Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND...

37
MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University of Lyon 1 March 6, 2019 This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639638)

Transcript of Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND...

Page 1: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS

AND GUT MICROBIOTA ECOLOGY

Bastien POLIZZI

Institut Camille JordanUCBL - University of Lyon 1

March 6, 2019

This project has received funding from the EuropeanResearch Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme(grant agreement No 639638)

Page 2: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

OUTLINE

1 Introduction to mixture theory

2 Phototrophic biofilmBiofilm in a nutshellMathematical modelNumerical method overviewNumerical resultsImpact of harvest on productivityConclusion & Further work

3 Gut ecologyGut’s roleGeneralisation toward a more detail modelConclusion & Further work

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 2 / 37

Page 3: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

THEORETICAL FRAMEWORK FOR MIXTURE THEORY

Consider a mixture of K > 1 constituents: Ck , each constituent is describe by:Its volume fraction: φk(t,x) := lim

V→0volume of Ck in V

volume of VIts speed Vk(t,x)Its mass density ρk (assumed constant)

Fundamental properties:Total volume conservation:

∑Kk=1φk = 1

Mass balance equation:

∂t (φkρk) +∇x ·(φkρkVk

)

︸ ︷︷ ︸transport

= ∇x ·(Dk∇x (φkρk)

)

︸ ︷︷ ︸diffusion

+ Γk︸︷︷︸exchanges

Momentum conservation (Force balance equation):

∂t (φkρkVk) +∇x ·(φkρkVk ⊗Vk

)

︸ ︷︷ ︸inertial terms

= −φk∇xP︸ ︷︷ ︸pressure

+Ffric +Fvisc + . . .︸ ︷︷ ︸other forces

Advantages:•Mesoscale • Different physical properties for each Ck• Physical constraints included • Interfaces without free boundary

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 3 / 37

Page 4: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

Phototrophic biofilm

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 4 / 37

Page 5: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

PHOTOTROPHIC BIOFILM

Phototrophic?Biofilm using light and inorganic

carbon source to growth.

(a) Rotating microalgae biofilm deviceHans C. Bernstein et al. 2014

Motivation:Credible alternative for biofuels

Why?High production yield for lipids,Easy to harvest (just scalp),A wide variety of species,Can develop in sea and oceans,Combined with wastewatertreatment?

Objective:Quantify the influence of growing

conditions and harvest onproductivity.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 5 / 37

Page 6: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

SCHEMATIC REPRESENTATION OF THE SYSTEM

Liquid (L)

Inorganicnitrogen (S)Oxygen (O)Carbon

dioxyde (C)Dissolvedcomponents

In/out Substrate (θS )Oxygen (θO)Carbon dioxyde (θC)

Biofilm

Microalgae Carbonpool (A)

Functionalbiomass (N)

Extra-cellular matrix (E)

ϕAD ϕNDϕAE ϕNE

ϕP

ϕR ϕN

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 6 / 37

Page 7: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

MIXTURE FRAMEWORK – MASS BALANCE

Total volume conservation: A+N +E +L = 1

Mass conservation for phase:

Microalgae{ Carbon pool: ∂tA+∇x · (AVM ) = ΓA/ρM

Functional biomass: ∂tN +∇x · (NVM ) = ΓN /ρMExtracellular matrix: ∂tE +∇x · (EVE) = ΓE/ρELiquid: ∂tL+∇x · (LVL) = ΓL/ρL

Pseudo incompressibility:

∇x ·((A+N )VM +EVE +LVL

)=ΓA + ΓN

ρM+

ΓE

ρE+

ΓL

ρL

Dissolved components:

θ =

S SubstrateC Carbon dioxideO Oxygen

∂t (θL) +∇x · (θLVL) = ∇x ·(DθL∇xθ

)

︸ ︷︷ ︸diffusion

+Γθ

ρL.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 7 / 37

Page 8: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

MIXTURE FRAMEWORK – FORCE BALANCE

Biological phases: φ = A+N, E

∂t(φρφVφ

)+∇x ·

(φφρφVφ ⊗Vφ

)=

− φ∇xP︸︷︷︸Pressure

+∇x(γφφ

)︸ ︷︷ ︸

Elastic

+∑`,φ

m`,φ

(Vφ −V`

)︸ ︷︷ ︸

Friction

+ ΓφVφ︸︷︷︸Exch.

Hypothesis: Conservation of total momentum supply

Liquid phase:

∂t (LρLVL) +∇x · (LρLVL ⊗VL) = − L∇xP︸︷︷︸Pressure

−∑φ,L

mk,L

(VL −Vφ

)︸ ︷︷ ︸

Friction

−∑φ,L

ΓφVφ

︸ ︷︷ ︸Exch.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 8 / 37

Page 9: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

SOURCE TERMS MODELLING

Construction of source terms:1 Identify a biological mechanism

6CO2 + 6H2Ophotosynthesis−−−−−−−−−−−−−−−−−−→ C6H12O6 + 6O2

2 Translate in term of considered components

ηCInorganic carbon︸ ︷︷ ︸C

+ηLLiquid︸ ︷︷ ︸L

Reaction rate−−−−−−−−−−−−−−−−−→ψP

Carbon pool︸ ︷︷ ︸A

+ηOOxygen︸ ︷︷ ︸O

3 Express the information in the source terms:

ΓC = −ηCψP + . . . ΓA = ψP + . . .

ΓL = −ηLψP + . . . ΓO = ηOψP + . . .

Considered mechanisms:

1. Photosynthesis2. Respiration3. Functional biomass synthesis

4. Extra-cellular matrix excretion5. Mortality

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 9 / 37

Page 10: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

REACTION RATES MODELLING: ψ

ψ :=∏

i>0

fi (φ)

fi elementary functionsφ volume or mass fraction

x

1

0 K

12

(b) Monod’s law f (x) = xK+x

x

1

0 K

(c) Droop’s law f (x) = max{0,1− Kx

}

x

1

0 K

12

xref2

(d) Sigmoidal law f (x) = 11+(x/K)α

x

1

0 xref2

4+4K5+4K

xref

(e) Haldane’s law f (x) = 2(1+K)xx2+2Kx+1

, x = x/xref

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 10 / 37

Page 11: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

REACTION RATES MODELLING

Highly nonlinear reaction rates:Example:

ψP = µP ρMNC

KC +C(1 +KL)LKL +L

2(1+KI ) II2 +2KI I +1

max{0,1− Qmin

min{Q,Qmax}}

Qmax −Qmin1

1+(OKO

)α ,

Received light intensity: I(z) =I0Iopt

exp(−∫ H

zτLL+ τM (A+N +E)dξ

)

Functional biomass quota: Q = NN+A .

Coupled mass balances:

∂tA+∇x · (AVM ) =1ρM

(ψP −ψR − ηANψN −ψAE −ψAD

)

∂t (CL) +∇x · (CLVL)−∇x · (DCL∇xC) = 1ρL

(ηCRψR − ηCP ψP

),

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 11 / 37

Page 12: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

NUMERICAL METHOD OVERVIEW

Semi-implicit approach for the mass balance equations:

(θL)n+1 − (θL)ndt

+∇x · (θLVL)n = ∇x ·(DθL

n∇x (θL)n+1

Ln

)+ f (U n)− g (U n)(θL)n+1

f (U ) production terms & g(U )θL consumption terms

Chorin-Temam’s projection method for the conservation of momentum:1. Projection step for Vφ, φ =M,E,L:

(φVφ

)n+ 12 −

(φVφ

)n

dt+∇x ·

(φVφ ⊗Vφ

)n=

1ρφ

−∇x

(γφφ

n)+

φ′,φmφ,φ′

(Vφ −Vφ′

)n+ 12 +

(ΓφVφ

)n2. Elliptic equation for P : Variable coefficients & Nonhomogeneous

3. Correction step: V n+1φ = Vn+ 1

2φ − ∆t

ρE(∇XP )n+1

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 12 / 37

Page 13: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

NUMERICAL RESULTS

0 1 2 3 4 50

0.2

0.4

0.6

0.8

x en mm

Volu

me

frac

tion

A N E B

(f) Biofilm components after 90 days

0 1 2 3 4 50

0.2

0.4

0.6

0.8

1·10−4

x en mmM

ass

frac

tion

S C O

(g) Disolved components after 90 days

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 13 / 37

Page 14: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

NUMERICAL SIMULATION IN 2D

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 14 / 37

Page 15: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

INFLUENCE OF THE SUBSTRATE SUPPLY NITROGEN

0 2 4 6 8 100

0.20.40.60.81

1.2

θS [µ gS/gL]

Dai

lypr

oduc

tion

rate

[ gm−2

d−1

] A NE A+N+E

(h) Biofilm daily production rate withrespect to θS after 90 days

0 2 4 6 8 100

2040

6080

100

θS [µ gS/gL]Bi

ofilm

com

posi

tion

[%]

A N E

(i) Biofilm composition with respect to θSafter 90 days

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 15 / 37

Page 16: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

HOW TO INCLUDE THE EFFECT OF THE HARVEST?

0 1 2 3 4 50

0.2

0.4

0.6

0.8

x en mm

Volu

me

frac

tion

A N E B

Initial modelComponent dissolved provided at the top

of the domain, ie: x = 5mm

Drawback: Unable to capture optimalharvest height and frequency,Why: The closer the biofilm front is tothe source the higher the growth is.

Modified modelUse Henry’s law for the inorganic carbon

and oxygen supply:∂t (CL) = · · · − kL,C (C −C∗)1L>Lmin∂t (OL) = · · · − kL,O (O −O∗)1L>Lmin

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 16 / 37

Page 17: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

HARVEST, WHAT HEIGHT AND FREQUENCY?

(j) Microalgae (k) Whole biofilm

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 17 / 37

Page 18: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

CONCLUSION & FURTHER WORK

Summary and results:

Front velocity ∝ √Elastic tensor,Productivity (g/D/m2): model ∼ 1,13 ' experiments ∼ [1,2]Quantification of the substrat supply on productivity and compositionRole of dissolved components in the developpement of structures,Quantification of limiting factors:

Influence of light,Oxygen concentration

Optimal height and frequency for harvest.

On going work: Impact of the harvest, what about the shape ?

Further work:

Include the water flow,Take into account the viscosity,Calibration and comparison with experimental data.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 18 / 37

Page 19: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

Gut ecology

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 19 / 37

Page 20: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

COLON & GUT MICROBIOTA IN A NUTSHELL

(l) Human gut

(m) Mucus layers &Microbiota

Gut’s roleLast stage of digestion,Body hydratation.

Gut’s operating mechanismsMicrobiota: all the bacteria contained in the gut

Fiber degradation,Synthetize neuro-transmettors,Pathogens domination,Regulate immunity.

Host:Excretion of protective mucus layers,By-products assimilation,Water pumping: 90% of the gastric broth’s water.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 20 / 37

Page 21: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

COLON & GUT MICROBIOTA IN A NUTSHELL

Motivations: Understand the complex symbiotic relationship between thehost and its microbiota.

Why: Dysbiosis1 is associated with many diseases such that metabolic,inflammatory, mental, autoimmune, . . .

Objectives: Quantify the influence of mechanical, ecological and chemicalmechanisms in the functioning of the gut.

Context: Collaboration with scientists from Institut National de Rechercheen Agronomie (INRA): B. Laroche & S. Labarthe.

1Qualitative and functional alteration of the microbiota.B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 21 / 37

Page 22: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

MODEL COMPLEXITY FOR THE GUT ECOLOGY

Aim of the modelDescribe the microbiota in its physicalenvironment,Understand how bacteria remain in the colon andresist the overcoming flow,Study the ecology of bacteria in competition in thegut.

Features of the modelHydrodynamical description: luminal flow, waterpumping, viscosity gradient, mucus structure, . . .Spatial behaviour: chemotaxis, peristaltism, . . .Metabolic description of the digestion process:

Dissolved metabolites,Different bacteria communities.

Viscositygradients

Liquid chyme influx :

fibres/bacteria

Absorption

Mucus production

Diffusion

Transport

Chemiotaxis

A + B → CA + B → C

Metabolism

Flu

id M

ech

an

ics

Sp

atia

l m

otio

nB

acte

ri al

activ

ity

TrophicInteractions

Peristaltism

Poly/monosaccharides

SCFA

methane

Meta

bo

lites

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 22 / 37

Page 23: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

GEOMETRY AND UNKNOWNS

r

zPr

ox.

Tran

sver

seD

ista

lL'15

4cm

R ' 2 cm

Flow

dire

ctio

n

Mixture model with8 fluid components:

1. mucus, 5. bacteria Bmon,2. indigestible residuals, 6. bacteria Bla,3. liquid chyme, 7. bacteria BH2a,4. polysaccharides 8. bacteria BH2m.

8 dissolved compounds:1. monosaccharides, 5. butyrate,2. lactate, 6. propionate,3. hydrogen, 7. methane,4. acetate 8. carbon dioxyde.

A common velocity field, with a correction forbacteria,

The hydrostatic pressure

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 23 / 37

Page 24: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

MIXTURE THEORY FRAMEWORK

Fluid components: φi = Volume fractions, i ∈ [[1,8]]Mass balance ∂tφi +∇x · (φiVi)−∇x · (σ∇xφi) = FiTotal volume conservation

∑i∈[[1,8]]φi = 1

Velocity, vi = chemotactic speed Vi = V+vi

Phase transfert constraint∑8i=1Fi = 0

Incompressibility ∇x ·(V+

∑8i=1φivi

)= 0

Solutes: Si = concentration, i ∈ [[1,8]]Mass balance ∂tSi +∇x ·

(SiV

)−∇x · (σi∇xSi) = Gi

Mixture average velocity V =∑8i=1φiVi

Stokes equation: – Viscosity µ(M,L) depending on mucus and liquid– P pressure

∇x ·(µ (M,L)

(∇xV+∇xVT

))−∇xP = 0.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 24 / 37

Page 25: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

METABOLIC MODEL: MODELLING SOURCE TERMS

Knowledge-based microbiotametabolic model: Muñoz Tamayo et al.JTB 2010

pol

mon

H2

ac pro but

CO2

la

m bmon

bla

bH2a

bH2m

l

CH4

CH4 CO2 H2

Mix

ture

p

ha

se

sD

iffu

sin

g s

olu

tes

Ga

s

Chemical reaction

Volume transfer

Transfer type :

Gas loss

Processes :

P1 : Mucus degradation

P3 : Monosaccharide consumption

P4 : Lactate consumption

P5 : Homeoacetogenesis

P6 : Methanogenesis

P7-P10 : Bacterial death

P2 : Fiber hydrolisis

P11-P13 : Dissolved gas vaporisation

r

P1 P2

P3

P4

P5

P7 P8 P9 P10

P11 P12 P13 P5P6P6

Petersen matrix,

Complex reaction rates including:inhibition, limitation mechanisms, . . .

General form:

Fi (φ,S) =∑

µmaxSjφi

Kj +Sj

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 25 / 37

Page 26: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

CHEMOTACTIC SPEED

Observations:Chemotactic speed ∼ 1 cm/dayGut half average surface inflow ∼ 40 cm/day

Consequence: Chemotactic speed� Gut average inflow

Hypothesis: Consider only the radial chemotactic speed

Keller-Segel model:

vi =∑

j

λi,j∇rψj and −∆ψj = Sj − 1R

∫ R

0Sj (r,z) · dr

whith λi,j chemosensitivity coefficient of Bi to Sj ,ψj chemotactic potential of Sj ,R gut radius,

∇ψj · ~n = 0 boundary condition.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 26 / 37

Page 27: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

BOUNDARY CONDITIONS: IN/OUT & PERISTALTISM

Mucosal exchanges: robin boundary conditions(φiVi − σ∇xφi

)· ~n = γφi(

SiV− σi∇xSi)· ~η = γSi

where γ is the exchange rate which depends on the local composition.

Peristaltism:

V · ~n =∑

i∈[[1,8]]γφi +Vper · ~n and V · ~τ = Vper · ~τ

with Vper is the velocity peristaltism induced.

Notation: ~n normal unit vector,~τ tangential unit vector.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 27 / 37

Page 28: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

MODEL SIMPLIFICATION

Realistic hypothesis: Aspect ratio ε =RL� 1.

Model simplification method:Use series expansion in ε, ie. f = f0 + εf1 + . . .Keep only the first orders.

Simplified mass balance

∂tφi +∇x · (φiU)+1r∂r

(rφiui,r

)− 1r∂r (rσ∂rφi) = Fi

∂tSi + U · ∇xSi − 1r∂r (rσi∂rSi) = Gi

Simplified Stokes and Keller-Segel equationsCan be solved exactly

⇒ Explicit formulas for the velocities U and ui,r depending on: rehology,peristaltism, inflow and pumping.

Speed up factor ∼ 70.

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 28 / 37

Page 29: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

COMPARISON BETWEEN FULL AND SIMPLIFIED MODELDISCREPANCIES BETWEEN VELOCITIES

(n) Radial distribution of longitudinal speed (o) Radial distribution of radial speed

z in cm −25 −50 −75Reduce model - - - - - - - - - - - -Full model —— —— ——

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 29 / 37

Page 30: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

COMPARISON BETWEEN FULL AND SIMPLIFIED MODELDISCREPANCIES IN COMPOSITION

(p) Radial distribution of bacteria (q) Radial distribution of mucus

z in cm −25 −50 −75Reduce model - - - - - - - - - - - -Full model —— —— ——

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 30 / 37

Page 31: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

PERSISTENCE OF THE MUCUS LAYER & SPATIAL

STRUCTURE

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 31 / 37

Page 32: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

REFERENCE STATEWITHOUT CHEMOTAXIS & PERISTALTISM

—— Polysaccharid density—— Mixture viscosity—— Bacterial activity—— Total bacteria density

—— Longitudinal speeds—— Radial speed—— Total flux:

i∈[[1,8]]γφi

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 32 / 37

Page 33: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

IMPACT OF THE DIET

(r) Low fibre diet (s) Hight fibre diet

Curve Poly. density Mixt. viscosity Bact. activity Total bact. densityReference - - - - - - - - - - - - - - - -Low/Hight —— —— —— ——

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 33 / 37

Page 34: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

IMPACT OF PERISTALTIMS & CHEMOTACTISM

(t) Impact of peristaltims (u) Impact of chemotactism

Curve Poly. density Mixt. viscosity Bact. activity Total bact. densityReference - - - - - - - - - - - - - - - -Per./Chemo. —— —— —— ——

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 34 / 37

Page 35: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

ALL MECHANISMS COMBINEDPERISTALTIMS & CHEMOTACTISM

Curve Poly. density Mixt. viscosity Bact. activity Total bact. densityReference - - - - - - - - - - - - - - - -Per./Chemo. —— —— —— ——

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 35 / 37

Page 36: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

CONCLUSION & FURTHER WORK

Main resultsCoupled fluid mechanics-Population dynamics model.Simplified fluid mechanics.Assessment of the spatial structure of the gut microbiota.Chemotaxis has an impact on the gut’s spatial structure and ecology.Quantification of the impact of peristaltism.

Mathematical perspectivesRigorous proof of the formal computations for the asymptotic limit

Modelling perspectivesInclude pathogens invasionInclude drug delivery & immune responseDifferent timescales for the source terms (slow-fast dynamics)

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 36 / 37

Page 37: Institut Camille Jordan UCBL - University of Lyon 1 · MIXTURE MODELS FOR PHOTOTROPHIC BIOFILMS AND GUT MICROBIOTA ECOLOGY Bastien POLIZZI Institut Camille Jordan UCBL - University

Thank you for your attention!

Questions?

Collaborators:

Magali RIBOT, University of OrléansOlivier BERNARD, INRIA

Simon LABARTHE, INRABeatrice Laroche, INRA

References:A time-space model for the growth of microalgae biofilms for biofuel production,B. Polizzi, O. Bernard, M. Ribot. Journal of Theoretical Biology, Volume 432, 7 November 2017,Pages 55-79,

A mixture model for the dynamic of the gut mucus layer, T. El Bouti, T. Goudon, S. Labarthe,B. Laroche, B. Polizzi, A. Rachah, M. Ribot, R. Tesson. Esaim: proceedings and surveys,December 2016, Vol. 50, p. 111-130,

A mathematical model to investigate the key drivers of the biogeography of the colonmicrobiota, Simon Labarthe, Bastien Polizzi, Thuy Phan, Thierry Goudon, Magali Ribot,Béatrice LAROCHE. Journal of Theoretical Biology - In revision,

B. POLIZZI (University of Lyon 1) Mixture models for complex biological ecosystems March 6, 2019 37 / 37