Infrared Spectroscopy and Microscopy Using Synchrotron...

43
Infrared Spectroscopy and Microscopy Using Synchrotron Radiation Ljiljana Puskar IR Beamline Scientist Australian Synchrotron Infrared Spectroscopy and Microscopy IR Spectroscopy Using a Synchrotron The Infrared Beamline at the Australian Synchrotron Applications of Synchrotron Infrared Microscopy Future Developments

Transcript of Infrared Spectroscopy and Microscopy Using Synchrotron...

Page 1: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Infrared Spectroscopy and Microscopy Using Synchrotron Radiation

Ljiljana Puskar

IR Beamline ScientistAustralian Synchrotron

• Infrared Spectroscopy and Microscopy

• IR Spectroscopy Using a Synchrotron

• The Infrared Beamline at the Australian Synchrotron

• Applications of Synchrotron Infrared Microscopy

• Future Developments

Page 2: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Australian Synchrotron in Clayton

The Synchrotron World Map – as seen from Australia

Page 3: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

DIAMOND , UKCircumference=561.6 m

Shangai Synchrotron Facility Circumference=345 m

Synchrotron Facilities

ESRF , Grenoble, FranceCircumference=844 m

ALBA , Barcelona, SpainCircumference=249.6

Spring-8 , JapanCircumference=1436 m

ELLETRA , ItalyCircumference=259.2 m

DIAMOND , UKCircumference=561.6 m

Shangai Synchrotron Facility Circumference=345 m

Synchrotron Facilities

ESRF , Grenoble, FranceCircumference=844 m

ALBA , Barcelona, SpainCircumference=249.6

Spring-8 , JapanCircumference=1436 m

ELLETRA , ItalyCircumference=259.2 m

Number of beamlines

Purpose Status

America and Canada

ALS Berkley 1 Microscopy and Far-IR Operational

CAMD Baton Rouge 1 Microscopy Planned

CLS Saskatoon 2 1 for microscopy, 1 for Far-IR

Operational

NSLS Brookhaven 6 3 Microscopy, 2 Far-IR, 1

THz

Operational

Surf III Gaithersburg 1 Microscopy Planned

SRC Madison 1 Microscopy Operational

Asia and Australia

Australian Synchrotron 1 Microscopy and Far-IR Operational

INDUS I, India 1 Microscopy Planned

Helios II, Singapore 1 Microscopy and Far-IR Operational

NSRRC, Taiwan 1 Microscopy Operational

NSRL, Heife 1 Microscopy and Far-IR Planned

BSRF, Beijing 1 Microscopy Planned

Spring-8, Himeji 1 Microscopy and Far-IR Operational

UVSOR, Okazaki 1 Far-IR Operational

SESAME, Jordan 1 Microscopy Planned

Europe

ESRF, Grenoble 1 Microscopy Operational

Soleil, St. Aubin 2 Microscopy and Far-IR Operational

ELETTRA, Trieste 1 Microscopy and Far-IR Operational

DAPHNE, Frascati 1 Far-IR Operational

SLS, Villigen 1 Microscopy and Far-IR Commissioning

ANKA, Karlsruhe 1 Microscopy and Far-IR Operational

BESSY II, Berlin 1 Microscopy and Far-IR Operational

DELTA, Dortmund 1 Microscopy Planned

MAX Lab, Lund 2 Microscopy and Far-IR Operational

SRS, Daresbury Microscopy and Far-IR Closed 4th August 08

DIAMOND, Didcot 1 Microscopy Users expected Oct 2009!

ALBA, Barcelona 1 Microscopy Planned for second-

phase

Page 4: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

DIAMOND , UKCircumference=561.6 m

Shangai Synchrotron Facility Circumference=345 m

Synchrotron Facilities

ESRF , Grenoble, FranceCircumference=844 m

ALBA , Barcelona, SpainCircumference=249.6

Spring-8 , JapanCircumference=1436 m

ELLETRA , ItalyCircumference=259.2 m

Number of beamlines

Purpose Status

America and Canada

ALS Berkley 1 Microscopy and Far-IR Operational

CAMD Baton Rouge 1 Microscopy Planned

CLS Saskatoon 2 1 for microscopy, 1 for Far-IR

Operational

NSLS Brookhaven 6 3 Microscopy, 2 Far-IR, 1

THz

Operational

Surf III Gaithersburg 1 Microscopy Planned

SRC Madison 1 Microscopy Operational

Asia and Australia

Australian Synchrotron 1 Microscopy and Far-IR Operational

INDUS I, India 1 Microscopy Planned

Helios II, Singapore 1 Microscopy and Far-IR Operational

NSRRC, Taiwan 1 Microscopy Operational

NSRL, Heife 1 Microscopy and Far-IR Planned

BSRF, Beijing 1 Microscopy Planned

Spring-8, Himeji 1 Microscopy and Far-IR Operational

UVSOR, Okazaki 1 Far-IR Operational

SESAME, Jordan 1 Microscopy Planned

Europe

ESRF, Grenoble 1 Microscopy Operational

Soleil, St. Aubin 2 Microscopy and Far-IR Operational

ELETTRA, Trieste 1 Microscopy and Far-IR Operational

DAPHNE, Frascati 1 Far-IR Operational

SLS, Villigen 1 Microscopy and Far-IR Commissioning

ANKA, Karlsruhe 1 Microscopy and Far-IR Operational

BESSY II, Berlin 1 Microscopy and Far-IR Operational

DELTA, Dortmund 1 Microscopy Planned

MAX Lab, Lund 2 Microscopy and Far-IR Operational

SRS, Daresbury Microscopy and Far-IR Closed 4th August 08

DIAMOND, Didcot 1 Microscopy Users expected Oct 2009!

ALBA, Barcelona 1 Microscopy Planned for second-

phase

34 IR Beamlines in the world!

Page 5: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

IR units: wavenumbers (cm-1)Far-IR: 10 – 500 cm-1

Mid-IR: 500 – 4000 cm-1

Near-IR: 4000 – 14000 cm-1

10 micron wavelength = 1000 cm-1

1 eV~ 8100 cm-1

1 THz ~ 33 cm-1

300 Kelvin ~ 210 cm-1

Infrared spectroscopy provides information on molecular vibrations and allows chemical fingerprinting. This is a non-destructive technique which requires only a small amount of sample for analysis; it is widely used for the analysis of both organic and inorganic samples.

Page 6: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

∆∆∆∆EEEErotrotrotrot ∆∆∆∆EEEEvibvibvibvib ∆∆∆∆EEEEelecelecelecelec

J=0

J=5

J=10

Abs

orba

nce

PO32- stretching

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

CH2 and CH3

stretching CH3 bending

Broad O-H and N-HStretching

PO2- stretching

C-O stretch

CO2

Each Each cellular component has cellular component has Each Each cellular component has cellular component has

Amide I

Amide IIC-N and N-H

ProteinsProteins

Lipids (Cell Wall)Lipids (Cell Wall)

Nucleic Acids Nucleic Acids (DNA, RNA)(DNA, RNA)

Page 7: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Fourier Transform

Infrared is more

common, but dispersive has

applications, particularly for fast

timing with intense

beams

Stationary mirror

Moving mirror

Beamsplitter

IR detector

Sample

IR sourceAnalogue-to-digital

convertorAmplifier

Many frequencies are present in the infrared beamMany frequencies are present in the infrared beam

Position of “zero path difference”

Page 8: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Position of “zero path difference”

Summing of all frequencies for each position of the mirrorSumming of all frequencies for each position of the mirror

-5-4-3-2-101234

Volts

200 400 600 800 1000

Data points

“Centre burst” at Zero Path Difference

1234567891011

Sin

gle

Be

am

500 1000 1500 2000 2500 3000 3500 4000 Wavenumbers (cm -1)

Interferogram Single Beam SpectrumFourier

Transform

Data output from FTIR systemData output from FTIR system

Page 9: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

1234567891011

Sin

gle

Be

am

500 1000 1500 2000 2500 3000 3500 4000 Wavenumbers (cm-1)

1234567891011

Sin

gle

Be

am

500 1000 1500 2000 2500 3000 3500 4000 Wavenumbers (cm-1)

Background Single Beam Spectrum

Sample Single Beam Spectrum

0.10

0.20

0.30

0.40

0.50

0.60

Abso

rban

ce

500 1000 1500 2000 2500 3000 3500 4000

Wavenumbers (cm-1)

Sample Absorbance Spectrum

Data output from FTIR systemData output from FTIR system

Infrared spectroscopy and Infrared spectroscopy and microspectroscopymicrospectroscopyInstrumentationInstrumentation

Page 10: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Is the synchrotron IR Is the synchrotron IR beambeam veryvery intense? intense?

1 E16

1 E15

1 E14

10 100

1E-6

1E-5

1E-4

1E-3

Flu

x (

Wat

ts/c

m-1

)

Wavelength ( µ m)

Blackbody emission, 10 mm2 , 2000K Synchrotron emission, in a 20x78 mrad ( SOLEIL)

Flux ( in P

hotons/s/0.1% bw

)

Far- IRMid- IR

I=800 mA

0.8 GeV, 90x90 mrad, 800 mA

1 10 100 1000 100001E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

SOLEIL 20x78 mrad I= 500 mABlackBody 2000°K

Wat

ts/c

m-1

/mm

2 sr

Wavenumbers / cm -1

It’sIt’s the synchrotron BRIGHTNESS the synchrotron BRIGHTNESS thatthat countscounts

• Small source: better throughput with small samples

• Highly collimated: higher resolution achievable

• Polarized: ellispsometry

• Pulsed: pump & probe experiments

SR Advantages over thermal sourcesSR Advantages over thermal sources

Brightness = ∆Ω∆

=.A

PB

Power per unit area per unit solid angle

• Brightness: Better Signal to Noise ratio!

Page 11: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Microscope Beamline at SRS - unapertured beam profi le at sample stage. Area mapped = 30x30 µm. Beam halfwidth = 8x8 µm.

Synchrotron Synchrotron infraredinfrared beambeam focusedfocused on on samplesample

Single malaria infected cells at different stages of the intra -erythrocytic life cycle

Grant Webster, Don McNaughton, Bayden Wood, Monash University, Torsten Frosch (University Jena)

Page 12: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Edge radiati on

Bending Magnet radiation

Edge radiati on

Bending Magnet radiation

• Bright• Broadband• Pulsed• Polarised

Infrared emission from a synchrotron Infrared emission from a synchrotron bending magnetbending magnet

Large vertical divergenceRelative to X-ray beam

Edge Radiation and Bending Magnet RadiationEdge Radiation and Bending Magnet Radiation

Page 13: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Horizontal position-40 -20 0 20 40mm

30

40

20

0

-20

-40

-60mm

Vert

ical

pos

ition

λ = 10 µm

60

40

20

0

-20

-40

-60mm

Vert

ical

pos

ition

λ = 100 µm

Edge Radiation

Edge Radiation

Bending Magnet Radiation

Bending Magnet Radiation

-80 -40 0 40 80mm

Visible light in the Visible light in the beamsplitterbeamsplitter vessel at thevessel at theAustralian Synchrotron Infrared Australian Synchrotron Infrared beamlinebeamline

Edge radiation to “high resolution”spectrometer

Bending magnetradiation to “microscope”

Page 14: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Mirror inserted into dipole chamber from sideMirror inserted into dipole chamber from side

Mirror inserted into dipole chamber from sideMirror inserted into dipole chamber from side

Mirror in

IR beam out

Electron beam

Specially adapted Infrared Dipole Chamber at Australian Synchrotron

Page 15: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Dipole Chamber in Storage Ring Dipole Chamber in Storage Ring and Mirror M1 prior to Installationand Mirror M1 prior to Installation

Infrared dipole chamber with vacuum isolation gate valves installed

Mirror M1 undergoingvibration testing prior to

installation

M1 Mirror Inserted (left) and Withdrawn (right)M1 Mirror Inserted (left) and Withdrawn (right)

M1 mirror carriage

M2 mirrorchamber

INOUT

Bellows fully extended

Note: M2 mirror chamber not yet installed in this photo

Guide rails

Page 16: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Matching optics forHigh Resolution FTIR

Matching optics forIR Microscope

Storage ring wall

Beamsplitteroptics

Diamond WindowandGate Valves

Schematic of IR Schematic of IR beamlinebeamline

Focusing andSteering mirrors

M1

M3

M2 M3a

M1 mirror mechanism

Visible Beam Profile in Beamsplitter Vesseland at Entrance to V80v Spectrometer

Visible beam profile in Beamsplitter Vessel

Collimated beam at entrance to FTIR spectrometer

Page 17: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

IR beam profile IR beam profile –– comparison with SRWcomparison with SRW

Beamsplitter and matching optics

Photo of thePhoto of theAustralian Synchrotron Infrared Australian Synchrotron Infrared beamlinebeamline

Microscope branch Far IR and High Resolution branch

Page 18: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Mirror M1 inserted into dipole “crotch” from Mirror M1 inserted into dipole “crotch” from above or belowabove or below

e.g. Soleil, ESRF…e.g. Soleil, ESRF…

M1 Mirror with thermocouple wiresM1 Mirror with thermocouple wires

Top view of mirror insertion portTop view of mirror insertion portImages courtesy of Paul Dumas, Soleil.Images courtesy of Paul Dumas, Soleil.

DipoleDipoleMultipoleMultipole

M1M1

M2M2

Page 19: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Infrared Environmental Imaging (IRENI) at the Synch rotron Radiation Center, UW-Madison

The light from a bending magnet is separated into 1 2 collimated Synchrotron beams rearranged back into a 3x4 matrix and sent into a I R microscope and spectrometer (48 mirrors in total).

M. J. Nasse, R. Reininger, S. Janowski, T. Kubala, E. Mattson and C. Hirschmugl, The University of Wisconsin-Milwaukee and SRC.

flat mirrors

toroidal mirrors

windows

paraboloidalmirrors

3x4 matrix

flat mirrors to combine beams

Multiple beam extraction from the bending magnetMultiple beam extraction from the bending magnet

M. J. Nasse, R. Reininger, S. Janowski, T. Kubala, E. Mattson and C. Hirschmugl, The University of Wisconsin-Milwaukee and SRC.

First light August 2008First light August 2008

Multiple beam extraction from the bending magnetMultiple beam extraction from the bending magnet

Page 20: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Infrared Beamline at the Australian Synchrotron: Microscope branch

Microscope Branch

Bruker V80v with Hyperion 2000 microscope

Page 21: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

ConfocalConfocal point scanning point scanning -- current technologycurrent technology

Narrow-Band MCT50x50 micron

Wide-Band MCT250x250 micron

Narrow-Band MCTD* 4x1010

Cut-off 750 cm-1

Wide-Band MCTD* 5x109

Cut-off 420 cm-1

Mid-Band MCTD* 2.5x1010

Cut-off 600 cm-1

Background limited perf ormance

Infrared DetectorsInfrared DetectorsSome currently available IR detectorsSome currently available IR detectors

Page 22: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

• Developed for the US military

• Multi-element IR detector

Bruker Hyperion 3000: Focal Plane Array Detector

Solid state array with 64 x 64 pixels elementsso that 4,096 spectra can be acquired simultaneously !

Focal Plane Array Focal Plane Array DetectorsDetectors

Early stages of Experimental Autoimmune Encephaliti s (model for MS) detected in animals before onset of clinical sympto ms

Map showing ester carbonyl absorbance (1740 cm-1)

Phil Heraud, Claude Bernard, Vivienne Juan, Sally Caine, Monash Immunology and Stem Cell Laboratories

FPAFPA Synchrotron IRSynchrotron IR

FPA imaging vs SR-FTIR single point mapping

Page 23: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Bruker IFS 125HR FTIR SpectrometerSpectral resolution > 0.001 cm -1

Far and Mid-IR capability.

Beamsplitters

IR Detectors

• Multi/Mylar• Ge/KBr

• Si bolometer• Si:B bolometer• DTGS• MCT N

• MCT M

Sources• Synchrotron• Hg-Arc lamp• Globar• Tungsten lamp

Optical Filters

• series of narrow band pass IR filters

Apertures

• 0.5 – 12.5 mm

10 – 370 cm-1

300 – 1850 cm-1

100 – 3000 cm-1

700 – 5 000 cm-1

600 – 5 000 cm-1

30 – 630 & 12 – 35 cm-1

450 – 4 800 cm-1

mw – vis5 – 1 000 cm-1

10 – 13 000 cm-1

1 000 – 25 000 cm-1

Far IR and High Resolution branchFar IR and High Resolution branch

Multipass gas cell for room temperature samples.

Small quantity of sample to minimize Pressure broadening effects.

Enclosive Flow Cooling cell for cryogenic temperatures.

MCT detector

Page 24: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

500 550 600 650 700

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

`

wavenumber / cm-1

Abs

orba

nce

652 654 656 658

0.0

0.4

0.8

1.2

653.6 654.0 654.4 654.8

0.0

0.4

0.8

Portion of the FarPortion of the Far--IR spectrum of IR spectrum of FormamideFormamide at 0.00096 cmat 0.00096 cm --11 resolutionresolution

Far-IR Gas phase applications

Atmospheric: CFC’s, HFC’s, HCFC’s Chemical dynamics: RadicalsAstrophysics: Hydrocarbons, Radicals

Far-IR condensed phase

Geological: clay samplesMetal oxidesBiomolecules Protein structuresClusters

Page 25: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Absorbance spectra of tissue samplerecorded at 10 µm spatial resolution underidentical collection conditions using aGlobar™ infrared source and synchrotronradiation.

Advantage of using a synchrotron seen in spectra…Advantage of using a synchrotron seen in spectra…

3100

Wavenumber /cm-13000 2900 2800

Abs

orba

nce

CH stretch absorption bandsfrom 5 µm spot in tissuesample.

Synchrotron

Conventional IR source

Page 26: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Wavelength dependence of microscope spatial Wavelength dependence of microscope spatial resolution demonstrated at Infrared resolution demonstrated at Infrared beamlinebeamline

Polymer pattern on CaF2

produced byphotolithography

IR absorbance imageAt 2935 ±125 cm-1

IR absorbance imageAt 1701 ± 59 cm-1

20µm

FIR Synchrotron performance < 400 cmFIR Synchrotron performance < 400 cm --11

2

6

10

14

Rat

io o

f Int

ensi

ties

SR(164mA)

Hg lamp

40 100 200 300 400

Wavenumber/cm -1

SR164/Hg lamp

106

100

94

% T

rans

mis

sion

80-350 cm-

1

RMS N%

Hg 0.90

SR(164) 0.15

Acquisition TimeHg 480 mins (1 shift)SR <14 mins

Exp. Conditions: Si Bolo detector, 4 mm apt., 6 µµµµm Mylar beamsplitter

Page 27: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Mounting samples on the IR microscopeMounting samples on the IR microscope

Motorised sample stage

Infrared objective

Sample

Page 28: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Sample holderDiamond compression cell

Sample CaF2 reference

76 mm

50.5 mm

Mounting samples on the IR microscopeMounting samples on the IR microscope

1

1. Special resolution patterns on mirror slides, for testing the beamline performance.2. Transmitting disks such as zinc selenide (yellow),CaF2, BaF2 for thin sections of samples.3. Gold or aluminium mirrors for materials such as fine powders and biological cells.4. Very hard samples can be embedded in plastic and polished.5. Biological samples such as tissue sections mounted on specially coated glass microscope

slides.6. Silicon Nitride membranes (also suited for X-ray microscpectroscopy).

23

4

5

6

Mounting samples on the IR microscopeMounting samples on the IR microscope

Page 29: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Types of measurements for IR microscope

Types of measurements for IR microscope Types of measurements for IR microscope

• Transmission

• Reflectance

• ‘Transreflectance’

• Grazing angle Reflectance measurements•• Attenuated Total Reflectance

Transmission measurementsTransmission measurements

Liquid Sample cell with CaF 2 windows sample stage

Infrared objective

• Samples should be 10 microns or thinner, either freestanding or supported on an IR transmitting material such as KBr, BaF2, ZnSe or CaF2 windows or the silicon nitride membrane.

• Flow through liquid cells or compression cells are also used.

InfraredTransmittingwindow

Sample

IR beam

Page 30: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Diamond compression cell

Transmission measurements: Transmission measurements:

Sample preparation

Study of polymer laminates – simple identification of layersIndustrial and forensic applications

• Polymer laminates from three packaging materials• Samples microtomed and mounted between two diamonds• Focused IR beam used to identify polymer layers

1

2

3

KBr reference

100 µm

Reflectance measurementsReflectance measurements

• Ideally requires a polished flat surface• Spectra require additional correction

procedures due to dispersion artefacts (Kramers-Kronig-Transformation).

IR beam

Sample

Page 31: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Paint chip embedded in resin.Surface of the sample must be very well polished.

Stephen Best, Caroline Kyi, Robyn Sloggett (Melbourne University and Centre for Cultural Materials Conservation)

Conservation of culturally important materials

Sample as seen through a

microscope

Reflectance measurementsReflectance measurements

Sample preparation

Biological samples on specially coated glass microscope slides

““TransreflectanceTransreflectance” measurements” measurements

IR beam

Sample

Absorption/reflection (Ag undercoat/SnO2 overcoat), visible transmission.Cheaper than IR transmitting windows but not re-usable.Sample should be between 5 and 10 microns thick depending on material.Problem: dispersion artifacts in thin parts of tissue.

Kevley slide

Page 32: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Grazing angle Reflectance measurements Grazing angle Reflectance measurements

The grazing angle objective provides IR radiation at grazing incidence (65 to 85 degrees) for the analysis of ultra-thin (sub-micron) coatings on metallic substrates.

GIRVIS

Poly ethylene glycol monolayer gradient on reflective surfaces (eg. ITO glass) can be studied. Understand the mechanism of protein repellent properties of PEG coatings.

Donna Menzies, Thomas Gengenbach, Celesta Fong, John Forsythe, Ben Muir– CSIRO / Monash University

The resolution target (metal pattern on glass window) was used to test spatial resolution measurements.

20x20 µm aperture 50 µm features and 20 µm scan steps.

10x10 µm aperture 20 µm features and 10 µm scan steps.

2900 - 3500 cm -1

1100 - 864 cm -1

1300 - 1350 cm -1

2900 - 3500 cm -1

Grazing angle Reflectance measurements Grazing angle Reflectance measurements Spatial resolution

The resulting IR images are shifted with respect to the visible image (~60 µm horizontal (right) shift and ~20 µm vertical shift (up).

Page 33: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Attenuated Total Reflection (ATR)Attenuated Total Reflection (ATR)

IR absorbance spectrum isgenerated when the IR beam reflects inside a crystalthat is in contact with the sample

Attenuated Total Reflection (ATR)Attenuated Total Reflection (ATR)

Forensic application:examination of paper documents

10 microns aperture, 5 microns steps

Cellulose Ink CaCO3

100 µµµµm

2850 - 3023 cm-1 1580 - 1600 cm-1 856 – 897 cm-1

100015002000250030003500Wavenumber cm-1

0.05

0.10

0.15

Ab

sorb

anc

e

Conserving National Heritage:19th century parchment Sample

Alana Treasure, Dudley Creagh (Uni Canberra) / Simon Lewis, Bill van Bronswijk (Curtin University) Kenneth Paul Kirkbride, Vincent Otieno-Alego (AFP)

Page 34: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared
Page 35: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Use of the IR Microscope at the Australian Use of the IR Microscope at the Australian Synchrotron by research areaSynchrotron by research area--20082008

Understanding the autoimmune disease: Rheumatoid Ar thritisUnderstanding the autoimmune disease: Rheumatoid Ar thritis

30µm

Complete mouse paw image taken using Vis 4x objective.

Looking at the changes that occur in the cartilage in the tips of the paws of mice with arthritis.

Light microscope image after staining the cartilage. The colour change at the surface shows cartilage damage.

The region of the cartilage examined. Spectra were obtained from the cells marked in red. 5x5 µµµµm apreture size was used.

Average spectra from single cells in the cartilage showing the large differences between control mice (blue) and mice with arthritis (purple).

Control miceMice with arthritis

Allyson Croxford and Merrill Joy Rowley (Monash Uni)

Page 36: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

R. Jelly, S.W. Lewis, C. Lennard, K.F. Lim and J. Almog, Lawsone: A novel reagent for the detection of latent fingermarks on paper surfaces, Chemical Communications, 2008, 3513 - 3515

Infrared analysis of fingerprintsInfrared analysis of fingerprintsStudy of in-situ chemistry of novel revealing agents

Treated and untreated latent fingermarks on aluminium backed cellulose TLC plates were analysed.

Comparison shows slight variations between samples.

Conventional IR: spectra obtained are dominated by cellulose (background) to a degree where the sample can not be distinguished. Synchrotron ATR allows in-situ analysis of Lawsone (2-Hydroxy-1,4-naphthoquinone)..

Studying naturally occurring revealing agents – Lawsone

Renee Jelly, Emma Patton, Simon W. Lewis,

Keiran Lim, Bill van Bronswijk

ATR reference:Transparent ring

Stephen Best, Caroline Kyi, Robyn Sloggett (Melbourne University)

• Study cross-sections of paint chipsfrom the Provincial Hotel in Fitzroyimbedded in polymer.

•Obtain information on pigment, binderand filler distribution.

Conservation of culturally Conservation of culturally important materialsimportant materials

Page 37: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

[A] Nicolet IR microscope and Nicolet Magna-IR 560 Spectrometer with optics matching boxes integrating the microscope to the IR beam.

[B] Pressure control and pressure calibration (Ruby fluorescence) set up.

SMIS beamline at SOLEIL Synchrotron

A B

IR research in High PressureIR research in High Pressure

The Diamond Anvil CellThe Diamond Anvil Cell

Custom made DAC with a membrane system for pressure application (Institut de Minéralogie et Physique des Milieux Condensés, Université Pierre et Marie Curie, Paris).

Type II diamonds with 500 microns culets diameter.

CylinderPiston100 100 µµµµµµµµmmsample chambersample chamber

RubyRuby

12 12 µµµµµµµµm m IR beamIR beam

Page 38: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Band Assignment Ba(CO 3) / cm -1

ν3 Asymmetric stretching vibration of the CO32- 1449

ν1 Symmetric stretching vibration of the CO32- 1060

ν2 Out of plane bending of the carbonate group 859

ν4 In plane bending of the carbonate group 694

High pressure phase change of carbonate High pressure phase change of carbonate minerals to understand the behaviour of carbon in minerals to understand the behaviour of carbon in the mantle. the mantle.

8.1 GPa

Phase change

Phil Heraud, Anthony Eden, Don McNaughton, Bayden WoodMonash University

Environmental studies: Nutrient response in a Environmental studies: Nutrient response in a model photosynthetic microorganismmodel photosynthetic microorganism

Image (left) of freshwater alga Micrasterias hardyi. Experiment set-up on IR beamline (right)

IR maps (series of line maps across the centre of the cell taken every 30 min over 24 h period) describing the effect the nutrient conditions change has on cell.

Page 39: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

IR synchrotron microspectroscopy reveals microscale biochemical changes occurring in living plant cells.

This allows researchers to better understand how plants cells respond to changes in the environment.

Environmental Science applicationsEnvironmental Science applications

Phil Heraud, Anthony Eden, Don McNaughton, Bayden Wood, Monash University

FTIR maps (right) of freshwater alga Micrasterias hardyi.

Carolyn Dillon, Kristie Munro (University of Wollongong), Keith Bambery, Bayden Wood (Monash University)

Study single live Leukaemia Cells using in fabricated CaF 2 liquid cell.

1500200025003000

Wavenumber cm-1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Abs

orba

nce

Monitoring the biological effect of chemotherapeuti c dragsMonitoring the biological effect of chemotherapeuti c drags

Live leukemia cells

Page 40: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

An AFM-based thermal probe is used to map the surface of samples in the SR-IR beam.

Breaking the diffraction limit Breaking the diffraction limit –– developingdevelopingphotothermalphotothermal microspectroscopymicrospectroscopy

Probe in contact withcomposite sample

Hubert Pollock, University of Lancaster UK, Alexandre Dazzi,UniversitéParis Sud, Mike Reading UEA, UK

Resistive element:Palladium 50 nm thick “bowtie” taper measures 150 nm

MirrorPyramid tip

Device at apex

Metal tracksCantilever

Substrate

To bond pads

Si

Si3N4

• These probes can measure:ForceTemperature

• They can act as highly localised heat sources

Page 41: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Coherent Synchrotron RadiationCoherent Synchrotron Radiation

BESSYwebsite

Use of coherent enhancement for Far-IR and THz studies

SummarySummary

• Synchrotrons provide intense beams at long wavelengths into the Far-IR.

• IR spectroscopy provide information on the chemical co mposition of materials based on the vibration of the bonds pres ent.

• Synchrotron IR allows rapid measurements of diffractio n limitedSPATIAL resolution (a few microns using IR micoscope ), or at lowconcentration (and high SPECTRAL resolution).

• Synchrotron IR applications in a diverse range of r esearch areas.

• Future developments will allow imaging below the diffrac tion limitand the use of intense Far-IR and Terahertz beams.

Page 42: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

IR beamline staff at the Australian Synchrotron

• Don McNaughton – Monash University• Bayden Wood – Monash University• Keith Bambery – Monash University• Finlay Shanks – Monash University

• Bill van Bronswijk – Curtin University• Renee Jelly – Curtin University • Emma Patton – Curtin University• Simon Lewis – Curtin University• Kieran Lim – Deakin University

• Dudley Creagh – Canberra University• Alana Treasure – Canberra University

• Allyson Croxford – Monash University• Merrill Joy Rowley – Monash University

• Donna Menzies – Monash University• Thomas Gengenbach – CSIRO • Celesta Fong – CSIRO • John Forsythe – Monash University• Ben Muir – Monash University

• Mark Hackett – University of Sydney• Liz Carter – University of Sydney• Peter Lay – University of Sydney

• Stephen Best – Melbourne University• Robyn Sloggett – Melbourne University• Caroline Kyi – Melbourne University

• Mark Tobin– Australian Synchrotron• Dom Appadoo – Australian Synchrotron• Danielle Martin – Australian Synchrotron

• Carol Hirschmugl – University Wisconsin• Michael Nasse – University Wisconsin• Paul Dumas – Soleil• Jean-Paul Itié –Université Pierre et Marie Curie• Larry Car – Brookhaven

• Phil Heraud – MISCL• Sally Caine – MISCL

• Janice Williams – La Trobe University• Ewen Silvester – La Trobe University

• Carolyn Dillon – University of Wollongong• Kristie Munro – University of Wollongong

Acknowledgements:

Page 43: Infrared Spectroscopy and Microscopy Using Synchrotron ...cheiron2009.spring8.or.jp/images/PDF/Lecture/2009_Lj_Puskar.pdf1 eV~ 8100 cm-1 1 THz ~ 33 cm-1 300 Kelvin ~ 210 cm-1 Infrared

Ljiljana PuskarTel: (03) 8540 4183

Email: [email protected] Synchrotron

800 Blackburn RoadClayton 3168 VIC

AUSTRALIA