Industrial wastewater treatment through combined processesOviedo, 4-5 de julio de 2019 Angel...

18
Oviedo, 4-5 de julio de 2019 Angel Fernández Mohedano UNIVERSIDAD AUTONOMA DE MADRID Industrial wastewater treatment through combined processes INDUSTRIAL WASTEWATER TREATMENT Technical Workshop

Transcript of Industrial wastewater treatment through combined processesOviedo, 4-5 de julio de 2019 Angel...

  • Oviedo, 4-5 de julio de 2019

    Angel Fernández Mohedano

    UNIVERSIDAD AUTONOMA DE MADRID

    Industrial wastewater treatment through combined processes

    INDUSTRIAL WASTEWATER TREATMENTTechnical Workshop

  • PhenolsChlorophenols

    MetalsSolvents

    DrugsPersonal care

    products

    HerbicidesPesticides

    Priority and Emerging Contaminants

    Industrial wastewater Wastewater derived from any industrial or commercialactivity, not directly related to sanitary uses (washbasins,toilets, showers).

  • Non destructive Destructive

    Stripping

    Coagulation

    Floculation

    Sedimentation

    Filtration

    Adsorption

    Chemical Oxidation

    WAO

    CWAO

    AOPs

    AC

    Agricultural wastesSludge biosolids

    ChitosanMineral clays

    OzonationPhotocatalysis

    UltrasoundsElectrochemical

    FentonPhoto-Fenton

    Biological

    Anaerobic

    Aerobic

    CASSBRMBR

    Mild P and T ·OH

  • Refractoryintermediates

    Recalcitrantcompounds

    Cost

    AOPs

    Biological

    High toxicity Low biodegradability

    Biodegradable organic matter Recalcitrant compounds

    (non toxic)

    OPTIMIZATION

    Intermediates

    ToxicityBiodegradability

  • Advanced Oxidation Processes (AOPs)

    Photocatalysis

    High cost AOPs as treatment to enhance biodegradabilityand reduce toxicity

    Fenton oxidation

    h+

    e-

    Conduction band

    Valence band

    Eg

    O2

    O2•-

    Photo-reduction

    Photo-oxidation

    H2O

    HO•

    TiO2hv

  • Biological Oxidation (SBR)

    OLR 0.15-0.3 kg COD kg-1 SSV d-1

    Biomass concentration: 2-4 g VSS L-1

    Cellular retention time: 25 d

    Hydraulic residence time: 6 d

    Cycle: 6-8 h

    Anoxic filling (0.5 h)

    Aerated reaction (4.75-7 h)

    Settle and draw (0.5-0.75 h)

  • Second generationNeonicotinoids

    Source ofwater

    contamination

    Beepopulationdeclination

    Bio-recalcitrant

    High toxicitymicroorganism

    Widespreaduse and

    goodstability

    Broadspectrum

    insecticidalactivity

    European Union expands ban of three neonicotinoid pesticides (2018)Imidacloprid, clothianidin and thiamethoxam

  • Time course of TMX concentration, COD removal,

    H2O2 and TOC conversion in the Fenton-like

    oxidation of pure TMX (a) and its commercial

    formulation (b) with a stoichiometric H2O2 dose.

    [TMX] = 100 mg L-1

    pH = 3700 rpm

    50ºCt = 4 h

    0 40 80 120 160 200 240 280

    0

    20

    40

    60

    80

    100

    TMX

    XTOC

    XH2O2

    b

    TM

    X (

    mg L

    -1),

    XT

    OC (

    %),

    XH

    2O

    2 (

    %)

    T

    MX

    (m

    g L

    -1),

    XT

    OC (

    %),

    XH

    2O

    2 (

    %)

    Time (min)

    a

    0 50 100 150 200 250 300

    0

    20

    40

    60

    80

    100

    TMX

    XTOC

    XH2O2

    Time (min)

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    COD

    0,0

    0,2

    0,4

    0,6

    0,8

    1,0

    COD

    CO

    D (m

    g L

    -1)

    CO

    D (m

    g L

    -1)

  • H2O2(%)

    TMX (commercial) TMX (pure)

    XH2O2 XTMX XTOC XCOD XH2O2 XTMX XTOC XCOD

    100 > 99 > 99 60.5 63.2 > 99 > 99 49.09 69.47

    75 > 99 > 99 60.0 59.7 > 99 > 99 45.58 66.71

    50 > 99 > 99 52.6 52.5 > 99 > 99 42.26 69.13

    25 > 99 76.25 49.9 43.9

    TMX, TOC conversion and COD removal (%) upon Fenton oxidation at

    different H2O2 doses

    50-100 %≈ COD-TOC removal

    (%) H2O2 dose

  • m/z = 278

    m/z = 265

    m/z = 274

    m/z = 232

    m/z = 247 m/z = 205

    m/z = 205

    m/z = 173

    m/z = 116

    m/z = 177

    m/z = 115m/z = 149

    m/z = 74

    m/z = 75

    Identified by-products for Thiamethoxam oxidation

  • 0 25 50 75 1000

    10

    20

    30

    40

    50

    60

    0

    10

    20

    30

    40

    50

    60

    TOCTMX

    TOCacids

    TOCunidentified

    TN

    (m

    g L

    -1)

    TO

    C (m

    g L-

    1 )

    H2O

    2 Dose (%)

    TNTMX

    TNN-NO

    -

    2,N-NO

    -

    3

    TNunidentified

    Measured and unidentified TN and TOC

    balance closure from Fenton oxidation.

    0

    30

    60

    90

    120

    150

    180

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0 50 100

    Ecoto

    xic

    ity (T

    U)

    BO

    D5/C

    OD

    H2O2 dose (%)

    Variation of Ecotoxicity (TU) and

    BOD5/COD ratio.

    Effluents from Fenton oxidation with H2O2 doses of 50% and 75% from stoichiometric were selected for a subsequent biological treatment

  • OLR: 0.15-0.3 kgCOD kg-1

    VSS d-1

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 5 10 15 20 25 30 35

    TOC

    , COD

    (mg

    L-1)

    Time (d)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 5 10 15 20 25 30 35Time (d)

    Accl.Accl. ORL 0.15ORL 0.15 ORL 0.30 ORL 0.30

    0.5 h 4.75 h 0.75 h

    Anoxicfilling Aerobic stage Settling and Draw

    SBR: 6-hours cycle

    XTOC =↑20 %

    H2O2 H2O2

    0.5 h 4.75 h 0.75 h

    Anoxicfilling Aerobic stage Settling and Draw

    SBR: 6-hours cycle

  • 75 %

    H2O

    250 %

    H2O

    2

    Time-course over a 6-h SBR cycle.

    Coupling Fenton and biological oxidation is an adequate alternativefor TMX removal, according to the TOC conversion and CODremoval above 80% for the combined treatment.

  • IONIC LIQUIDS (ILs)

    Alternative

    to VOCs

    o Negligible vapor pressure

    o High solvent capacity

    o Non – flammability

    o Thermal stability

    “Design” products

    “GREEN” compounds

    BmpyrCl HmimCl

    1-butyl-4-methylpyridinium 1-hexyl-3-methylimidazolium

  • 0

    0,2

    0,4

    0,6

    0,8

    1

    0

    0,2

    0,4

    0,6

    0,8

    1

    0 200 400 600 800 1000 1200 1400

    XC

    OD, X

    CO

    T

    C/C

    0

    Time (min)

    0

    0,2

    0,4

    0,6

    0,8

    1

    0

    0,2

    0,4

    0,6

    0,8

    1

    0 200 400 600 800 1000 1200 1400

    XC

    OD

    , X

    CO

    T

    C/C

    0

    Time (min)

    Photolysis Photocatalysis Adsorption XCOD XTOC

    BmpyrCl HmimCl

    [IL] = 0.35 g L-1

    [TiO2] = 0.25 g L-1

    24 h

    Xe lamp = 600 W m-2

    35 ºC

    Sunset solar simulator

    TiO2

  • 0

    50

    100

    150

    200

    250

    300

    0 10 20 30

    TO

    C,

    CO

    D,

    TN

    (m

    g L

    -1)

    Time (d)

    TOC TOCi COD CODi TN TNi

    BmpyrCl HmimCl

    0

    50

    100

    150

    200

    250

    0 5 10 15 20 25 30 35

    TO

    C,

    CO

    D,

    TN

    (m

    g L

    -1)

    Time (d)

    Sludge

    Acclimat.

    Sludge

    Acclimat.

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 100 200 300 400 500

    TO

    C,

    CO

    D,

    Co

    nce

    ntr

    ati

    on

    (mg

    L-1

    )

    Time (min)

    0

    20

    40

    60

    80

    100

    120

    140

    160

    0 100 200 300 400 500

    TO

    C,

    CO

    D,

    Co

    nce

    ntr

    ati

    on

    (m

    g L

    -1)

    Time (min)

    TOC COD AcidsShort-chain

    acids

  • • Fenton oxidation and solar photocatalysis generatedeffluents with low ecotoxicity values and highbiodegradability index.

    • Working at 75 and 50% of the stoichiometric doseof H2O2 in Fenton oxidation gave rise to suitableeffluents for the combined treatment.

    • Coupling Fenton/solar photocatalysis and biologicaloxidation is an adequate alternative for TMX or ILsremoval, according to TOC conversion and CODremoval values, higher than 80% for the combinedtreatment.

  • ACKNOWLEDGEMENTS

    Spanish MCI (CTM2016-76564-R)

    THANK YOU

    Madrid’s Regional Government

    (S2013/MAE-2716)

    UAM-Santander (CEAL-AL/2015-08)