Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and...

29
18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 1 Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian Beidl Methodology Approaches for Real Driving Emissions-Development at Engine Testbeds Extended Version will be presented at: 7th International Symposium on Development Methodology 14th - 15th of November, 2017

Transcript of Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and...

Page 1: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 1

Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt

Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian Beidl

Methodology Approaches for Real Driving

Emissions-Development at Engine Testbeds

Extended Version will be presented at:7th International Symposium on Development Methodology14th - 15th of November, 2017

Page 2: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 2

RDE

Weather

Height

Route

Traffic

Road Signals &

SignsNot repro-

ducible

Loss of Compari-son Basis

Random-ness

Vehicle & Powertrain

Concept

Driver Behaviour

Darstellung: Welt.de

Real-world Road as new Reference System -RDE is Uncertainty and Randomness

Darstellung: Auto Bild

Darstellung: fotocommunity.de

Darstellung: haeusler-automobil-gmbh.de

Darstellung: faces.ch

Page 3: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 3

Conclusion: Cycle-based vs. RDE-Legislation –Loss of a Clear Target

� How can be assured that RDE is passed? � How can system-robustness be achieved?

� When is the job finished? � What are suiting RDE KPIs? What is my engineering target?

� On what basis can I compare different concepts, functions & components in order to get a valid result for RDE? � What is RDE representative? What are RDE concept-KPIs?

� How can I consider and prioritize all realworld influences without being inefficient?

� How can Over-Engineering be avoided?

� How can new RDE-approaches be integrated into existing environments?

Page 4: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 4

Overview Tasks / Use-Cases for RDE –6 Methodology Approaches for RDE Development on ETBs

Real-world StatisticsGoal: Avoidance of Over-Engineering

Concept: Concept-specific statistcs of realworlddata (virt. & real)

Result: RDE representative operating points &transients

Office

Page 5: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 5

� Goal: Avoidance of Over-Engineering

� Analysis of existing PEMS real-world testdrive data from Data Management

� Identification of relevant OPs and OP-Changes as well as their frequencies

� Programmed with Concerto-Script

Module Real-world Statistics –Operating Point (OP)- & OP Change-Histogram

TÜV Hessen Soft

DUC Aggressiv

DUC Soft

Normalized Speed

Norm

aliz

ed

Laod

Norm

aliz

ed

Laod

Normalized Speed

TÜV Hessen Aggr.

Page 6: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 6

Module Real-world Statistics –Operating Point (OP)- & OP Change-Histogram

Quantified Operating Point Histogram:� Histogram for time and distance� Specific for powertrain concept

� In this case analysis of:� 92 PEMS tests (warm & cold)� 4 routes & 2 vehicles (B- & C-Class)� 3 drivers

Normalized Speed

Norm

aliz

ed

Laod

Normalized Speed

Norm

aliz

ed

Load

Speed change [rpm/s]

Load c

hange

[%/s

]

Time Share in %

Distance Share in %

Page 7: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 7

Overview Tasks / Use-Cases for RDE –6 Methodology Approaches for RDE Development on ETBs

Real-world StatisticsGoal: Avoidance of Over-Engineering

Concept: Concept-specific statistcs of realworlddata (virt. & real)

Result: RDE representative operating points &transients

Office Stationary Standard ETB

Stationary ValidationGoal: Assurance of stationary emission conformity

Concept: Assessment of stationary emission behaviour considering concept-specific OP frequencies

Result: OP-specific RDE result and Homologation estimation

Page 8: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 8

Goal: Assurance of stationary emission conformity

� Stationary map calibration and measurement of all necessary n/alpha-maps

� Real-world-Statistics Module provides for vehicle / engine-specific OP frequency for calculations

� OP-specific emission target EG

� RDE test drive / homologation estimation with stationary emission maps

Module Stationary Validation –What is the Engineering Target for stationary RDE Validation?

� Stationary behaviour as comparison basis for subsequent Module Dynamic Validation

„Erfüllungsgrad“ EG = Result / Limit

(Goal: EG<=1):Reaktionsgrößen:

1000 2000 3000 4000 5000

Drehzahl

Alp

ha [

%]

0

25

50

75

100

0.01

0.01 0.010.01

0.02

0.0

2

0.030.04

0.050.06

0.07

0.08

0.0

90.1 0.11

0.12

0.12

1000 2000 3000 4000 5000

Drehzahl [rpm]

0 0 0 0 0 0 0 00 0

0

350

350

350

700

700

1050

1050

1400

1400

1750

1750

1750

2100

2100

2450

2450

28002800

2800

3150

35003500 3500

Abgasmassenstrom

Stickoxide

Reaction Variables

+ =

No

mie

rte

La

st in

%

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Normierte Drehzahl in %

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

1.0000 1.0000 1.00001.1000 1.1000 1.1000

2.00002.0000 2.0000

3.00003.0000

3.0000

5.0000

5.0000

5.0000

5.0000

8.0000

8.0000

8.0000

8.00008.0000

12.0000

12.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.1000

1.1000

1.1000

1.1000

1.1000

2.0000

2.0000

2.0000

2.00002.0000

2.0000

2.0000

2.0000

2.0000

2.0000

2.0000

3.0000

3.0000

3.0000

3.00003.0000

3.0000

3.0000

5.0000

5.0000

5.0000

5.0000 5.0000

8.0000

8.0000 8.0000

12.0000

12.000012.0000

14.0000

14.000014.0000

17.0000

17.000017.0000

19.0000

19.000019.0000

30.0000

30.0000

30.0000

30.0000

30.0000

1

1.1

2

3

5

8

12

14

17

19

30

Real-world driving dominated by almoststationary behaviour:±100 rpm/s & ±10 %/s � 72% of test

Speed change [rpm/s]

Load c

hange

[%/s

]

Page 9: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 9

OP-specific emission target EG:

No

mie

rte

La

st

in %

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Normierte Drehzahl in %

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

5.0000

8.00008.0000

8.0000

12.0000

12.0000

12.0000

12.0000

14.0000

14.0000

14.000017.0000

17.0000

17.000019.0000 19.0000

30.000030.0000

5.0000

8.00008.0000

8.0000

12.0000

12.0000

12.0000

12.0000

14.0000

14.0000

14.000017.0000

17.0000

17.000019.0000 19.0000

30.000030.0000

1

1.1

2

3

5

8

12

14

17

19

30

No

mie

rte

La

st

in %

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Normierte Drehzahl in %

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

5.0000

8.00008.0000

8.0000

12.0000

12.0000

12.0000

12.0000

14.0000

14.0000

14.000017.0000

17.0000

17.000019.0000 19.0000

30.000030.0000

1.0000

1.0000

1.0000

1.1000

1.1000

1.10002.0000

2.0000

2.0000

2.0000

2.0000

3.0000

3.0000

3.0000

3.0000 3.0000

5.0000

5.0000

5.0000

8.0000

8.0000

12.0000

12.0000

12.0000

12.0000

14.0000

14.0000

14.0000

17.0000

17.0000

17.0000

19.0000

1

1.1

2

3

5

8

12

14

17

19

30

Nom

iert

e L

ast in

%

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Normierte Drehzahl in %

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

5.0000

8.00008.0000

8.0000

12.0000

12.0000

12.0000

12.0000

14.0000

14.0000

14.000017.0000

17.0000

17.000019.0000 19.0000

30.000030.0000

3.0000

3.0000

3.0000

3.0000

5.0000

5.0000

5.0000

8.00008.0000

8.0000

8.0000

8.000012.0000

12.0000

12.0000

12.000012.0000

14.0000

14.0000

14.0000

14.0000

14.0000

17.0000

17.0000

17.0000

19.0000

19.0000

19.0000

30.0000 30.0000

1.0000

1.00001.1000

1.1000

2.0000

2.0000

2.0000

2.0000

1

1.1

2

3

5

8

12

14

17

19

30

Nom

iert

e L

ast in

%

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Normierte Drehzahl in %

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

5.0000

8.00008.0000

8.0000

12.0000

12.0000

12.0000

12.0000

14.0000

14.0000

14.000017.0000

17.0000

17.000019.0000 19.0000

30.000030.0000

14.0000

17.0000

12.0000

8.0000

2.0000 2.0000

2.0000

2.0000

2.0000

3.0000

3.0000

3.00003.0000 3.0000 5.0000

5.0000

1.1000

1.1000

1.1000

1.1000

1.1000

1.0000

1.0000

1.00001.0000

1.0000

19.0000

1

1.1

2

3

5

8

12

14

17

19

30

Module Stationary Validation –Stationary Behaviour Compared to RDE Limits in g/km

Norm

alized L

oad [

%]

Norm

alized L

oad [

%]

Norm

alized L

oad [

%]

Norm

alized L

oad [

%]

Normalized Speed [%] Normalized Speed [%]

Normalized Speed [%]Normalized Speed [%]

NO

x

TH

CCO

CO

2

1

1.1

2

3

5

8

12

14

17

19

30

EG:

Page 10: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 10

Module Stationary Validation –Stationary Behaviour Compared to RDE Limits in g/km

Stationary RDE-Prognosis:� Critical EG-operating points might be compensated with uncritical ones

� Prognosis needed � EG_stat_prog = RDE histogram based weighted mean value

� basically traditional “cycle” estimation

� Goal: EG_stat_prog <= 1

EG_stat_prog:CO=23,4

EG_stat_prog:THC=1,8

EG_stat_prog:NOx=1,1

EG_stat_prog:CO2=6,0

+ =

+ =

+ =

+ =

Page 11: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 11

Overview Tasks / Use-Cases for RDE –6 Methodology Approaches for RDE Development on ETBs

Real-world StatisticsGoal: Avoidance of Over-Engineering

Concept: Concept-specific statistcs of realworlddata (virt. & real)

Result: RDE representative operating points &transients

Office Stationary Standard ETB Active Standard ETB

Stationary ValidationGoal: Assurance of stationary emission conformity

Concept: Assessment of stationary emission behaviour considering concept-specific OP frequencies

Result: OP-specific RDE result and Homologation estimation

Legislative Cycle Validation / EstimationGoal: Deduction of RDE Post-processing parameters & Transient RDE KPI

Concept: Comparison of stationary emission estimation vs. measured data

Result: RDE KPI for Transient Robustness & Post-processing parameters

Page 12: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 12

Transient OPs used for calculation of stationary map signals:

� Emissions and State Signals

� Also used for CO2-Estimation

Module Legislative Cycle Validation / Estimation -Generation of Quasi-stationary Signals

1000 2000 3000 4000 5000Drehzahl

Alp

ha [

%]

0

25

50

75

100

250

250

500

500

750

1000

1250 12501500

15001500

1750 1750

17502000 20002000

2250 2250

25002750

300037504000

1000

2000

3000

4000

Alp

ha [

%]

0

25

50

75

100

-2.5

0

0

2.5

5

5

7.5

7.5

10

10

12.5

12.5

15

15

17.5

17.5

20

20

22.5

25 27.5

27.5

27.5

30

30 30

32.5

32.5 32.5

3537.50

10

20

30

Alp

ha [

%]

0

20

40

60

80

100

0.750.8

0.8

5

0.85

0.9

0.9

0.9

0.95

0.9

5

0.95

1

11

1

1 1

1

1

1.051.11.151.21.251.31.351.41.451.5 1.51.55 1.551.6 1.6 1.6 1.6 1.6 1.6 1.61.65

0.9

1.05

1.2

1.35

1.5

Lambda [-]

iga_igc [°KW]

THC vKat [ppm]

n, alpha

� Hypothesis: Usually in transient operation the engine is not “cleaner” than during stationary behaviour

Page 13: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 13

Goal: Deduction of RDE Post-processing Parameters & Transient RDE KPIs

� Measurement of RDE-Reference Test (e.g. Most-Relevant-Test of prior project) & WLTC for concept comparison

� Idea: high emission OPs might be neglectable due to few occurences

� Additional map based deduction of their quasi-stationary time dependent signals

� Difference between stationary emission estimation vs. measured data describestransient engine robustness

Module Legislative Cycle Validation / Estimation –Quasi-stationary Simulation for KPI Determination

Outcome: RDE KPIs for Comparisons

� EGstat = EMstat / Limit

� important RDE KPI

� Summary of stationary engine behaviour

� EGdyn=EMdyn/ EMstat� RDE KPI for transient robustness

� Summary of transient engine behavior

Page 14: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 14

Overview Tasks / Use-Cases for RDE –6 Methodology Approaches for RDE Development on ETBs

Real-world StatisticsGoal: Avoidance of Over-Engineering

Concept: Concept-specific statistcs of realworlddata (virt. & real)

Result: RDE representative operating points &transients

Office Stationary Standard ETB Active Standard ETB

Active Standard ETB

Stationary ValidationGoal: Assurance of stationary emission conformity

Concept: Assessment of stationary emission behaviour considering concept-specific OP frequencies

Result: OP-specific RDE result and Homologation estimation

Legislative Cycle Validation / EstimationGoal: Deduction of RDE Post-processing parameters & Transient RDE KPI

Concept: Comparison of stationary emission estimation vs. measured data

Result: RDE KPI for Transient Robustness & Post-processing parameters

Transient ValidationGoal: Influence Assessment of transients and states on engine emission behaviour

Concept: DoE-based analysis of OP-ramps for different engine states

Result: Identified critical ramps for engine concept and corresponding technical cause

Page 15: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 15

Module Transient Validation –Transient Map Analysis in early Development Phase

Advantages:� Systematic / holistic� Concept-specific / Individual� Applicable on standard engine testbeds� Automatable & Reproducible

Disadvantages:� No direct link to RDE Legislation� Risk of Over-Engineering

Goal: Detailed influence assessment of transients and states on engine emission behaviour

� Robust RDE engine concept independent of vehicle basis

Concept:� DoE-based analysis of OP-ramps for different

engine states

� If ICE is “clean” in transient behavior:

� no RDE Problems independent of vehicle type,

road, driver behaviour …

Load in %

Speed in r

pm

Time in s

DoE-based variation of:� Starting point & gradient of speed� Starting point & gradient of load� Coolant & oil temperature

Page 16: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 16

Module Transient Validation -Difference to Quasi-stationary Signals as Transient Identification

� DoE-based measurement of average difference of transient to quasi-stationary emission behaviour [g/s]

� Ramp time-signal converted to ramp KPI in Concerto post-processing script

� DoE-based modeling of differences dependent on ramp parameters

measurement of average difference between transientand quasi-stationarybehaviour

Conditioning systems needed

Page 17: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 17

Choice of RDE critical Transients –Assessment of Concept-Specifc RDE Relevance

Statistic Relevance:

Identification of remarkable ramps

� Difference in mg/s transient vs. stationary > 0

Concept-specificassessment of statistic relevance

� Histogram-classification� Calculation of ramp weight

G using individual ramp and OP frequencies

Ramp prioritization (for furtherdevelopment)

� Pollutant specific ramp weight

� Global worst case transient

Most-Relevant-Ramp:

� high EM difference & � high statistic relevance

CO Ramp Weight GCO

Most-Relevant-Ramp time signal used for following optimization and technical cause identification

Page 18: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 18

Choice of RDE critical Transients –Identification of Technical Causes in Time Domain

Ramp 138: CO_dynamic=160 g/km, CO_stationary=35 g/km

Visual comparison of quasi-stationary andtransient state signalsallow analysis on cause of differences

16

11

7,5

4

0,86

0,79

85

53

Page 19: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 19

Overview Tasks / Use-Cases for RDE –6 Methodology Approaches for RDE Development on ETBs

Real-world StatisticsGoal: Avoidance of Over-Engineering

Concept: Concept-specific statistcs of realworlddata (virt. & real)

Result: RDE representative operating points &transients

Office Stationary Standard ETB Active Standard ETB

Active Standard ETBEngine-in-the-Loop ETB

Stationary ValidationGoal: Assurance of stationary emission conformity

Concept: Assessment of stationary emission behaviour considering concept-specific OP frequencies

Result: OP-specific RDE result and Homologation estimation

Legislative Cycle Validation / EstimationGoal: Deduction of RDE Post-processing parameters & Transient RDE KPI

Concept: Comparison of stationary emission estimation vs. measured data

Result: RDE KPI for Transient Robustness & Post-processing parameters

RDE Sensitivity AnalysisGoal: Detection of vehicle individual challenges

Concept: Efficient assessment of all possible RDE influences on powertrain; Use of virt. RDE test drives on EiL-ETB

Result: RDE Robustness KPI; all concept-specific critical maneuvers

Transient ValidationGoal: Influence Assessment of transients and states on engine emission behaviour

Concept: DoE-based analysis of OP-ramps for different engine states

Result: Identified critical ramps for engine concept and corresponding technical cause

Page 20: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 20

Set Engine Load

Testbed Interface

Module RDE Sensitivity Analysis –X-in-the-Loop RDE Tests on Engine-Testbeds with RDE-Module

Testbed Automation System

Meas. Torque

Realtime System:

Real Driving Simulation Module

Set ICE Throttle

Set ICE Speed

ICE Dyno

Driver Model

3d Environment Model

Vehicle Model

Signals

Desired Cruising Speed

Road & Environment

Sp

eed

lim

itati

on

s

Shifting,

Pedalry &

SteeringVehicle Speed

Forces Resistances & Information

Traffic Signs & Objects

Automatable, reproducible & emission measurement Virtual real-world tests, flexible, holistic

� Goal: Identification of vehicle-specific challenges & engineering targets

Page 21: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 21

� Powertrain (real, virtual) remains unchanged

� Driving scenario parameters varied for model-based validation of powertrain:� Driver

� Vehicle

� Environment

� Tested parameter intervals are concept-specific based on Module Real-world Statistics

� DoE-Design for efficient testing and optimized modeling

� Measurement of pollutant emissions for each segment and whole test

Module RDE Sensitivity Analysis –Definition of RDE relevant Variation Parameters

Exemplary RDE relevant variation parameters:� Max. longitudinal acceleration� Max. lateral acceleration� Desired driver speed� Road inclination & decline� Curve radius and angle� Stop time � cw-value� Additional vehicle load

(Source: MTZ 10/2016)

Page 22: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 22

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

Module RDE Sensitivity Analysis –From Time Domain to Interaction-Plot

� Each Point in Plot represents whole test in time domain

� Time based signals (e.g. emissions) is summed upby mean value

VEHICLE Comparison:

CO

2

Add. Load =350 kg

Add. Load =0 kg

Torq

ue

[Nm

]

carload

vmean

alat_mean

apos_mean

?

� Most critical tests identified

Large vehicleSmall vehicle

Page 23: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 23

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

Module RDE Sensitivity Analysis –From Time Domain to Interaction-Plot

� Each Point in Plot represents whole test in time domain

� Time based signals (e.g. emissions) is summed upby mean value

VEHICLE Comparison:

CO

2

Add. Load =350 kg

Add. Load =0 kg

Torq

ue

[Nm

]

carload

vmean

alat_mean

apos_mean

If driver doesn‘t accelerate, additional load is not so critical

� Most critical tests identified

Page 24: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 24

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500Vhcl.Distance [m]

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

250

300

350

400

450

Module RDE Sensitivity Analysis –From Time Domain to Interaction-Plot

CO

2

carload

alat_mean

apos_mean

DRIVER Comparison:

apos_max =7apos_mean=0,64

apos_max =1apos_mean=0,04

vdesired =130vmean =52,5

vdesired =30vmean =27

� Powertrain is evaluated for all vehicles, drivers and roads

� Most critical tests identified

� Interaction-Plot summarizes all tests

vmean

Vehic

lespeed

[m/s

]a

pos[m

/s2]

Page 25: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 25

Overview Tasks / Use-Cases for RDE –6 Methodology Approaches for RDE Development on ETBs

Real-world StatisticsGoal: Avoidance of Over-Engineering

Concept: Concept-specific statistcs of realworlddata (virt. & real)

Result: RDE representative operating points &transients

Office Stationary Standard ETB Active Standard ETB

Active Standard ETBEngine-in-the-Loop ETBActive Standard ETB

Stationary ValidationGoal: Assurance of stationary emission conformity

Concept: Assessment of stationary emission behaviour considering concept-specific OP frequencies

Result: OP-specific RDE result and Homologation estimation

Legislative Cycle Validation / EstimationGoal: Deduction of RDE Post-processing parameters & Transient RDE KPI

Concept: Comparison of stationary emission estimation vs. measured data

Result: RDE KPI for Transient Robustness & Post-processing parameters

Most-Relevant-TestGoal: Condensation of gained concept-specific challenges to one RDE representative test

Concept: Merging critical test

segments or maneuvers to RDE valid test & elimination of uncritical parts

Result: (Short) RDE representative test as new comparison basis for existing engine testbeds

RDE Sensitivity AnalysisGoal: Detection of vehicle individual challenges

Concept: Efficient assessment of all possible RDE influences on powertrain; Use of virt. RDE test drives on EiL-ETB

Result: RDE Robustness KPI; all concept-specific critical maneuvers

Transient ValidationGoal: Influence Assessment of transients and states on engine emission behaviour

Concept: DoE-based analysis of OP-ramps for different engine states

Result: Identified critical ramps for engine concept and corresponding technical cause

Page 26: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 26

Module Most-Relevant-Test -Generation of New RDE-Evaluation Basis / RDE Reference Test

Concept:� Development basis should be a worst-case test� � If passed, most likely every other certification test will be passed

� Test must be individual due to concept-specific challenges� Test must be fully relevant for RDE Procedure � Most-Relevant Test Scenario� Test is merged of critical test segments or maneuvers from prior modules � elimination

of uncritical parts

What street do you want to drive on and how?

� How can be assured that RDE certification is passed?

� What is the comparison basis for concepts, functions and components?

Goal: Condensation of gained concept-specific challenges to one RDE representative test

Page 27: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 27

Statistics Module

Module Most-Relevant-Test -Process Structure for Generation of RDE Reference Test

Maneuver Database

Measurement Scenario Generation

Simulative Pre-testing & Legislative Relevance

Engine Characterisation on ETB

CO2

Prognosis

Simulation Environment

Most-Rele-vant Test Scenario

Raw data

Trigger-Mechanisms

Crit. Virtual Maneuvers

Data Evaluation

Generation of Most-Relevant-Test

Test Definition ready for utilization?�CO2 representative� Initial states reenacted?

Crit. Maneuvers & States fromSensitivityAnalysis

Consistent Data ManagementLiterature

Set-Point Signal Deduction

Most-Rele-vant Test Cycle

Emission critical maneuvers

Maneuvers identified as crititcal

Test Scenario Definition

Page 28: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 28

� RDE is completely different from NEDC legislation

� RDE means many more influences & randomness

� � more work and uncertainty for the development

� These challenges are ideally addressed primarily on existing engine testbeds

� Therefore, 6 RDE-Methodology Modules are defined to enable as early and as much RDE development as possible

� DoE-approaches allow holistic analysis, yet are efficient

� Concept-specific statistics avoid over-engineering

Summary

Page 29: Institute for Internal Combustion Engines and …...Institute for Internal Combustion Engines and Powertrain Systems, TU Darmstadt Hauke Maschmeyer, M.Sc.; Prof. Dr. techn. Christian

18. Mai 2017 | Institute for Internal Combustion Engines and Powertrain Systems | H. Maschmeyer | 29

Thank you for

your Attention!

Contact:Hauke Maschmeyer, M.Sc.

Website:www.verbrennungskraftmaschinen.de

Tel.: +49 6151 16-21263Fax: +49 6151 [email protected]