INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1...

38
1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology Office: Nanshan i-park A7 Email: [email protected] Dr. Rui Wang Department of Electrical and Electronic Engineering Office: Nanshan i-park A7-1107 Email: [email protected] Website: eee.sustc.edu.cn/p/wangrui

Transcript of INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1...

Page 1: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

1-1

INFORMATION THEORY & CODING

Dr. Qi WangDepartment of Computer Science and TechnologyOffice: Nanshan i-park A7Email: [email protected]

Dr. Rui WangDepartment of Electrical and Electronic EngineeringOffice: Nanshan i-park A7-1107Email: [email protected]: eee.sustc.edu.cn/p/wangrui

Page 2: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

2-1

Review Summary

McMillan inequality

Uniquely decodable codes ⇔∑

D−`i ≤ 1.

Huffman code

L∗ = min∑D−`i≤1

∑pi`i

HD(X ) ≤ L∗ < HD(X ) + 1.

Page 3: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

3-1

Optimality of Huffman Codes

⇒ If p1 ≥ p2 ≥ · · · pm, then there exists an optimalcode with `1 ≤ `2 ≤ · · · `m−1 = `m, and codewordsC (xm−1) and C (xm) differ only in the last bit.(canonical codes)

Lemma 5.8.1 For any distribution, the optimal prefixcodes (with minimum exptected length) should satisfythe following properties:1. If pj > pk , then `j ≤ `k .2. The two longest codewords have the same length.3. There exists an optimal prefix code, such that two

of the longest codewords differ only in the last bitand correspond to the two least likely symbols.

Page 4: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

4-1

Optimality of Huffman Codes

We prove the optimality of Huffman codes byinduction.Assume binary code in the proof.

Condense

Expand

0.25

0.15 0.15

0.3

0.45 0.55

1

1

4 5

0

0

0

1

1

1

0.25 0.15 0.15

0.2 0.25 0.250.3

0.45 0.55

1

0

0 0 11

0.2 0.25 0.25 0.3

1234 + 5

0.2 0.25

0.2 0.25

23

0 1

Page 5: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

4-2

Optimality of Huffman Codes

We prove the optimality of Huffman codes byinduction.Assume binary code in the proof.

Condense

Expand

0.25

0.15 0.15

0.3

0.45 0.55

1

1

4 5

0

0

0

1

1

1

0.25 0.15 0.15

0.2 0.25 0.250.3

0.45 0.55

1

0

0 0 11

0.2 0.25 0.25 0.3

1234 + 5

0.45 0.55

0.45

1

0 10.55

2 + 3 1 + 4 + 5

0.2 0.25

0.2 0.25

23

0 1

0.250.3

0.45 0.55

1

0

0

1

1

0.45 0.25 0.3

14 + 5

2 + 3

Page 6: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

5-1

Optimality of Huffman Codes

Proof. For p = (p1, p2, . . . , pm) withp1 ≥ p2 ≥ · · · ≥ pm, we define the Huffman reductionp′ = (p1, p2, . . . , pm−1 + pm) over an alphabet size ofm − 1. Let C∗m−1(p′) be an optimal Huffman code forp′, and let C∗m(p) be the canonical optimal code for p.

Page 7: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

5-2

Optimality of Huffman Codes

Proof. For p = (p1, p2, . . . , pm) withp1 ≥ p2 ≥ · · · ≥ pm, we define the Huffman reductionp′ = (p1, p2, . . . , pm−1 + pm) over an alphabet size ofm − 1. Let C∗m−1(p′) be an optimal Huffman code forp′, and let C∗m(p) be the canonical optimal code for p.

Key idea.

expand C∗m−1(p′) to Cm(p) ⇒ Lm(p) = L∗m(p)where Lm(p) is the expected length of code Cm(p), andL∗m(p) is the minimum expected length for sourcedistribution p

Page 8: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

6-1

Optimality of Huffman Codes

Proof. For p = (p1, p2, . . . , pm) withp1 ≥ p2 ≥ · · · ≥ pm, we define the Huffman reductionp′ = (p1, p2, . . . , pm−1 + pm) over an alphabet size ofm − 1. Let C∗m−1(p′) be an optimal Huffman code forp′, and let C∗m(p) be the canonical optimal code for p.

Page 9: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

6-2

Optimality of Huffman Codes

Proof. For p = (p1, p2, . . . , pm) withp1 ≥ p2 ≥ · · · ≥ pm, we define the Huffman reductionp′ = (p1, p2, . . . , pm−1 + pm) over an alphabet size ofm − 1. Let C∗m−1(p′) be an optimal Huffman code forp′, and let C∗m(p) be the canonical optimal code for p.

Cm−1(p′) C∗m(p)

Page 10: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

7-1

Optimality of Huffman Codes

Proof. For p = (p1, p2, . . . , pm) withp1 ≥ p2 ≥ · · · ≥ pm, we define the Huffman reductionp′ = (p1, p2, . . . , pm−1 + pm) over an alphabet size ofm − 1. Let C∗m−1(p′) be an optimal Huffman code forp′, and let C∗m(p) be the canonical optimal code for p.

L(p) = L∗(p′) + pm−1 + pm

L∗(p) = L(p′) + pm−1 + pm

expand C∗m−1(p′) to Cm(p)

condense C∗m(p) to Cm−1(p′)

Page 11: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

8-1

Optimality of Huffman Codes

Proof. For p = (p1, p2, . . . , pm) withp1 ≥ p2 ≥ · · · ≥ pm, we define the Huffman reductionp′ = (p1, p2, . . . , pm−1 + pm) over an alphabet size ofm − 1. Let C∗m−1(p′) be an optimal Huffman code forp′, and let C∗m(p) be the canonical optimal code for p.

(L(p′)− L∗(p′)︸ ︷︷ ︸≥0

) + (L(p)− L∗(p)︸ ︷︷ ︸≥0

) = 0

L(p) = L∗(p′) + pm−1 + pm

L∗(p) = L(p′) + pm−1 + pm

Page 12: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

9-1

Optimality of Huffman Codes

Proof. For p = (p1, p2, . . . , pm) withp1 ≥ p2 ≥ · · · ≥ pm, we define the Huffman reductionp′ = (p1, p2, . . . , pm−1 + pm) over an alphabet size ofm − 1. Let C∗m−1(p′) be an optimal Huffman code forp′, and let C∗m(p) be the canonical optimal code for p.

Thus, L(p) = L∗(p). Minimizing the expected lengthL(Cm) is equivalent to minimizing L(Cm−1). Theproblem is reduced to one with m − 1 symbols andprobability masses (p1, p2, . . . , pm−1 + pm).Proceeding this way, we finally reduce the problem totwo symbols, in which case the optimal code isobvious.

Page 13: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

10-1

Coin tossing vs. Poker

Toss a fair coin and see the sequences

Head, Tail, Tail, Head, · · ·

Play card games and see the sequence

p(x1, x2, . . . , xn) ≈ 2−nH(X )

p(x1, x2, . . . , xn) = ?

Page 14: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

11-1

Outline

Time-invarant Markov Chain: simple but powerfultool to model random phenomenon.

Entropy Rate: measure the information of onestochastic process

Page 15: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

12-1

How to Model dependence: Markov Chains

A stochastic process {Xi} is an indexed sequence ofrandom variables (X1,X2, . . .) characterized by the jointPMF Pr[(X1,X2, . . . ,Xn) = (x1, x2, . . . , xn)] =p(x1, x2, . . . , xn), where (x1, x2, . . . , xn) ∈ X n forn = 1, 2, . . ..

Page 16: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

12-2

How to Model dependence: Markov Chains

A stochastic process {Xi} is an indexed sequence ofrandom variables (X1,X2, . . .) characterized by the jointPMF Pr[(X1,X2, . . . ,Xn) = (x1, x2, . . . , xn)] =p(x1, x2, . . . , xn), where (x1, x2, . . . , xn) ∈ X n forn = 1, 2, . . ..

Definition A stochastic process is said to be stationaryif the joint distribution of any subset of the sequence ofrandom variables is invariant with respect to shifts inthe time index, i.e.,

Pr[X1 = x1,X2 = x2, . . . ,Xn = xn]

= Pr[X1+` = x1,X2+` = x2, . . . ,Xn+` = xn]

for every n and every shift ` and for allx1, x2, . . . , xn ∈ X .

Page 17: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

13-1

Markov Chains

Definition A discrete stochastic process X1,X2, . . . issaid to be a Markov chain or a Markov process whenfor n = 1, 2, . . . ,

for all x1, x2, . . . , xn, xn+1 ∈ X .

Pr[Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X1 = x1]

= Pr[Xn+1 = xn+1|Xn = xn]

Page 18: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

13-2

Markov Chains

Definition A discrete stochastic process X1,X2, . . . issaid to be a Markov chain or a Markov process whenfor n = 1, 2, . . . ,

for all x1, x2, . . . , xn, xn+1 ∈ X .

Pr[Xn+1 = xn+1|Xn = xn,Xn−1 = xn−1, . . . ,X1 = x1]

= Pr[Xn+1 = xn+1|Xn = xn]

In this case, the joint PMF can be written as

p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2) · · · p(xn|xn−1).

Page 19: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

14-1

Markov Chains

Definition The Markov chain is called time invariant if theconditional probability Pr[Xn+1|Xn] does NOT depend on n, i.e.,for n = 1, 2, . . .,

Pr[Xn+1 = b|Xn = a] = Pr[X2 = b|X1 = a] for all a, b ∈ X .

Page 20: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

14-2

Markov Chains

Definition The Markov chain is called time invariant if theconditional probability Pr[Xn+1|Xn] does NOT depend on n, i.e.,for n = 1, 2, . . .,

Pr[Xn+1 = b|Xn = a] = Pr[X2 = b|X1 = a] for all a, b ∈ X .

We deal with time invariant Markov chains, where theterminologies are defined belows:

• If {Xi} is a Markov chain Xn is called the state attime n.

• Pr[Xn+1|Xn] is the state transition probability.• A time invariant Markov chain is characterized by

its initial distribution and a probability transitionmatrix P = [Pij ], i , j ∈ {1, 2, . . . ,m}, wherePij = Pr[Xn+1 = j |Xn = i ].

Page 21: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

15-1

Simple weather model

X = {Sunny: S, Rainy: R}

p(S |S) = 1− β, p(R|R) = 1− α, p(R|S) = β, p(S |R) = α

P =

[1− β βα 1− α

]SSR

R

Page 22: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

16-1

Simple weather model

Probability of seeing a sequence SSRR:

p(SSRR) = p(S)p(S |S)p(R|S)p(R|R) = p(S)(1− β)β(1− α)

The joint distribution of a time invariant Markov chain isdetermined by initial distribution and probability transitionmatrix.

Page 23: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

17-1

Stationary Distribution

If the PMF of the random variable at time n is p(xn), the PMFat time n + 1 is

p(xn+1) =∑xn

p(xn)Pxnxn+1 .

A distribution µ on the states such that the distribution at timen + 1 is the same as the distribution at time n + 1 is called astationary distribution.

Page 24: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

18-1

Stationary Distribution

– If µ(S) = αα+β , µ(R) = β

α+β

P =

[1− β βα 1− α

]–

p(Xn+1 = S) = p(S |S)µ(S) + p(S |R)µ(R)

= (1− β)α

α + β+ α

β

α + β=

α

α + β= µ(S).

Page 25: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

19-1

Stationary Distribution

How to calculate stationary distribution?– Stationary distribution µi , i = 1, 2, . . . , |X | satisfies

µi =∑j

µjpji (µ = µP), and

|X |∑i=1

µi = 1.

Page 26: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

20-1

Entropy Rate

When Xi ’s are i.i.d., the entropy

H(X n) = H(X1,X2, . . . ,Xn) =n∑

i=1

H(Xi ) = nH(X ).

Page 27: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

20-2

Entropy Rate

When Xi ’s are i.i.d., the entropy

H(X n) = H(X1,X2, . . . ,Xn) =n∑

i=1

H(Xi ) = nH(X ).

With dependent sequences Xi ’s, how does H(X n) grow with n?

Page 28: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

20-3

Entropy Rate

When Xi ’s are i.i.d., the entropy

H(X n) = H(X1,X2, . . . ,Xn) =n∑

i=1

H(Xi ) = nH(X ).

With dependent sequences Xi ’s, how does H(X n) grow with n?

Entropy rate characterized the growth rate.

Page 29: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

21-1

Entropy Rate

Definition 1: average entropy per symbol

H(X ) = limn→∞

H(X1,X2, . . . ,Xn)

n

Definition 2: conditional entropy of the last r.v. giventhe past

H ′(X ) = limn→∞

H(Xn|Xn−1,Xn−2, . . . ,X1)

Page 30: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

22-1

Entropy Rate

Theorem 4.2.2 For a stationary stochastic process,H(Xn|Xn−1, . . . ,X1) is nonincreasing in n and has alimit H ′(X ).

Page 31: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

22-2

Entropy Rate

Theorem 4.2.2 For a stationary stochastic process,H(Xn|Xn−1, . . . ,X1) is nonincreasing in n and has alimit H ′(X ).

Proof.

H(Xn+1|X1,X2, . . . ,Xn) ≤ H(Xn+1|Xn, . . . ,X2)

= H(Xn|Xn−1, . . . ,X1),

conditioning reduces entropy

stationarity

– H(Xn|Xn−1, . . . ,X1) decreases as n increases– H(X ) ≥ 0– The limit must exist.

Page 32: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

23-1

Entropy Rate

Theorem 4.2.1 For a stationary stochastic process,H(X ) = H ′(X ).

Page 33: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

23-2

Entropy Rate

Theorem 4.2.1 For a stationary stochastic process,H(X ) = H ′(X ).

Proof. By the chain rule,

1

nH(X1, . . . ,Xn) =

1

n

n∑i=1

H(Xi |Xi−1, . . . ,X1).

• H(Xn|Xn−1, . . . ,X1)→ H ′(X )• Cesaro mean:

If an → a, bn = 1n

∑ni=1 ai , then bn → a.

• So1

nH(X1, . . . ,Xn)→ H ′(X )

Page 34: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

24-1

Entropy Rate for Markov Chain

For a time invariant Markov chain with stationary initialdistribution, the entropy rate is

H(X ) = H ′(X ) = limH(Xn|Xn−1, . . . ,X1) = limH(Xn|Xn−1)

= H(X2|X1).

By definitionp(X2 = j |X1 = i) = Pij

Entropy rate of stationary Markov chain

H(X ) = H(X2|X1) =∑i

µi (∑j

−Pij logPij) = −∑ij

µiPij logPij .

Page 35: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

25-1

To Calculte Entropy Rate

1. Find stationary distribution µi

µi =∑j

µjpji (µ = µP), and

|X |∑i=1

µi = 1.

2. Use transition probability Pij

H(X ) = −∑ij

µiPij logPij

Page 36: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

26-1

Entropy Rate of Weather Model

Stationary distribution µ(S) = αα+β , µ(R) = β

α+β

P =

[1− β βα 1− α

]

H(X ) = µ(S)H(β) + µ(R)H(α)

α + βH(β) +

β

α + βH(α)

≤ H(2αβ

α + β)

Jensen’s inequality

Page 37: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

26-2

Entropy Rate of Weather Model

Stationary distribution µ(S) = αα+β , µ(R) = β

α+β

P =

[1− β βα 1− α

]

H(X ) = µ(S)H(β) + µ(R)H(α)

α + βH(β) +

β

α + βH(α)

≤ H(2αβ

α + β)

Jensen’s inequality

Maximum when α = β = 1/2: degenerate to independentprocess

Page 38: INFORMATION THEORY & CODING - SUSTCeee.sustc.edu.cn/p/wangrui/docs/Lecture 07.pdf · 1-1 INFORMATION THEORY & CODING Dr. Qi Wang Department of Computer Science and Technology O ce:

27-1

Examples

Random Walk on a Weighted Graph (Chapter4.3)

Second law of thermodynamics (Chapter 4.4)