-polar AlGaN/GaN HEMTs, Office of Naval Research, PI: Siddharth Rajan, 07/01/2009-04/30/2011, $140,000

High-performance graphene-based devices, NSF DIV Elect, Comm, & CyberSystems, PI: Siddharth Rajan, Wolfgang Windl, 08/01/2009-07/31/2013, $350,000

III nitride NEMS devices for chemical and biological sensing, NSF Div Civil, Mechanical & Maufact Innv, PI: Wu Lu, Co-I: Siddharth Rajan, 10/01/2009-10/31/2012, $366,000

I-SMART: Integrated curriculum for smart power engineering, Department of Energy, PI: Jin Wang, Co-Is: Betty Lise Anderson, Jose Cruz, Eylem Ekici, Liang-Shih Fan, Donald Kasten, Kevin Passino, Siddharth Rajan, Steven Ringel, Andrea Serrani, Longya Xu, $2,499,939

Center for high performance power electronics (CHPPE), Ohio Department of Development, PI: Longya Xu, Co-Is: Donald Kasten, Wu Lu, Siddharth Rajan, Jin Wang, 07/19/2010-07/18/2013, $3,000,000

Dielectric enhancements for innovative electronics - DEFINE MURI, Univ of California - Santa Barbara, PI: Steven Ringel, Co-I: Siddharth Rajan, 08/01/2010-07/31/2013, $541,252

Fluorescent-magnetic nanomanipulators for cytoskeletal mechanical investigations, NSF Div Civil, Mechanical & Maufact Innv, PI: Jessica Winter, Co-I: Anthony Brown, Jeffrey Chalmers, 07/01/2009-05/31/2012, $313,433

Mechanical properties by light scattering, Semiconductor Res Corp, PI: Ratnasingham Sooryakumark 04/01/2012-03/31/2015, $115,000

Design, synthesis, and photochemistry of new Ru(II) complexes as potential photo-cisplatin analogs, NSF Div Chemistry, PI: Claudia Turro, 08/01/2009-07/31/2013, $690,000

Autonomous non-battery wireless strain gage for structural health testing and monitoring in extreme environments, Syntonics, LLC, PI: Yakup Bayram, Co-Is: Eric Walton, Jonathan Young, 05/08/2009-02/28/2010, $30,208

High temperature sensing parameters, Syntonics, LLC, PI: Yakup Bayram, Co-Is: Eric Walton, Jonathan Young, 05/07/2008-08/23/2012, $286,445

Structural health monitoring phase II, Sytonics, LLC, PI: Eric Walton, Co-Is: Yakup Bayrum, Jonathan Young, 01/01/2011-12/14/2012, $244,245

Optical study of spin dynamics in semiconductor nanowires, US Department of Energy, PI: Fengyuan Yang, Co-I: Ezekiel Johnston-Halperin, 08/15/2009-05/14/2015, $820,000

CAREER: Integrated micro-electro-mechanical-system for cellular mechanotransduction studies, NSF Biological Infrastructure, PI: Yi Zhao, 03/01/2010-02/28/2015, $439,193

IMR Fiscal Year 2011 -2012 Annual Report

Page 116

Page 122: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Appendix C

Activities of Members of Technical Staff (MTS) for Fiscal Year 2011 – 2012

Dr. John Carlin, Research Scientist, Nanotech West Laboratory Dr. Evgeny Danilov, Senior Research Associate, Center for Chemical and

Biophysical Dynamics Dr. Robert J. Davis, Director, Nanotech West Laboratory and Associate

Director, Institute for Materials Research Dr. Denis V. Pelekhov, Research Scientist, ENCOMM NanoSystems

Laboratory Aimee Bross Price, Senior Research Associate, Nanotech West

Laboratory

IMR Fiscal Year 2011 -2012 Annual Report

Page 117

Page 123: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IMR Member of Technical Staff 2012 Activity Summary Dr. John A. Carlin, Research Scientist, Nanotech West Laboratory

Dr. Carlin is a lead scientist located at OSU’s Nanotech West Laboratory (NTW). He currently serves as co-PI on two active research grants (detailed in the section below) and is a co-PI on three new proposals submitted in FY12 which are still under review. In addition to those research activities, Dr. Carlin contributes much time to the day-to-day operation of the NTW cleanroom and expanding the process knowledge and capabilities to meet the growing needs of the NTW user base. These activities have included tool training for new users, tool acquisition and installations, process development and documentation, assisting internal and external users with project and process planning and serving on the NTW cleanroom user committee. Dr. Carlin has also been responsible for directing the activities of the various undergraduate students (10 students throughout FY12) hired to provide laboratory and process support to the NTW user base. While currently the primary contact for seven pieces of synthesis, fabrication and metrology equipment, during FY12, activity surrounding the metal organic chemical vapor deposition (MOCVD) system received particular attention. Two hundred fifty one total deposition runs were executed during FY12 on various research projects resulting in user fees in excess of $45,000. Active Research Projects During FY11/FY12 Dr. Carlin was co-PI on two proposals which were awarded funding and effort initiated during FY12. For both projects, a portion of Dr. Carlin’s time was contributed by IMR as cost share during the proposal phase to satisfy budgetary requirements of the RFP’s. “High Efficiency Photovoltaic Enabled Off-Grid Solar/Led Lights”, awarded by Ohio Third Frontier in collaboration with Energy Focus Inc (PI), Replex Plastics and Lighting Services Inc. November 2011 – October 2013. Total award = $1,000,000 (OSU award = $345,000). “III-V/Active-Si Integration for Low-Cost High-Performance Concentrator Photovoltaics”, awarded by Department of Energy: Energy Efficiency and Renewable Energy to OSU in collaboration with Emcore Corporation, National Renewable Energy Lab and Massachusetts Institute of Technology. January 2012 – December 2014. Total award = $1,500,000 (OSU award = $750,000). Publications and Presentations C. Ratcliff, T. J. Grassman, J. A. Carlin, and S. A. Ringel. “High temperature step-flow growth of gallium phosphide by molecular beam epitaxy and metalorganic chemical vapor deposition” Appl. Phys. Lett. 99, 141905 (2011). Javier Grandal, Tyler J. Grassman, Andrew M. Carlin, Mark R. Brenner, Beatriz Galiana-Blanco, John A. Carlin, Limei Yang, Michael J. Mills, and Steven A. Ringel, “Growth and characterization of InGaAs

IMR Fiscal Year 2011 -2012 Annual Report

Page 118

Page 124: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

quantum dots on metamorphic GaAsP templates by molecular beam epitaxy”, presented at 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 2011. Proceedings in print. John A. Carlin, OSU ENCOMM weekly seminar series, “III-V MOCVD Capabilities at OSU and Utilization in Current Research Programs”, February 2012. General NTW Impact Summary

Provided day-to-day management and support of cleanroom operation and activities

Coordinated, managed and assisted in providing remote services for various internal and external NTW customers [MOCVD (Yang, Hamels, Johnston-Halperin, Myers) as well as other NTW processing services]

Process and user base development for MOCVD resulting in 251depositions during FY12 resulting in >$45,000 of billable user fees

Coordinated with OSU EH&S to meet Department of Homeland Security reporting requirements for NTW Room 200. Coordinated with OSU Security Services and OSU FOD to implement safety upgrades as required.

Member of cleanroom faculty user committee formed to provide advice and oversight to improve the cleanroom operation and user effectiveness

Attended and facilitated discussion at a monthly pizza luncheon implemented to improve communication between the community of NTW cleanroom users

Primary training and support contact for seven pieces of synthesis, fabrication and metrology equipment

Provided direct process and project planning to new and old, internal and external NTW users

Process support for the atomic layer deposition (ALD) system including depositions for external customers

Managed student engineering interns (10 throughout FY12) including hiring and planning short and long term activities

Assisted in hiring process (HR process and interview process) for NTW equipment engineer [Position filled by Peter Janney]

Coordinated hiring process (HR process and interview process) for NTW MOCVD/Safety technician

Assisted in coordination and installation and/or process start-up of various pieces of new equipment (Woollam ellipsometer, AGA 610 RTA, Plasma Therm PECVD)

IMR Fiscal Year 2011 -2012 Annual Report

Page 119

Page 125: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Outreach and engagement activities (e.g. representing OSU at a conference, tours of labs to outside groups):

o Staffed IMR information booth at the Ohio State Research Expo to develop new interactions.

o Provided tours of Nanotech West to both OSU and external parties including: faculty candidates, IMR review board members, postdoc and graduate student candidates, undergraduate students, IMR and ECE seminar visitors and external industry visitors and interested lab users.

IMR Fiscal Year 2011 -2012 Annual Report

Page 120

Page 126: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IMR Member of Technical Staff 2012 Activity Summary Dr. Evgeny Danilov, Senior Research Associate, Center for Chemical and

Biophysical Dynamics (CCBD) In FY 2012, Dr. Danilov continued serving the Chemistry and Materials Research community as the CCBD Manager. His main responsibilities include the regular maintenance of the CCBD instrumentation, necessary repairs, CCBD budget planning and user billing, upgrading current and designing new instrumentation, setting up experiments and writing data acquisition software, performing experiments, training users on the CCBD instrumentation and laser safety. In FY 2012, Dr. Danilov kept all CCBD femtosecond setups operational 100% of time. He has completed four major facility upgrades described in the CCBD Highlights and Accomplishments during FY2012 section. Dr. Danilov’s academic activities in FY 2012 included preliminary experiments for and participating in writing an NSF proposal submitted and approved for funding (PIs Profs. Platz, Hadad) and co-authoring one research publication: Negative Polaron and Triplet Exciton Diffusion in Organometallic "Molecular Wires" Author(s): Keller Julia M.; Glusac Ksenija D.; Danilov Evgeny O.; et al.; Source: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Volume: 133 Issue: 29 Pages: 11289-11298 DOI: 10.1021/ja202898p Other related professional activities included

Attended a workshop on parallel computing and quantum chemical calculations.

Attended the 66-th International Symposium on Molecular Spectroscopy, 2011 IMR Materials Week conference; regularly (1-2 times / month) attending Department and IMR seminars; regularly attended and presented at Dr. Gustafson’s group meetings.

Attended the National Center for Faculty Development and Diversity’s coaching “Faculty Success Program” as a part of College of Arts and Sciences Staff Professional Development program.

Outreach and Engagement Activities

Created informational write-ups in the form of Power Point presentations clarifying the details and underlying optical physics related to the operation of lasers and ultrafast instrumentation providing students with a background for better understanding of the instrument operation and data analysis. Six modules have been created and placed on the CCBD network.

Prepared and provided comments/suggestions to the NSF Materials Division directorate’s webinar on the development of mid-size multiuser facilities for Materials Research.

Provided members of the Institute for Materials research with laser safety materials and laser standard operating procedures developed earlier in the CCBD.

IMR Fiscal Year 2011 -2012 Annual Report

Page 121

Page 127: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Actively participated in EHS chemical safety campaign by ensuring compliance of Dr. Gustafson’s labs with EHS regulations.

Led the effort to make sure all CCBD users complete the laser safety course developed by EHS.

IMR Fiscal Year 2011 -2012 Annual Report

Page 122

Page 128: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IMR Member of Technical Staff 2012 Activity Summary Dr. Robert J. Davis, Director, Ohio State Nanotech West Laboratory, Associate

Director, IMR, Co-Director, Ohio Wright Center for Photovoltaics Innovation and Commercialization (PVIC)

Refereed Publications and Conference Presentations “Design and Construction of a ~7x Low-Concentration Photovoltaic System Based on Compound Parabolic Concentrators”, Mark A. Schuetz, Scott A. Brown, Kara A. Shell, Roger H. French, and Robert J. Davis, IEEE J. Photovoltaics 2, 382 (July 2012). “Design and Performance of a Low-Cost Acrylic Reflector for a ~7x Concentrating Photovoltaic Module”, K.A. Shell, Scott A. Brown, Mark A. Schuetz, Robert J. Davis, and Roger H. French, Proceedings of the SPIE Vol. 8108 (Conference on High and Low Concentration Systems for Solar Electric Applications VI, SPIE, San Diego CA), page 81080A (September 2011). Conferences Organized First PVIC Workshop on Solar Durability, September 2011, Longaburger Alumni House, Ohio State University (approximately 60 attendees, 10 speakers). Current Research Funding “Ohio Wright Center for Photovoltaics Innovation and Commercialization”, $6.9M plus OSU matching funds, 27 February 2007 to 27 November 2011, Ohio Third Frontier Program. PVIC is now continuing operations on membership fees. “Low-Cost Low-Concentration Photovoltaics Systems for Mid-Northern Latitudes”, with Replex Plastics, Mt. Vernon OH, OSU share $357,500, 01 February 2010 – 28 December 2012. “Low Cost Concentrated PV Design”, with GreenField Solar, Oberlin OH, OSU share $50,000, 01 April 2011- 31 March 2013. “Development of Nanometer-Scale Design Structures for Nanoimprint Lithography Use for Non-Linear Optical Parametric Amplifiers”, Air Force Research Lab / Universal Technology Corporation, 28 June 2012 – 06 April 2013, $26,800. Proposal Activities

PI of the Ohio Sensors and Semiconductor Innovation Platform (OSSIP), a $2.6M proposal to the Ohio Third Frontier Program, with L-3 (Mason OH), Momentive Performance Materials (Strongsville OH) and Lake Shore Cryotronics (Westerville OH) as collaborators. Proposal was one of 13 (of a total of 37 submitted) selected to proceed to the Interview (verbal) verbal stage but ultimately was not one of the 6 that was funded.

IMR Fiscal Year 2011 -2012 Annual Report

Page 123

Page 129: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Co-PI of a Department of Energy SunShot Incubator Proposal, led by Replex Plastics, also with Case Western as a collaborator, in review as of July 2012. Proposal made it through concept paper stage and was invited for a full proposal.

See also Air Force nanoimprint lithography program above for proposal of same name submitted May 2012.

Other Ohio State University Representation Attended the IEEE Photovoltaics Specialist Conference, Austin TX, June 2012. IMR Activities

Served as Associate Director in FY12, attending Director’s Meetings to discuss issues including programs, budgets, Materials Week symposium, and guest speakers.

Served as a reviewer for two rounds of IMR Facilities Grants.

Nanotech West Activities Davis continued as Director of the Ohio State Nanotech West Lab; a separate report of Nanotech West is in this IMR report. In summary, Nanotech West Lab activity continues to grow; user fee income grew 18% over its FY11 total to $493k. Refer to the separate Nanotech West report for extensive details on FY12 activity at that lab. PVIC Activities Davis continues to Co-Direct the Ohio Wright Center for Photovoltaics Innovation and Commercialization (PVIC), an $18.6M research and development program funded by the Ohio Third Frontier Program with the goal of creating jobs in Ohio via the commercialization of advanced technology. A major challenge in FY13 will be the transition of PVIC from its Third Frontier initial funding, which ended in late November 2011. PVIC will continue to organize meetings, which its industry members have communicated is its most important function. Other Activities

Davis continues to serve on the Proposal Review Board of the Center for Nanophase Materials Sciences of the Oak Ridge National Laboratory.

Davis was a Section Editor for the future Springer Encyclopedia of Nanotechnology, which will be published in late 2012.

Davis served on the Advisory Board for the Ferro/StrateNexus/Edison Welding / Ohio State U. Ohio Third Frontier Program on Advanced Sealants for Photovoltaics, which concluded in June 2012.

In late FY12 Davis began serving on a small committee that is tasked with selecting a location on the University main campus for the 2011 Ohio State Solar Decathlon House.

IMR Fiscal Year 2011 -2012 Annual Report

Page 124

Page 130: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IMR Member of Technical Staff 2012 Activity Summary Dr. Denis V. Pelekhov, Ph.D., Research Scientist, NanoSystems Laboratory

Dr. Denis V. Pelekhov is the Director of the NanoSystems Laboratory (NSL) which is an OSU user facility located in the Physics Research Building on OSU’s Columbus campus. The primary goal of NSL is to provide academic and industrial users with access to various material characterization and fabrication techniques including Focused Ion Beam/Scanning Electron Microscopy, X-ray diffractometry, SQUID magnetometry, Atomic Force/Magnetic Force microscopy, EDS X-ray microanalysis, Langmuir-Blodgett trough monolayer deposition, e-beam lithography, physical vapor material deposition and diamond growth. Dr. Pelekhov oversees day to day operations of the facility; directs NSL staff consisting of two permanent technical staff members, one administrative assistant and several undergraduate research assistants; interacts with equipment vendors and suppliers for existing equipment repairs, upgrade and maintenance; oversees purchase of new equipment including negotiations of equipment specifications, design and price; oversees development and implementation of laboratory safety measures and protocols including chemical safety and chemical waste disposal; conducts training of NSL users in use of laboratory equipment; maintains online facility data acquisition software for NSL, SEAL and Dreese clean room; works with potential and current NSL industrial customers in order to guarantee their satisfaction with provided services and to expand industrial customer base. Publications I. Lee, Y. Obukhov, J. Kim, X. Li, N. Samarth, D. V. Pelekhov and P. C. Hammel. “Local magnetic characterization of (Ga, Mn) As continuous thin film using scanning probe force microscopy." Phys. Rev. B, 85(18) 184402 (2012)

K. C. Fong, M. R. Herman, P. Banerjee, D. V. Pelekhov and P. C. Hammel. “Spin lifetime in small ensembles of electron spins measured by magnetic resonance force microscopy." Phys. Rev. B, 84(22) 220405 (2011)

I. Lee, J. Kim, Y. Obukhov, P. Banerjee, G. Xiang, D. V. Pelekhov, A. Hauser, F. Yang and P. C. Hammel. “Magnetic force microscopy in the presence of a strong probe field." Appl. Phys. Lett., 99(16) 162514 (2011)

F. Wolny, Y. Obukhov, T. Muehl, U. Weissker, S. Philippi, A. Leonhardt, P. Banerjee, A. Reed, G. Xiang, R. Adur, I. Lee, A. J. Hauser, F. Y. Yang, D. V. Pelekhov, B. Buechner and P. C. Hammel. “Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe." Ultramicroscopy, 111(8) 1360-1365 (2011)

Presentations

Made a poster presentation at Spin Master Voice workshop “Challenges and opportunities of Spin-Transfer Nano-Oscillators”, Château Villiers le Mahieu , France, December 14-16 2011

IMR Fiscal Year 2011 -2012 Annual Report

Page 125

Page 131: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Presented an talk “Nanoscale Scanning Probe Magnetic Resonance Imaging and its Applications” at IFW Dresden, Germany, December 19 2011

General NSL Impact Summary

Supervised installation and commissioning of seven new pieces of equipment including 14 T Quantum Design PPMS, Kurt J. Lesker Physical Vapor Deposition system, Evico Magnetics Magneto-Optical Kerr microscope, TerraHz time domain spectrometer, 9 T Quantum Design PPMS, 7 T Quantum Design PPMS and Quantum Design MPMS-XL

Conducted extensive testing and commissioning of a PPMS compatible cryogenic Atomic Force Microscope/Magnetic Force Microscope (AFM/MFM) delivered by ION-TOF GmbH

Supervised installation of a safety shower/eyewash system in NSL clean room as a part of ongoing effort to maintain the highest standards of operational safety

Implemented Local Area Network for NSL instrument computers thus simplifying data transfer and ensuring protection of NSL computers from viruses and malware

Conducted NSL tour for Physics 133 Honors Lab students

Organized a 3-day CEM Workshop on Magnetic Domains. The workshop was sponsored by the OSU Center for Emergent Materials (CEM) and was presented by Dr. Rudolf Schäfer (IFW, Dresden, Germany) on September 19-21, 2011 in room 4138 PRB.

Overall NSL Performance During FY2012

Revenues from user fees: $169,000.00 (increase of 12% compared to FY2011)

Number of supported research groups (PIs): 48(including four industrial customers)

Number of supported users: 163 (increase of 39% compared to FY2011)

Number of accounts/research projects that benefited from NSL use : 120 (increase of 74% compared to FY2011)

Estimated amount of funding in the accounts/research projects that benefited from NSL use: $17M

IMR Fiscal Year 2011 -2012 Annual Report

Page 126

Page 132: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

IMR Member of Technical Staff 2012 Activity Summary Ms. Aimee Bross Price, Senior Research Associate, Nanotech West Laboratory

Ebeam Lithography

30 individual users performing either direct write EBL or mask fabrication

8 of these have become independent using the tool, with just higher level support from me

Worked with ENCOMM EBL users on process development

Delegated mask wet processing completely to undergraduate interns

$26k Air Force project awarded to NTW based on ebeam work

o ~2yrs of discussion preceding project award

SEM

29 new SEM users trained as compared to 30 last year

New Superuser

Started training uses on EDS/SDD ~ 3 users currently trained

ALD

Took over training/certification from John Carlin – need a new superuser

Run 400+ samples for external company

Spec’d, purchased, and qualified glovebox for ALD precursors (Pete installed)

Orientation Overhaul

Worked with P. Steffen to make orientation more efficient and effective

Resulted in breaking down single long tour into 3 shorter tours

2 New Documents with 1 more to come – BHL tour

In coming year will improve togging documentation (powerpoint, video, etc)

EDS/SDD Detector Purchase

Spec’d, purchased, and qualified Oxford EDS/SDD

including one day trip to M&M Nashville to compare 4 major vendors at one time

A few users at the moment, need to increase usage in the coming year

Training in California for me and possibly D. Ditmer in October ‘12 or January ‘13

Documentation Effort at Nanotech West

TMAH safety – official, was draft last year

IMR Fiscal Year 2011 -2012 Annual Report

Page 127

Page 133: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

NTW Building Basic Training/Tour

Cleanroom Basic Training/Tour

Engineering Document for Ebeam – ongoing

Revised ETC01 spec

Chemical List – in process

Outreach

Mentored two UA Freshman Girls through entire State Science Fair procedure - from topic choice through award ceremony

Led numerous tours for visiting faculty, faculty candidates, student groups etc.

IMR Fiscal Year 2011 -2012 Annual Report

Page 128

Page 134: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Appendix D

2011 – 2012 IMR Facility Grant Awards

IMR Fiscal Year 2011 -2012 Annual Report

Page 129

Page 135: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Winter 2012 Facility Grants Awarded by the OSU Institute for Materials Research (IMR)

Eleven new research projects were awarded by the IMR in December 2011, for a total investment of $22,000 in nascent materials research. The eleven projects support faculty researchers from seven departments within the College of Engineering, College of Food, Agricultural, and Environmental Sciences, and the Division of Natural and Mathematical Sciences.

Detecting Iron-Bound Proteins with MFM and SQUID Magnetometry Lead Investigator: Gunjan Agarwal, Biomedical Engineering It is well known that iron is an essential element in human physiology; yet too much or too little iron can be quite detrimental. For instance, an increase in body iron stores, termed as iron overload, is a consequence of several pathologies including hemochromatosis, chronic anemia and cirrhosis. When left untreated, iron overload can cause heart arrhythmias and can even lead to cardiac injury and congestive heart failure. The lack of sensitive techniques capable of directly measuring iron content is a major limitation in detecting iron overload. We propose here to adapt bioengineering techniques like SQUID magnetometry and magnetic force microscopy to exploit the magnetic properties of iron-bound proteins for direct evaluation of iron concentration in the blood. Self Patterning of Zirconia Substrate Surfaces for Biological Applications Lead Investigator: Sheikh Akbar, Materials Science and Engineering; Co-Investigator: Jessica Winter, Chemical & Bio-molecular Engineering We have recently discovered a unique nanobar morphology on yttria-stabilized zirconia (YSZ) (110) single crystal surfaces by doping with gadolinia-doped ceria (GDC). Our objective is to understand the mechanism by which these nanobars form and align parallel to certain crystallographic directions on the YSZ substrate surface. This work would involve microstructural characterization of the nanobars which would require use of focused ion beam (FIB), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) facilities. Steep Sub-Threshold Si/SiGe and III-V Quantum Tunneling Transistors Lead Investigator: Paul R. Berger, Electrical and Computer Engineering The goal of this project is to rapidly prototype 3-terminal quantum tunneling transistors for steep subthreshold slopes by extending the PI’s extensive work on resonant interband tunneling diodes (RITD). A paradigm shift with future device scaling from standard MOSFET topologies, where temperature effects limit the slope to 60 mV/decade, towards tunneling based incarnations, where tunneling is virtually temperature independent, is envisioned. The PI’s past collaborative work with the Naval Research Laboratory on 2-terminal Si/SiGe tunneling devices has created a library of understanding of tunneling devices and the materials growth and processing necessary to shape well defined degenerately doped quantum wells with active doping above 1020 cm-3 and with a waist of only 1 nm! This know-how will now be applied towards the demonstration of SiGe and III-V tunnel FETs with concurrent high ON currents, low OFF currents and subthreshold slopes below 60 mV/decade.

IMR Fiscal Year 2011 -2012 Annual Report

Page 130

Page 136: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Nanoscale Tribocharging Mechanism and Mechanical Properties Investigation of Novel Organic and Inorganic Nano-Object-Petroleum Hybrid Lubricants Lead Investigator: Bharat Bhushan, Mechanical and Aerospace Engineering The investigation of the effects of tribocharging and scale on mechanical properties of nano-objects, such as nanotubes, nanobuds and nanohorns from compounds such as molybdenum disulfide, tungsten disulfide and carbon and their incorporation into petroleum-based lubricants, is proposed in this research. Incorporating these known solid lubricants into petroleum-based oils may lead to enhanced lubricity, however, as sliding progresses over time, an increase in attractive electrostatic forces could lead to greater adhesion. During sliding, nano-object aggregation may occur, leading to changes in morphology of the adhered nano-objects and change in the mechanical properties. The use of atomic force microscopy (AFM), electrostatic force microscopy (EFM) and environmental scanning electron microscopy (ESEM) provides the mechanism for the characterization of morphology and charge density. Initially, nano-objects will be deposited on metal and ceramic substrates either as dry nano-objects or as dispersions in petroleum-based oils using a spincoater, then tribocharging studies will be performed using AFM and EFM to correlate adhesion and electrostatic attraction and finally, mechanical properties will be evaluated using the Hysitron nanoindenter. This research will lead to an enhanced understanding of the properties of inorganic nanotube, nanobuds and nanohorns, and will lead to the creation of next generation petroleum-based oils with enhanced properties. High Temperature Irradiation Effects on Optical Fiber Dopant Migration Lead Investigator: Thomas Blue, Mechanical & Aerospace Engineering; Co-Investigator: Wolfgang Windl, Materials Science and Engineering We propose to quantify the migration of dopants in silica optical fibers subjected to high temperature operation in a nuclear reactor radiation environment. The results of this work are generally applicable to existing optically based instrumentation and specifically relevant to development of optically based instrumentation for nuclear reactor environments. Optical instrumentation is already commercial-off-the-shelf technology for mundane environments and the purpose of this research is to determine the feasibility of extending the technology to the harsh environments of future high temperature reactors. When optical fibers are heated beyond 400°C, optical attenuation increases even in the absence of radiation. The attenuation increase is a result of several effects including diffusion of dopants within the fiber, diffusion of impurities into the fiber, mechanical stresses, and crystallization of the fiber. Irradiation by neutrons and gamma rays will cause additional damage to the fiber. The effects of these damage mechanisms are difficult to separate and quantify based on optical attenuation data alone. Quantifying the dopant migration and correlating those results with optical attenuation data will enable the separation of the effects and will establish bounding thermal and radiation conditions for long term use of optical instrumentation at high temperatures and in high temperature radiation environments. Ant Neck Joint Testing and Characterization Lead Investigator: Carlos Castro, Mechanical and Aerospace Engineering; Co-Investigator: Blaine Lilly, Mechanical and Aerospace Engineering This research seeks to characterize the micromechanical structure-function relation of several species of ants. We hypothesize that the ant’s ability to carry extremely large loads relative to its body mass is the result of a highly integrated system comprised of composite materials, internal muscle mechanisms, and surface microstructure. This work will employ a combination of scanning electron microscopy, microCT imaging, stress-strain experiments, and computational modeling to examine the exoskeleton and underlying tissues in the critical loadbearing regions where the head, thorax, and abdomen join. The results of this research will elucidate composite materials-based mechanisms that facilitate ants’ extraordinary load-carrying capabilities. Future work will apply this knowledge to the design and fabrication of bio-inspired lightweight innovative joints and mechanisms for micro- and macro- scale robotics applications.

IMR Fiscal Year 2011 -2012 Annual Report

Page 131

Page 137: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Evaluation of Nano, Micro and Macro Biobased Fillers in Elastomeric Applications Lead Investigator: Katrina Cornish, Horticulture and Crop Science We intend to substitute conventional mineral particulate and fibrous fillers and reinforcing agents used in elastomers with biobased materials made from agricultural byproducts and food processing wastes. We will prepare cellulosics, polysaccharides, proteins, plant-produced minerals and other bio-materials at macro, micro and nano scales, capitalizing on natural chemical and physical diversity. These materials will be incorporated into elastomeric films and compared with commercially-available materials. Applications may include (1) substrates and probiotic films with nutritional cues for controlled cellular adhesion, growth and proliferation, (2) medical gloves and balloons, (3) building materials, and (4) will explore environmental products for wastewater treatment, and oil and gasoline spills. Mechanistic Study of TIO2 Nanowires Grown by Thermal Oxidation of Titanium Alloys Lead Investigator: Suliman Dregia, Materials Science and Engineering; Co-Investigator: Sheikh A. Akbar, Materials Science and Engineering Titanium dioxide nanowires have been grown on titanium alloy substrates by a straightforward one-step heat treatment process. The Ti alloy substrates used contain a mixture of Ti-α and Ti-β phases. The nanowires produced by this method exhibit a strong preference for growth on the β phase. The objective of this proposed study is to use high resolution electron optics and compositional analysis tools to investigate the role alloying elements play in the growth of nanowires in both the α and β phases. With this information we hope to develop a better understanding of the underlying growth mechanism. An Oxygen Release System to Improve Neural Stem Cell Survival During Transplantation Lead Investigator: Jianjun Guan, Materials Science and Engineering NSC transplantation holds a great potential to treat brain diseases, but experiences a high rate of cell death during transplantation. One of the major causes is low oxygen condition at the transplantation site. The goal of this proposal is to create a novel oxygen release system capable of continuously supplying oxygen to NSCs to improve their survival under low oxygen condition. Proposal to Fabricate and Characterize Nanochannel Electroporation Devices Using Semiconductor/Cleanroom Technologies Lead Investigator: Gregory Lafyatis, Physics Nanochannel electroporation (NEP) refers to a very recently developed technique in which a controlled amount of a substance --- e.g. a drug, or targeted RNA, or DNA sample --- is electrically injected through the cell membrane of a biological cell and into the cytoplasm. In contrast to other transfection techniques, such as viral vectors, chemical agents, or even other electrical methods (“electroporation”), NEP enables precise control over the amount or dosage of the transfection agent introduced into the cell with virtually no cell mortality. To date, all devices used to effect NEP have been fabricated using polymer replication processing. Fabricating similar devices using semiconductor processing techniques should allow us to extend the capabilities of NEP beyond the technical limitations of the replication processing. In particular, we will work to make devices that, comparatively, a) are more dimensionally stable b) are specially suited to investigating the science behind NEP c) allow transfection of larger numbers of cells. Transformation Optics from Focused Ion Beams Lead Investigator: Ronald M Reano, Electrical and Computer Engineering In this research project, the use of focused ion beams to achieve large index of refraction gradients required for transformation optics will be investigated. Techniques to reduce and quantify optical losses will be established. The resulting fabrication fidelity will be compared with refractive index requirements from simulated designs.

IMR Fiscal Year 2011 -2012 Annual Report

Page 132

Page 138: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Spring/Summer 2012 IMR Facility Grants

Awarded by the OSU Institute for Materials Research (IMR)

Six new research projects were awarded by the IMR in June 2012, for a total investment of $12,000 in nascent materials research. The six projects support faculty researchers from five different departments within the College of Engineering and the Division of Natural and Mathematical Sciences.

Study of Fast Neutron Irradiation Effects on GaN using Depth-resolved Cathodoluminescence Spectroscopy Lei (Raymond) Cao, Mechanical and Aerospace Engineering

Gallium Nitride (GaN) is a radiation hard material that has unexplored potentials to be

used as a neutron detector in harsh radiation environment. In this study, we will

investigate the effects of radiation on semi-insulating (SI) and undoped GaN using

depth-resolved cathodoluminescence spectroscopy (DRCLS) to measure the lattice

defects due to neutron irradiation. The relationship between two main defects, termed

“yellow line” (YL) and “blue line” (BL) band will be investigated with different annealing

temperature to determine the evolution of the irradiation-induced defects in GaN. In

addition to the specified goals to be achieved in this project, the research also aims to

obtain preliminary data that could enhance proposals to meet high priority goals of

several federal agencies.

In‐situ detection of CO2 reduction intermediates Anne Co, Chemistry

The detection of reaction intermediates for identifying the mechanistic pathway of a

chemical reaction is crucial in the development of more selective heterogenous

catalysts. In this work, our goal is to utilize surface enhancing nanoporous copper foams

as an ideal substrate for identifying the reaction intermediates of the electroreduction of

CO2.

IMR Fiscal Year 2011 -2012 Annual Report

Page 133

Page 139: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Single- and Few-layer transport measurements of Group 14 Graphane Analogues Joshua Goldberger, Chemistry

Graphene's success has shown that it is not only possible to create stable, single-atom

thick sheets of a layered material, but that these materials can have fundamentally

different electronic structures than their parent that are significantly influenced by the

environment. With this IMR facilities grant, we will develop the capabilities of measuring

the transport properties of single-atom and few-layer thick Group 14 graphane

analogues, with a particular emphasis on H- and organic-terminated germananes. We

have successfully synthesized H-terminated germanane and have shown that it has a

1.55 eV direct band gap, that can be tuned from 1.3-1.6 eV depending on the surface

functionalization, which is in sharp contrast to the 0.67 eV indirect gap of bulk Ge.

These electronic measurements will allow us to understand the extent to which we can

manipulate the band structure with surface termination.

Single Cell Culture Wells (SiCCWells) for combinatorial approaches to cell biology Derek Hansford Biomedical Engineering

It is proposed to fabricate and evaluate microdevice platforms that allow combinatorial

culture of individual cells or clusters of cells for biological studies. This application is for

the facilities access and materials to fabricate prototype single cell culture wells

(SiCCWells) to produce preliminary results for proposals to the NIH. Studies showing

the controlled dosage of toxin to individual cells on multiple platform devices will

demonstrate the uniformity of devices and their ability to dose a known amount of

chemical to each cell.

IMR Fiscal Year 2011 -2012 Annual Report

Page 134

Page 140: INSTITUTE FOR MATERIALS RESEARCHimr.osu.edu/files/2009/04/IMR-FY-2012-Annual-Report.Final_-1.pdf · The Ohio State University Institute for Materials Research (IMR) is an interdisciplinary

Development and characterization of a novel direct patterning technique for graphene using Dip-Pen Nanolithography Ezekiel Johnston-Halperin, Physics

Since its experimental discovery by Geim and Novoselov in 2004, the single atomic

layer of graphite known as graphene has proved to be an extremely promising material

for next-generation technology due to a high electron mobility, large thermal

conductivity, durability, and long spin lifetime. Since graphene is only one atomic layer

thick, its properties are strongly influenced by any materials it comes into contact with.

While this can prove useful in many situations, it also makes it difficult to pattern

graphene using typical forms of lithography such as photo- and electron beam-

lithography, which tend to leave damaging resist residues on the surface. We propose

the development of a direct patterning technique known as Dip-Pen Nanolithography

where the fine tip of an Atomic Force Microscope cantilever is used as a pen to transfer

a solution the polar solution of CoCl2 in agarose to the graphene surface. This direct

patterning will act as a non-volatile electrostatic gate, restricting the flow of electrons to

channels, allowing the study of nano- and micro- scale charge and spin interaction in

graphene.

Using Nanostructured Aerogel Films for Improved Performance of Metal Oxide Gas Sensors Patricia Morris, Materials Science & Engineering

The objective of this project is to use a continuous aerogel film as a gas sensing

element, which has never before been reported. Aerogels are ultra-lightweight materials

synthesized by sol-gel chemistry and are generally composed of metal oxides which

exhibit high porosity and extremely high surface area, a critical characteristic in gas

sensor performance. By using existing in-house deposition systems, this work seeks to

create an aerogel-structured gas sensor with a two- or three-fold increase in usable

surface area over current sensing oxide structures. Once proof of concept has been

established, this work can use the highly-customizable aerogel chemistries to create

devices optimized for applications as dictated by external funding agencies.

IMR Fiscal Year 2011 -2012 Annual Report

Page 135