Indirect Rotational Spectroscopy of HCO +

17
Indirect Rotational Spectroscopy of HCO + Adam J. Perry , James N. Hodges, Brian M. Siller, and Benjamin J. McCall 68 th International Symposium on Molecular Spectroscopy The Ohio State University 19 June 2013

description

Indirect Rotational Spectroscopy of HCO +. Adam J. Perry , James N. Hodges , Brian M. Siller , and Benjamin J. McCall 68 th International Symposium on Molecular Spectroscopy The Ohio State University 19 June 2013. Overview. Motivations Experimental Technique - PowerPoint PPT Presentation

Transcript of Indirect Rotational Spectroscopy of HCO +

Page 1: Indirect Rotational Spectroscopy of HCO +

Indirect Rotational Spectroscopy of HCO+Adam J. Perry, James N. Hodges, Brian M. Siller, and Benjamin J.

McCall68th International Symposium on Molecular Spectroscopy

The Ohio State University19 June 2013

Page 2: Indirect Rotational Spectroscopy of HCO +

Overview

• Motivations• Experimental Technique• Indirect Rotational Spectroscopy• Conclusions

Page 3: Indirect Rotational Spectroscopy of HCO +

Motivations

• General technique for acquiring rotational spectra of molecular ions– Technology more developed in mid-

IR

• Support observations by new telescopes/arrays– ALMA– SOFIA– Herschel

• Testing out this technique on HCO+

60-670 µm0.3-1600 µm

3-400 µm

Page 4: Indirect Rotational Spectroscopy of HCO +

HCO+ Background

• First observed via telescope in 1970 by Buhl and Snydera,b

– Known as “X-ogen” until future confirmation of identity

• First ion studied by Velocity Modulation Spectroscopy (Gudeman et al.)c

c Gudeman, C. S.; Begemann, M. H.; Pfaff, J.; Saykally, R. J. “Velocity-Modulated InfraredLaser Spectroscopy of Molecular Ions: The ν1 Band of HCO+” Phys. Rev. Lett. 1983, 50, 727–731

a Buhl, D.; Snyder, L. E. “Unidentified Interstellar Microwave Line” Nat. 1970, 228, 267–269

b Klemperer, W. Carrier of the Interstellar 89.190 GHz Line. Nat. 1970, 227, 1230–1230

Page 5: Indirect Rotational Spectroscopy of HCO +

Optical Heterodyne Velocity Modulation Spectroscopy (OHVMS)

YDFL

EOMLock-In

Amplifier

X & Y Channels

Lock-In Amplifier

X & Y Channels

Wave-meter

80 MHz

90o Phase Shift

f = 35 kHz

ni = np - ns

AOM

Frequency Comb

ν

35 kHzPlasma

Modulation

OPOIPS

B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

Page 6: Indirect Rotational Spectroscopy of HCO +

HCO+ ProductionPlasma Conditions:• 30 mTorr CO• 500 mTorr H2

• 35 kHz , 140 mA discharge

Trot ~ 166 K

Page 7: Indirect Rotational Spectroscopy of HCO +

Frequency Calibration

• MenloSystems FC1500– 100 MHz repetition rate

• Used to measure pump and signal beam frequencies

• Idler frequency is then calculatedνidler= νpump- νsignal

Page 8: Indirect Rotational Spectroscopy of HCO +

Comb Scanning

Frequency

Comb Modes

Pump offset locked (~20 MHz) to nearest comb mode

Rep. rate tuned so that signal beat lies within bandpass filter on frequency counterFrequency correction applied by

AOM keeps signal beat within the bandpass

Bandpass regions (on frequency counter)

AOM

Page 9: Indirect Rotational Spectroscopy of HCO +

Comb-Calibrated OHVMS Scan

P(5) line of ν1 fundamental band of HCO+

• S/N ~300 (~100 for weakest lines)

• Lines fit to 2nd derivative of Gaussian function

• 4-7 scans for each line• Average linecenter

statistical uncertainty ~600 kHz

B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

Page 10: Indirect Rotational Spectroscopy of HCO +

Comb-Calibrated Rovibrational Transitions

e T. Amano, “The ν1 Fundamental Band of HCO+ by Difference Frequency Laser Spectroscopy”J. Chem. Phys. 1983, 79, 3595.

d B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

ed

Improved precision by nearly two orders of magnitude

Page 11: Indirect Rotational Spectroscopy of HCO +

Fitting the Spectroscopic Data

• Rovibrational transitions fit to simple linear molecule Hamiltonian:

• Included terms up to sextic distortion

• Upper and lower state sextic constants constrained to be equal

B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

Total RMS error ~1.7 MHz

Page 12: Indirect Rotational Spectroscopy of HCO +

0

80

60

40

20

0

2.01.51.00.50.0-0.5-1.0

80

60

40

20

0

2.01.51.00.50.0-0.5-1.0

3320

3300

3280

3260

3240

2.01.51.00.50.0-0.5-1.0

3320

3300

3280

3260

3240

2.01.51.00.50.0-0.5-1.0

12

3

4

5

6

01

2

3

4J’

cm-1

cm-1

J”

Indirect Rotational Spectroscopy

v = 1

v = 0

Page 13: Indirect Rotational Spectroscopy of HCO +

Indirect Ground State Rotational Transitions

J' J'' Present Work (MHz) Direct Meas. (MHz)f Present-Direct (MHz)

0 1 n/a 89188.5247 n/a

1 2 178374.6(17) 178375.0563 -0.5

2 3 267557.0(19) n/a n/a

3 4 356732.3(19) 356734.2230 -2.0

4 5 445903.9(21) 445902.8721 1.0

5 6 535061.0(23) 535061.5810 -0.5

6 7 624207.4(26) 624208.3606 -1.0

7 8 713344.0(27) 713341.2278 2.8

8 9 802455.7(27) 802458.1995 -2.5

9 10 891558.4(27) 891557.2903 1.1

f G. Cazzoli, L. Cludi, G. Buffa, and C. Puzzarini, “Precise THz Measurements of HCO+, N2H+,and CF+ for Astronomical Observations” Astrophys. J. Sup. 2012, 203, 11

Page 14: Indirect Rotational Spectroscopy of HCO +

1ν1 Excited State Rotational Transitions

J' J'' Present Work (MHz)d Uncertainty (MHz)

0 1 88486.7 1.9

1 2 176955.4 1.6

2 3 n/a f n/a f

3 4 353900.7 0.9

4 5 442366.0 1.1

5 6 530813.3 1.3

6 7 619257.7 1.6

7 8 707676.3 1.9

8 9 796093.7 1.9

9 10 884477.9 2.4

• Deduced 9 new excited rotational transitions– Never directly observed

• Uncertainty < 3MHz

• Should be able to facilitate astronomical observations in “hot” environments

– Hot cores– Circumstellar envelopes

d B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

f Lattanzi, V.; Walters, A.; Drouin, B. J.; Pearson, J. C. Rotational Spectrum of the Formyl Cation, HCO+, to 1.2 THz. Astrophys. J. 2007, 662, 771–778

Page 15: Indirect Rotational Spectroscopy of HCO +

Future Improvements to Linecenter Determination

• Sub-Doppler Spectroscopy– Achieved with cavity

enhancement– NICE-OHVMS

• Narrower sub-Doppler features should provide more accurate & precise linecenter determination

Feature width ~50 MHz

B. M. Siller, J. N. Hodges, A. J. Perry, and B. J. McCall, “Indirect Rotational Spectroscopy of HCO+” J. Phys. Chem. A (in press).

P(5) line of ν1 fundamental band of HCO+

Page 16: Indirect Rotational Spectroscopy of HCO +

Conclusions

• Performed infrared spectroscopy on the ν1 fundamental band of HCO+ and calibrated 20 rovibrational transitions with an optical comb– Lines fit with average precision of ~600 kHz

• Demonstrated a general technique for obtaining rotational spectra of molecular ions using infrared transitions

• Current/future directions:– Employ cavity enhancement– New targets

• CH5+

• HO2+

• Others

Page 17: Indirect Rotational Spectroscopy of HCO +

Acknowledgments • Advisor: Ben

McCall

• Group Members:Brian SillerJames

Hodges

• Funding Agencies