Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible?...

49
Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning, June 28 - July 1, 2017

Transcript of Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible?...

Page 1: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Inference for the mode: is it possible?

Jon A. Wellner

University of Washington, Seattle

6th IMS-China Meeting, Nanning, June 28 - July 1, 2017

Page 2: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Invited Lecture

6th IMS-China Meeting

Nanning, China

Based on joint work with Charles Doss, University of Minnesota

Page 3: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Outline

Outline:

• I: Three parameters: mean, median, mode.

• II: Problem: inference for the mode

• III: Estimation of log-concave densities

B Log-concave MLE: unconstrained

B Log-concave MLE: mode constrained

• IV: Inference for the mode via likelihood ratio tests

B Likelihood Ratio test statistics for the mode.

B Null hypothesis and

curvature r = 2 assumption.

B Alternative hypothesis (consistency).

B Less curvature r > 2 holds?

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.2

Page 4: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

I: Three parameters: mean, median mode

Let X be a real-valued random variable with density f ,

distribution function F .

• Three parameters:

B Mean: µ(F ) := Ef(X) =∫R xdF (x) =

∫R xf(x)dx.

B Median: m(F ) := F−1(1/2).

B Mode: M(f) := argmaxx∈Rf(x).

• Three estimators:

Let X1, . . . , Xn be i.i.d. F , Fn(x) = n−1∑ni=1 1[Xi≤x].

B sample mean: Xn :=∫R xdFn(x)

B sample median: m(Fn) := F−1n (1/2).

B sample mode? need to estimate f .

• Confidence intervals for µ, m, or M?

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.3

Page 5: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

2 4 6 8

0.1

0.2

0.3

Gamma(2,1) density: mean (black), median (red), and mode (magenta)

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.4

Page 6: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

-6 -4 -2 2 4

0.05

0.10

0.15

0.20

Fechner(3,1) density: mean (black), median (red), and mode (magenta)

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.5

Page 7: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

II: Problem: inference for the mode

• f = a unimodal density on R.

• Let θ ≡ m ≡M(f) ≡ the mode of f

• Observe: X1, . . . , Xn i.i.d. f , empirical d.f. Fn

• Question 1: Estimate θ = M(f) “nonparametrically”.

B θn,hn = M(fn,hn) where

fn,hn(x) ≡∫R

1

hnk

(x− yhn

)dFn(y)

Parzen (1962)

B θn = M(fn ) where

fn ≡ argmaxf∈Pln(f) ≡Maximum Likelihood Estimator

for some class of unimodal densities P.

• Question 2: Find 1− α confidence intervals for θ = M(f).

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.6

Page 8: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Selected previous / related work:

• Mode estimation via kernel density estimators.

B Parzen (1962); V (K, f) ≡ (f(m)/[f ′′(m)]2) ·∫

[k′(x)]2dx

B Romano (1988a, 1988b); (bootstrap confidence intervals)

B Donoho and Liu (1991); Pfanzagl (1998; 2000)

• Lower bounds: Has’minskii (1979); Donoho and Liu (1991);

Balabdaoui, Rufibach, & W (2009)

• Weak curvature or “acuteness” hypotheses: Ehm (1996);

Hermann and Ziegler (2004).

• Multiscale methods:

Schmidt-Hieber, Munk and Dumbgen (2013);

Dumbgen and Walther (2008).

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.7

Page 9: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Our approach here: Let m0 ∈ R be fixed. Consider testing

H : M(f) = m0 versus K : M(f) 6= m0

where f is log-concave under both H and K. This entails finding

the maximum likelihood estimator f0n of a log-concave density f

subject to the constraint M(f) = m0.

Let

• f0 the “true” density,

• fn the (unconstrained) log-concave MLE,

• f0n the mode-constrained MLE.

and then ϕ0 ≡ logf0; ϕn ≡ logfn; ϕ0n ≡ logf0

n .

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.8

Page 10: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

The log-likelihood ratio test statistic for testing H versus K is

2logλn ≡ 2nPnlog

(fn

f0n

)= 2nPn

(ϕn − ϕ0

n

).

Limiting distribution of 2logλn under H?

If we have 2logλn →d D, then form confidence intervals for m0 =

M(f0) by inverting the tests.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.9

Page 11: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

III: Estimation of log-concave densities

A. Log concave MLE, unconstrained MLE of f and ϕ: Let Cdenote the class of all concave functions ϕ : R→ [−∞,∞). Theestimator ϕn based on X1, . . . , Xn i.i.d. as f0 is the maximizer ofthe “adjusted criterion function”

`n(ϕ) =∫

logfϕdFn −∫fϕ(x)dx =

∫ϕdFn −

∫eϕ(x)dx

over ϕ ∈ C where fϕ = eϕ.

Basic properties of fn, ϕn:

• The (nonparametric) MLE fn exists for n ≥ 2 (Walther,Rufibach, Dumbgen and Rufibach).

• fn can be computed: R-package “logcondens” (Dumbgenand Rufibach)

• ϕn is piecewise linear with knots (or kinks) at a subset of theorder statistics.

• ϕn = −∞ on R \ [X(1), X(n)]; so fn = 0 on R \ [X(1), X(n)]

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.10

Page 12: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

• In contrast, the (nonparametric) MLE for the class ofunimodal densities on R does not exist. Birge (1997) andBickel and Fan (1996) consider alternatives to maximumlikelihood for the (large!) class of unimodal densities.

• fn is characterized by: ϕn is the MLE of logf0 = ϕ0 ∈ Km ifand only if

Hn(x)

{≤ Yn(x), for all x ≥ X(1),

= Yn(x), if x is a knot.

where

Fn(x) =∫ xX(1)

fn(y)dy, Hn(x) =∫ xX(1)

Fn(y)dy,

Fn(x) =∫

[X(1),x]dFn(y), Yn(x) =

∫ x−∞

Fn(y)dy.

Thus

Dn(x) ≡ Hn(x)− Yn(x) ≤ 0 with equality at the knots.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.11

Page 13: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.12

Page 14: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

dens

ity fu

nctio

ns

0 1 2 3 4 5

7

6

5

4

3

2

1

0

log

dens

ity fu

nctio

ns

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

CD

Fs

0 1 2 3 4 5

0.0

0.5

1.0

1.5

2.0

haza

rd fu

nctio

ns

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

dens

ity fu

nctio

ns

0 2 4 6 8 10

7

6

5

4

3

2

1

0

log

dens

ity fu

nctio

ns

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

CD

Fs

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

haza

rd fu

nctio

ns

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.13

Page 15: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.14

Page 16: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.15

Page 17: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

• The MLE’s are Hellinger and L1− consistent:

Pal, Woodroofe, & Meyer (2007).

• H(fn, f0) = Op(n−2/5) for d = 1: Doss & W (2016).

• The log-concave MLE’s fn,0 satisfy∫ea|x||fn,0(x)− f0(x)|dx→a.s. 0.

for a < a0 where f0(x) ≤ exp(−a0|x|+ b0):

Cule, Samworth, and Stewart (2010)

• Pointwise distribution theory for fn:

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.16

Page 18: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Pointwise distribution theory for fn:

Assumptions: • f0 is log-concave, f0(x0) > 0.

• If ϕ′′0(x0) 6= 0, then k = 2;otherwise, k is the smallest integer such thatϕ

(j)0 (x0) = 0, j = 2, . . . , k − 1, ϕ(k)

0 (x0) 6= 0.

• ϕ(k)0 is continuous in a neighborhood of x0.

Example: f0(x) = Cexp(−x4) with C =√

2Γ(3/4)/π: k = 4.

Driving process: Yk(t) =∫ t0W (s)ds−tk+2, W standard 2-sided

Brownian motion.

Invelope process: Hk determined by limit Fenchel relations:

• Hk(t) ≤ Yk(t) for all t ∈ R•∫R(Hk(t)− Yk(t))dH(3)

k (t) = 0.

• H(2)k is concave.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.17

Page 19: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Theorem. (Balabdaoui, Rufibach, & W, 2009)

• Pointwise limit theorem for fn(x0):(nk/(2k+1)(fn(x0)− f0(x0))

n(k−1)/(2k+1)(f ′n(x0)− f ′0(x0))

)→d

ckH(2)k (0)

dkH(3)k (0)

where

ck ≡

f0(x0)k+1|ϕ(k)0 (x0)|

(k + 2)!

1/(2k+1)

,

dk ≡

f0(x0)k+2|ϕ(k)0 (x0)|3

[(k + 2)!]3

1/(2k+1)

.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.18

Page 20: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Mode estimation, log-concave density on R

Let m0 = M(f0) be the mode of the log-concave density f0,

recalling that P ⊂ Punimodal. Lower bound calculations using

Jongbloed’s perturbation ϕε of ϕ0 yields:

Proposition. If f0 ∈ P0 satisfies f0(m0) > 0, f ′′0(m0) < 0, and f ′′0is continuous in a neighborhood of x0, and Tn is any estimator

of the mode m0 ≡ M(f0), then fn ≡ exp(ϕεn) with εn ≡ νn−1/5

and ν ≡ 2f ′′0(x0)2/(5f0(x0)),

lim infn→∞ n1/5 inf

Tnmax {En|Tn −M(fn)|, E0|Tn −M(f0)|}

≥1

4

(5/2

10e

)1/5(f0(m0)

f ′′0(m0)2

)1/5

.

Does the MLE M(fn) achieve this?

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.19

Page 21: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

!4 !3 !2 !1 1 2

!10

!8

!6

!4

!2

2

4

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.20

Page 22: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Proposition. (Balabdaoui, Rufibach, & W, 2009)

Suppose that f0 ∈ P0 satisfies:

• ϕ(j)0 (m0) = 0, j = 2, . . . , k − 1; ϕ(k)

0 (m0) 6= 0.

• ϕ(k)0 is continuous in a neighborhood of x0.

Then Mn ≡M(fn) ≡ min{u : fn(u) = supt fn(t)}, satisfies

n1/(2k+1)(Mn −M(f0))→d

((k + 2)!)2f0(m0)

f(k)0 (m0)2

1/(2k+1)

M(H(2)k )

where M(H(2)k ) = argmax(H(2)

k ) and H(2)k is the LSE of t 7→

−(k+2)(k+1)|t|k in the canonical Gaussian or white-noise model

on R. From Han and W (2016), the rate and dependence of the

constant on f0(m0) and f(k)0 (m0) are optimal.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.21

Page 23: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

f0

f1

f2

!1 !0.5 0 0.5 1

!2

0

2

4

6

8

10

12

14

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.22

Page 24: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Y

H1

H2

!1 !0.5 0 0.5 1

!0.5

0

0.5

1

1.5

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.23

Page 25: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

X

F1

F2

!1 !0.5 0 0.5 1

!2

0

2

4

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.24

Page 26: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

f0

f1

f2

!1 !0.5 0 0.5 1

!2

0

2

4

6

8

10

12

14

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.25

Page 27: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

f !0

f !1

f !2

!1 !0.5 0 0.5 1

!80

!60

!40

!20

0

20

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.26

Page 28: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

B. Log concave MLE, mode constrained

Let Pm ≡ {f ∈ P : M(f) = m}.The mode constrained Maximum Likelihood Estimator is

f0n ≡ argmaxf∈Pm

∫R

logfdFn.

Basic properties of f0n , ϕ0

n:

• The mode constrained (nonparametric) MLE f0n exists and

is unique for each m ∈ [X(1), X(n)]: Doss (2013).

• f0n can be computed: Doss (2013); active set algorithm

• ϕ0n = logf0

n is piecewise linear with knots (or kinks) at a

subset of the order statistics together with m.

• ϕ0n = −∞ on R \ [X(1), X(n)]; so f0

n = 0 on R \ [X(1), X(n)] if

m ∈ [X(1), X(n)].

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.27

Page 29: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

• fn is characterized by: ϕ0n is the MLE of logf0 = ϕ0 ∈ Km if

and only if

H0n,L(x) ≤ Yn,L(x) for all X(1) ≤ x ≤ m,

and

H0n,R(x) ≤ Yn,R(x) for all m ≤ x ≤ X(n),

with equality at the knot points where

F0n,L(x) =

∫ xX(1)

f0n(y)dy, F0

n,R(x) =∫X(n)x f0

n(y)dy,

H0n,L(x) =

∫ xX(1)

F0n (y)dy, H0

n,R(x) =∫X(n)x F0

n,R(y)dy,

Fn,L(x) =∫[X(1),x] dFn(y), Fn,R(x) =

∫[x,X(n)] dFn(y),

Yn,L(x) =∫ x−∞ Fn,L(y)dy, Yn,R(x) =

∫[x,X(n)] Fn,R(y)dy.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.28

Page 30: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

−3 −2 −1 0 1 2 3

−0.

04−

0.02

0.00

0.01

0.02

Xs

Inte

grat

ed P

roce

sses

| | | | | | | || | | | | ||||| || ||| || | |

MC−LMC−RUC

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.29

Page 31: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

−4.

0−

2.5

−1.

0

x

log

f

| | | | | | ||| | | | |||||| || ||| || | |

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

x

f

| | | | | | ||| | | | |||||| || ||| || | |

MCUCTrue

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.30

Page 32: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

IV. Inference for the mode of a log-concave

density

From Balabdaoui, Rufibach, and W (2009): suppose that

• f0 is log-concave;

• f ′′0 ≡ f(2)0 is continuous in a neighborhood of m0 ≡M(f0);

• f(2)0 (m0) < 0. Then Mn ≡M(fn) satisfies

n1/5(Mn −m0)→d

(4!)2f0(m0)

f(2)0 (m0)2

1/5

M(H(2)2 )

Key difficulties:

(1) to get (Wald-type) confidence intervals for M(f0) = m0,

need to estimate f(2)0 (m0) or f0(m0)/f(2)

0 (m0)2?!

(2) The intervals rely on the assumption f(2)0 (m0) < 0.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.31

Page 33: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

For example, if f0(x) = c4exp(−|x|4/4), then k = 4, the rate of

convergence is n1/9 and the limit distribution becomes (6!)2

f0(m0)|ϕ(4)0 (m0)|2

1/9

M(H(2)4 ).

Can we avoid estimation of f(2)0 (m0) or ϕ(k)

0 (m0) via

likelihood ratio methods?

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.32

Page 34: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Let m0 ∈ R be fixed. Consider testing

H : M(f) = m0 versus K : M(f) 6= m0

where f is log-concave under both H and K. This entails finding

the maximum likelihood estimator f0n of a log-concave density f

subject to the constraint M(f) = m0.

Let

• f0 the “true” density,

• fn the (unconstrained) log-concave MLE,

• f0n the mode-constrained MLE.

and then ϕ0 ≡ logf0; ϕn ≡ logfn; ϕ0n ≡ logf0

n .

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.33

Page 35: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

The log-likelihood ratio test statistic for testing H versus K is

2logλn ≡ 2nPnlog

(fn

f0n

)= 2nPn

(ϕn − ϕ0

n

)= 2nPn

(ϕn − ϕ0

n

)−∫R

(fn(u)− f0

n(u))du

= 2n∫

[X(1),X(n)]

(ϕndFn − ϕ0

ndF0n

)−∫

[X(1),X(n)]

(eϕn(u) − eϕ

0n

)du

Limiting distribution of 2logλn under H?

If we have 2logλn →d D, then form confidence intervals for m0 =

M(f0) by inverting the tests.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.34

Page 36: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Theorem. A. (At x0 6= m0) If ϕ(2)0 (x0) < 0 and f0(x0) > 0, then(

n2/5(ϕn(x0)− ϕ0(x0))n2/5(ϕ0

n(x0)− ϕ0(x0))

)→d

(VV

)

where V = C(x0, ϕ0)H(2)2 (0), C(x0, ϕ0) =

(|ϕ(2)

0 (x0)/(4!f0(x0)))1/5

.

Consequently

n2/5(ϕn(x0)− ϕ0

n(x0))→p 0.

B. (In n−1/5−neighborhoods of m0) If ϕ(2)0 (m0) < 0 and f0(m0) >

0, then the processes

Xn(t) ≡ n2/5(ϕn(m0 + n−1/5t)− ϕ0(m0)),

X0n(t) ≡ n2/5(ϕ0

n(m0 + n−1/5t)− ϕ0(m0)),

converge finite-dimensionally in distribution (jointly) to thefinite dimensional distributions of the processes (X(t),X0(t)) ≡(ϕ(t/γ2), ϕ0(t/γ2))/(γ1γ

22) where γ1 = (a3/5/σ8/5), γ2 = (σ/a)2/5,

and σ ≡ 1/√f0(m0), a = |ϕ(2)

0 (m0)|/4!

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.35

Page 37: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

2logλn

= n∫Dn

f0(m0){

(ϕn(u)− ϕ0(m0))2 −(ϕ0n(u)− ϕ0(m0)

)2}du

+ Rn.

where Dn = [m0 − n−1/5cn,m0 + n−1/5dn], cn ∧ dn →p ∞, Rn =

op(1) under H.

Consequently, under H and the assumption ϕ(2)0 (m0) < 0,

2logλn →d

∫R

{ϕ(v)2 − ϕ0(v)2

}dv ≡ D

which is free of the parameters ϕ(2)0 (m0) and f0(m0).

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.36

Page 38: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

2logλn

empi

rical

cdf

Gamma(3,1)Beta(2,3)Weibull(1.5,1)LaplaceFχ1

2

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.37

Page 39: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

S&P 500, Log Return (x 100)

Den

sity

KDELog−Concave MLENormalMode CI

| | | | | | ||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||| |||||||| | | |

n = 1006 S&P daily log returns, 2003 - 2006

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.38

Page 40: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

0 100 200 300 400

0.00

00.

002

0.00

40.

006

0.00

80.

010

Rotational Velocity

Den

sity

Kernel DensityLog−Concave UMLELog−Concave CMLEMode CI

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||| |||||||||||||||||||||||||| |||||| || | | || |||| || | || | |

Rotational velocity, n = 3933 stars with stellar magnitude > 6.5

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.39

Page 41: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

0.80 0.85 0.90 0.95 1.00

0.6

0.7

0.8

0.9

1.0

Blue: observed coverages Romano bootstrap CI methods (all bandwidths)

Red: LR confidence coverages; chi-square 4 population

Magenta: LR coverages; Gaussian population

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.40

Page 42: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

What’s the difficulty?

Different limits for different curvature at m0!?

Suppose that for some r ≥ 1

f0(x) = f0(m0)− (C + o(1))|x−m0|r as x→ m0,

For example,

f0(x) = crexp

(−|x|r

r

)≡ Subbotin(r)

f0(x) = cr(1− |x|r)1[−1,1](x) ≡ Bump(r)

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.41

Page 43: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

Subbotin(r), r ∈ {1,2,3,4,5,6,8}

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.42

Page 44: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Bump(r), r ∈ {1,2,3,4,5,6,8}

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.43

Page 45: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

0.0 0.5 1.0 1.5

2logλn

empi

rical

cdf

0.00

0.50

0.95

LaplaceN(0,1)Gamma(3,1)Beta(2,3)Weibull(1.5,1)Subb(3)Bump(3)Subb(4)Bump(4)Fχ1

2

based on n = 10000 and M = 5000 Monte Carlo replications

except Laplace: M = 1200 Monte Carlo replications

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.44

Page 46: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

This suggests that

2logλn →d

∫R

{ϕr(v)2 − ϕ0

r (v)2}dv ≡ Dr

where r ≥ 1 is unknown.

Two possible approaches:Approach 1: Find an (upper bound) estimator r of r. (Thisseems a bit like “tail index estimation” in extreme value theory;we might call it “modal index estimation”.) Carry out the testas “reject H if 2logλn > dα,r” where dα,r satisfies P (Dr > dα,r) =α ∈ (0,1).

Approach 2: The plots on the previous page suggest that thedistributions of {Dr : r ≥ 1} are tight and may have a limit D∞.(This might correspond to the limit white noise model dX(t) =−f∞(t)dt+dW (t) where f∞(t) = 0 ·1[−1,1](t)+∞·1(1,∞)(|t|).) Ifthis holds we could carry out our test conservatively as “reject Hif 2logλn > dα,∞” where dα,∞ satisfies P (Dr > dα,∞) = α ∈ (0,1).

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.45

Page 47: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Problems

• Limit theory relevant for approaches 1 and 2?

• Does the limit theory for log-concave densities extend to

s−concave densities with s ∈ (−1,0).

• Extend the likelihood ratio approach to inference for modes

in Rd with d ≥ 2?

B If f = e−ϕ with Hess(ϕ)(m) > 0, do we have

n1/(4+d)(Mn −m)→d something?

B Likelihood ratio for testing M(f) = m0? Does

2logλn →d something universal?

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.46

Page 48: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

IV. Selected references

• Dumbgen and Rufibach (2009), Bernoulli.

• Balabdaoui, Rufibach, & W (2009),

Ann. Statist. 37, 1299-1331.

• Han & W (2016): Ann. Statist. 44, 1332 - 1359.

• Doss & W (2016): Ann. Statist. 44, 954-981.

• Doss & W (2016): Mode constrained estimation of a log-

concave density. arXiv:1611.10335.

• Doss & W (2016): Inference for the mode of a log-concave

density. arXiv:1611.10348.

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.47

Page 49: Inference for the mode: is it possible? · 2017-06-30 · Inference for the mode: is it possible? Jon A. Wellner University of Washington, Seattle 6th IMS-China Meeting, Nanning,

Merci beaucoup!

6th IMS-China, Nanning, 28 June to 1 July, 2017 1.48