INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

34
INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

description

INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D. Kip p21 Cip/WAF1 p27 Kip1 p57 Kip2. event. pathway. also p53. TNF-R1-initiated apoptotic pathways. FAS-initiated apoptotic cascade. 5'-PuPuPuC(A/T)|(T/A)GPyPyPy-N(0-13) PuPuPuC(A/T)|(T/A)GPyPyPy-3'. Mutational hotspots of p53. 245. - PowerPoint PPT Presentation

Transcript of INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

Page 1: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

INK4

p16INK4A

p15INK4B

p18INK4C

p19INK4D

Page 2: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

Kip

p21Cip/WAF1

p27Kip1

p57Kip2

Page 3: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

event

pathwayalso p53

Page 4: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

TNF-R1-initiated apoptotic pathways

Page 5: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

FAS-initiated apoptotic cascade

Page 6: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 7: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 8: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 9: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 10: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 11: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 12: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 13: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

5'-PuPuPuC(A/T)|(T/A)GPyPyPy-N(0-13) PuPuPuC(A/T)|(T/A)GPyPyPy-3'

Page 14: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 15: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 16: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

179

245 249

282

Mutational hotspots of p53

175

Page 17: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

Arg 248

Arg 273

Arg 175

His 179

Val 157

Mutational hotspots in core region of p53

Page 18: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

N

NN

N

CO2H

FeIII

HO2C

protoporphyrin IX (PPIX)

ACTIVE SITE OF CYTOCHROME P450

Page 19: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

P450 catalytic cycle

“compound I”

“compound 0”

FeIII

FeII

FeII

O2

FeIII

O2-.

FeIV

O.+

O2 -2

FeIII

FeIII

OOH

FeIII

R

R

R

RR

R

R

e-

e-

H+

2H+

H2O

R(O)

H2O2, RCO3H,PhIOperoxide shunt

R(O) O2-.

R

O2

Page 20: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

peroxo-iron hydroperoxo-iron iron-oxo

•nucleophilic •nucleophilic •electrophilic •electrophilic•deformylation •deformylation •predominant •predominant

epoxidation hydroxylation

•inserts “OH+” •inserts “O”

Page 21: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

Cytochrome P450cam, cpd I looking down from distal face

camphor substrate (green)

FeIV=O unit

Page 22: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

Cytochrome P450cam, cpd I, view of proximal pocket showing coordinated Cys

Cys 357

FeIV=O unit

Page 23: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

O2 -2

FeIII

FeIII

OOH

FeIV

O

FeIII

OOH

+

FeIV

O

+ HO

HO

Homolytic cleavage

Heterolytic cleavage

Cpd I

Cpd II

Page 24: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 25: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

CYP2C5 (rabbit) looking down into distal pocketActivity: progesterone 21-hydroxylase, benzo(a) pyrene hydroxylase, estradiol 2-hydroxylase

Page 26: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

P450camCYP2C5

ACCESSABILITY OF ACTIVE SITES OF BACTERIAL AND MAMMALIAN P450s

CYP3A4

Page 27: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

PAHN-oxidation of arylamines

mycotoxins, tetracyclic antibiotics, steroids

ethanol, benzene, low m.w. nitrosamines, CCl4

cyclophosphamide, anti-arrhythmic, anti-depressants, PAH, testosterone

steroid hydrdoxylationsdrugs, N-nitroso, AFB1

Substrate specificity (where known)

yes (updated from IARC)

Page 28: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D
Page 29: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

CYP1A2 polymorphisms

Allele Protein Nucleotide changesReference seq:  AC091230.23

Trivial name Effect Enzyme activity References

In vivo In vitro

CYP1A2*1A

CYP1A2.1

None Wild-type   Normal Normal Ikeya et al, 1989 Quattrochi and Tukey, 1989 

CYP1A2*1B

CYP1A2.1

5347T>C         Nakajima et al, 1994 Welfare et al, 1999

CYP1A2*1C

CYP1A2.1

-3860G>A     Decreased   Nakajima et al, 1999

CYP1A2*1D

CYP1A2.1

-2467delT         Japanese patent number 05719026 Chida et al, 1999

CYP1A2*1E

CYP1A2.1

-739T>G         Japanese patent number 05719026 Chida et al, 1999

CYP1A2*1F

CYP1A2.1

-163C>A     Higher inducibility

  Japanese patent number 05719026 Sachse et al, 1999 Chida et al, 1999

CYP1A2*1G

CYP1A2.1 -739T>G; 5347T>C         Chevalier et al, 2001

http://www.imm.ki.se/CYPalleles/

Page 30: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

SUBSTRATES FOR CYP 2D6

Page 31: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

Asp 301

Glu 216

Phe 120

Page 32: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

MOLECULAR DYNAMICS MODEL OF DEBRISOQUINE DOCKING AT ACTIVE SITE OF CYP 2D6

Page 33: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

1. Epoxidation of double bonds. 2. C and N hydroxylation: C-H C-OH or N-H N-OH

3. Oxidative dealkylation: C-X-CH3 C-OH + CH2O; X= O, N, S C-NH2

C-SH4. Oxidative deamination: R-CH2-NH2 R-CH=O + NH3

5. N, S oxidation: R3N R3NO ; R2SO

Five reaction types of cytochrome P450O

C C

Page 34: INK4 p16 INK4A p15 INK4B p18 INK4C p19 INK4D

Oxidative dealkylation: C-hydroxylation followed by non-enzymatic hydrolysis of the gem-substituted adduct.

H2N - - C H 2 H2N - - C H NH3 - + C H 2 = O

H - O

Oxidative deamination: C-hydroxylation followed by non-enzymatic hydrolysis of the gem-substituted adduct.

C-X-CH3 C-X -CH

2C -X-H + CH

2=O

X=O , N , S

H -O

X = O, hemiacetal

X = N, gem amino hydrin

X = S, thiohemiacetal