Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic...

7
313 Index A Accurus surgical system (ALCON) aspiration, 81 biaxial anterior vitrectomy, 82 biaxial irrigation/aspiration, 82 external forced infusion, 76 financial benefits, 80 fluid inflow, 76 internal air pump, 77–79 internal forced infusion, 76–77 irrigation, 81 multifunctional hybrid surgical possibilities, 80 phacoemulsification, 81–82 phaco settings, 79 surgical parameters, 81–82 venturi-based aspiration system, 79–80 Acri.Comfort 646TLC bitoric intraocular lens, 268 AcriFlex MICS 46CSE intraocular lens, 215, 216 Acri.LISA 366D biconvex diffractive-refractive single-piece intraocular lens, 268–269 AcriTec intraocular lenses bifocal IOL, 268–269 bitoric IOL, 268 implantation techniques, 269 materials, 266–267 optical design, 267–268 Abbot medical optics (AMO) Signature BMICS, 88, 89 chamber stabilization environment (CASE ), 87–88 CMICS, 88 Ellips technology, 87 Age-related eye disease study (AREDS), 257 Akahoshi super micro combo prechopper, 31 Akreos AO MI60 intraocular lens, 213, 269–270 Alcon infiniti system BMICS, 86–87 machine fluidics, tip size, 84–86 setting up, 84 technology, 84 ultrasound and modulation setting, 86 American Society of Cataract and Refractive Surgery (ASCRS), 157–159 Antibiotic prophylaxis intracameral injection, 158–159 subconjunctival injection, 158 topical antibiotics, 157 Anti-vaulting haptic (AVH) technology, 271 Aspheric intraocular lenses, 210 aberration frequency distribution, 251–252 AcrySof IQ IOL, 249 aspheric correction, 250 benefits, 249–250 feasibility study, 254 performance limitations, 254–255 power calculation, 251 predicted vs. measured wavefront, 253 preoperative vs. post operative aberration, 254 pseudophakic IOL, 249 selection, 250–251 shrink wrap effect, 252 spherical aberration, 249 Tecnis IOL, 249 Auxiliary instruments gas forced infusion, 34–35 scissors, 34 surge prevention, 35 B Beehler pupil dilator, 100 Biaxial micro incision phacoemulsification (BiMICS). See also Incomplete capsulorhexis, biaxial phaco; Vitreous loss advantages, 146–147 Alcon infiniti, 86–87 AMO signature, 88, 89 capsulorhexis construction, 97 chamber stability, surgical control, 96–97 chopping techniques, 98 cortical cleaving hydrodissection, 97 disadvantages, 147–148 high myopia, 163 1.2 mm incision, 144–145 incision construction, 97 instruments, 173 intraocular cautery, 173 intraoperative floppy iris syndrome (IFIS), 168–170 iris bombé, 170–171 irrigating choppers, 97–98 irrigation flow, 95 large iridodialysis and zonular defects, 167–168 lens removal, 96 mature cataract, 164–165

Transcript of Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic...

Page 1: Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic IOL, 249 selection, 250–251 shrink wrap effect, 252 spherical aberration, 249

313

Index

AAccurus surgical system (ALCON)

aspiration, 81biaxial anterior vitrectomy, 82biaxial irrigation/aspiration, 82external forced infusion, 76fi nancial benefi ts, 80fl uid infl ow, 76internal air pump, 77–79internal forced infusion, 76–77irrigation, 81multifunctional hybrid surgical possibilities, 80phacoemulsifi cation, 81–82phaco settings, 79surgical parameters, 81–82venturi-based aspiration system, 79–80

Acri.Comfort 646TLC bitoric intraocular lens, 268AcriFlex MICS 46CSE intraocular lens, 215, 216Acri.LISA 366D biconvex diffractive-refractive single-piece

intraocular lens, 268–269AcriTec intraocular lenses

bifocal IOL, 268–269bitoric IOL, 268implantation techniques, 269materials, 266–267optical design, 267–268

Abbot medical optics (AMO) SignatureBMICS, 88, 89chamber stabilization environment (CASE ), 87–88CMICS, 88Ellips technology, 87

Age-related eye disease study (AREDS), 257Akahoshi super micro combo prechopper, 31Akreos AO MI60 intraocular lens, 213, 269–270Alcon infi niti system

BMICS, 86–87machine fl uidics, tip size, 84–86setting up, 84technology, 84ultrasound and modulation setting, 86

American Society of Cataract and Refractive Surgery (ASCRS), 157–159

Antibiotic prophylaxisintracameral injection, 158–159subconjunctival injection, 158topical antibiotics, 157

Anti-vaulting haptic (AVH) technology, 271Aspheric intraocular lenses, 210

aberration frequency distribution, 251–252AcrySof IQ IOL, 249aspheric correction, 250benefi ts, 249–250feasibility study, 254performance limitations, 254–255power calculation, 251predicted vs. measured wavefront, 253preoperative vs. post operative aberration, 254pseudophakic IOL, 249selection, 250–251shrink wrap effect, 252spherical aberration, 249Tecnis IOL, 249

Auxiliary instrumentsgas forced infusion, 34–35scissors, 34surge prevention, 35

BBeehler pupil dilator, 100Biaxial micro incision phacoemulsifi cation (BiMICS).

See also Incomplete capsulorhexis, biaxial phaco; Vitreous loss

advantages, 146–147Alcon infi niti, 86–87AMO signature, 88, 89capsulorhexis construction, 97chamber stability, surgical control, 96–97chopping techniques, 98cortical cleaving hydrodissection, 97disadvantages, 147–148high myopia, 1631.2 mm incision, 144–145incision construction, 97instruments, 173intraocular cautery, 173intraoperative fl oppy iris syndrome (IFIS), 168–170iris bombé, 170–171irrigating choppers, 97–98irrigation fl ow, 95large iridodialysis and zonular defects, 167–168lens removal, 96mature cataract, 164–165

Page 2: Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic IOL, 249 selection, 250–251 shrink wrap effect, 252 spherical aberration, 249

314 Index

microcornea, 167posterior capsule rupture, 165–166posterior polar cataract, 163–164posterior subluxated cataract, 164pseudoexfoliation, 166punctured posterior capsule, 165refractive lens exchange, 171–172rock-hard nuclei, 166–167stellaris vision enhancement system, 92–93surgical technique, 144–146switch hands ability, 95–96, 167very shallow anterior chambers, 171

Biaxial prechop technique, 181–183Bimanual MICS technique, 12–13BiMICS vs. CoMICS

advantages/disadvantages, 153, 155astigmatism, 152, 153capsulorhexis forceps, 152, 153historical background, 150incision-assisted IOL implantation, 154instrumentation, 150, 151IOL implantation, 152, 153irrigation-aspiration, 151, 154microphacodynamics, 150–151phaco knives, 152phaco machines, 152, 154phaco pumps, 152, 154phacotips, 152set up, 149, 150ultrasound power delivery, 152, 154

Blue light fi ltering intraocular lensesAcrySof® Natural IOL, 258–259age-related macular degenerative, 257–258benefi ts and considerations, 261clinical experience, 260–261etiology and epidemiological studies, 258HOYA IOL, 259photochemical damage, 257–258refractive lens exchange, 258SoftPort AO lens, 259uveal melanoma, 258vision quality, 259–260yellow barrier, 257yellow chromophore, 258

CCapsular bag lenses, 271–272Capsule rupture, 165–166Capsule tears, 188–191Capsulorhexis, 28–29. See also Incomplete capsulorhexis,

biaxial phaco; Microcapsulorhexishard cataract, 199–200intumescent cataracts, 198–199micro incisions, 133Seibel Rhexis Ruler, 134trypan blue capsule staining, 135viscoelastic effl ux, 134zonular compromise, 133–134

CareFlex IOL, 215Cataract surgery, 140–143. See also Hard and intumescent

cataracts; Microincisional cataract surgery

Chamber stabilityartifi cial eye, presssure dynamics, 58–59time-integrated vacuum, 59

Clarity, cornea, 280Clear corneal incisions (CCIs)

construction technique, 109–112endophthalmitis prophylaxis, 113funnel-shaped incision vs. parallel-walled tunnel, 62–63grooved incisions, 109, 110hypotony, 109, 110incision alteration, 108–110single plane incision, 108, 110stromal hydration, 111, 113thermal incision damage (see Thermal incision damage)

Coaxial microincision cataract surgery (CoMICS). See also BiMICS vs. CoMICS

fl uidics, 52–54incision size, 54–55torsional ultrasound, 55

Collamer intraocular lenses, 266Color perception, 259Continuous curvilinear capsulorhexis (CCC), 177–179Corneal aberrometry, 287, 288Corneal astigmatism and aberrations, MICS incision.

See also Induced corneal aberrationscontrol, 286–287corneal aberrometry, 287objective evaluation, 286optical coherence tomography (OCT), 287preoperative vs. postoperative outcomes, 287–289sub 2 mm incision surgery, 289–290surgical outcomes, 286

Corneal endothelium, safety issues. See also Endothelial cell loss (ECL)

biaxial MICS vs. phacoemulsifi cation, 293–294capsulorhexis, 294–295cataract surgery incision, 292cell loss management, 293, 294coaxial and biaxial MICS, 294–295corneal edema, 294intraocular pressure, 294microincision benefi ts, 292–293occlusion, 294wound burn, 293

Corneal incision burns, 279–280

DDescemet’s tear, 279

EEffective phaco time (EPT), 277–278Elliptical phaco, 45–46Endophthalmitis, 283–284. See also Infection prophylaxis

antibiotic prophylaxis (see Antibiotic prophylaxis)antibiotic regime, 113pathogenesis, 105risk evaluation, 103side-port incisions, 114surgeon’s practice, 104wound construction (see Wound construction)

Endothelial cell loss (ECL)

Page 3: Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic IOL, 249 selection, 250–251 shrink wrap effect, 252 spherical aberration, 249

Index 315

biaxial MICS vs. phacoemulsifi cation, 293–294cataract density, 283corneal damage, 283harder cataracts, 294MICS vs. coaxial phaco, 282nucleus density, 293phaco power, 294power modulation, 294

Energy emission, thermal damageinfrared thermal image, 200kick, 119longitudinal movement, 119–200micropulse settings, 119thermal inertia, 119tip temperature, 200transient cavitation, 119

European Society of Cataract and Refractive Surgery Surgeons (ESCRS), 158, 159

Extracapsular technique, 192

FFine/Hoffman microincision capsulorhexis forceps, 29, 145Fine Ikeda super micro capsulorhexis forceps, 29Fish mouth phenomenon, 224Flat instruments

linear incision, 35wound integrity, 35–36

Fluidicsaspiration effi ciency, 57–58aspiration fl ow, 52aspiration rate, 43vs. biaxial MICS, 53cadaver eye model, 53–54chamber stability, 58–59high vacuum settings, 52holdability, 59–62 (see also Holdability, fl uidics)incision confi guration, 62–63infl ow, 42infusion-assisted high-fl ow high-vacuum phacoaspiration,

65–66irrigation fl ow, 52Oertli OS3 and Oertli CataRhex SwissTech platforms,

66–67outfl ow, 42–43phaco technique, 63–65physical considerations, 57–62

Frequency, 37Fukasaku hydrochop canula, 31

GGiannetti MICS capsulorhexis forceps, 29

HHard and intumescent cataracts

biaxial technique, 196capsulorhexis, 198–200hydrodissection, 200–201incision, 196–198microbiaxial technique, 205–206phacoemulsifi cation, 201–205types, 196

Healon 5, 167–169High myopia, 163Holdability, fl uidics

bigger needle opening, 60bottle height, 60defi nition, 59, 60Oertli instruments, 60–61phaco hand piece scheme, 59–60vacuum settings, 60

Holladay II formula, 251HOYA intraocular lenses

blue light fi ltering IOL, 259Hoya Y-60H MICS IOL, 215–216

Hybrid pump, 43Hydrodelineation, 163–164

advantages, 137cannula placement, 137epinuclear rim trimming, 137–138posterior cortex, 138, 139viscodissection, residual cortex, 138

Hydrodissection, 179–180cortical cleavage, 136–137hard and intumescent cataracts, 200–201IFIS, 168refractive lens exchange, 171

Hydrosurgery, 179–180Hydroview iris protector ring, 101Hyperopic correction, 274–275

IIncision burns, 279–280Incision confi guration. See also Clear corneal incisions (CCIs)

advantages and disadvantages, 63small clear corneal incisions (CCIs), 62–63soft infusion sleeve addition, 63topographical stability, 62

Incision damage, 278–279. See also Thermal incision damageIncision quality

analysis, 298–304biaxiality technique, 297evaluation, 299, 304incision imaging (OCT) outcomes, 304, 306–309incision size reduction, 297, 298OCT imaging assessment, 310–311topographic and aberrometric outcomes, 306, 309visual outcomes, 304, 305

Incision sizeex vivo study, 54microincisions, 55thermal protection, 54–55

Incomplete capsulorhexis, biaxial phacobiaxial anterior vitrectomy, 184–185biaxial I/A, 184biaxial prechop technique, 181–183clinical manifestation, 175–176hydrodissection, 179–180lens salute position, 180–182mechanical fragmentation, 183positive IOP, 181, 183–184

Induced corneal aberrationscoma, 281–282

Page 4: Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic IOL, 249 selection, 250–251 shrink wrap effect, 252 spherical aberration, 249

316 Index

modulation transfer function, 281Scleral incision, 280–281simulated keratometry values, 281vectoral astigmatic analysis, 281

Infection prophylaxisantibiotics, 104chemoprophylaxis, 104endophthalmitis, 103postoperative infection, 103–104postsurgical endophthalmitis, 105preoperative antibiotic prophylaxis, 105risk evaluation, 102–104sample protocol, 106–107sterile preparation, 105–106

Infrared thermal image, 120Infusion-assisted high-fl ow high-vacuum phacoaspiration,

65–66Injectable polymers

limitation, 274liquid polymer, 274residual refractive error correction, 275silicone polymer, 274–275

Injectorscartridges, 226–227characteristics, 225–226injector bodies, 227objectives, 224–225plunger, 227principal sub-2 injector, 228–229pushing system, 227

In-the bag implantation, 271Intraocular cautery, 173Intraocular lenses (IOL), 275. See also Multifocal intraocular

lenses (MIOL)biaxial microincisions vs. phacoemulsifi cation technology,

263–264clinical manifestation, 220–221design, 222–223haptic design, 223hydrophilic acrylic materials, 222incomplete capsulorhexis, 185injectors, 223–229IOL, 221–223microincision defi nition, 221optic design, 223posterior barrier, 223prerequisites, 221sub-2 injection techniques, 230–234technology, 51visco elastic substances (VES) and injection, 229–230

Intraoperative fl oppy iris syndrome (IFIS)biaxial microincision phacoemulsifi cation, 168–169coaxial irrigation, 169–170endonucleus removal, 168–169epinucleus removal, 169hydrodelineation and hydrodissection, 168small pupil, 170subincisional cortical removal, 169–170

Intumescent cataracts. See Hard and intumescent cataractsIOLtech MICS lens, 214Iridodialysis and zonular defects, 167–168

Iris bombé, 170–171Iris surgery

inferiorly/distally sphincterotomy, 102–103proximal sphincterotomy, 101–102pupillary membrane dissection, 103pupilloplasty technique, 103superior sector iridectomy, 102

Irrigation/aspiration instruments19 G instruments, 31–3321 G instruments, 33–34

KKelman capsulorhexis forceps, 29

LLens salute technique, 180–182Lester hook, 166Lipofuscin, 258Longitudinal ultrasound, 6–7

MMalignant melanoma, 167–168Malyugin ring, 101, 102Mature cataract, 164–165Microcapsulorhexis

biaxial micro-capsulectomy, 176–177biaxial vs. coaxial approach, 176CCC creation and performance, 177–178initial capsule puncture, 176, 177multiple capsular punctures, 179multiple capsulectomy, 178–179

Micro-coaxial phacoemulsifi cation (C-MICS)aspiration bypass system (ABS), 6vs. conventional coaxial and bimanual techniques, 5–6incision, architectural integrity, 6smaller dimensions, 6thermal protection, 6torsional ultrasound, 9–10

Microcornea, 167Microincisional cataract surgery

auxiliary instruments (see Auxiliary instruments)capsulorhexis forceps, 28–29concept, 25fl at instruments, 35–36incision, 27–28irrigation/aspiration instruments, 31–34prechopping, 30–31 (see also Prechopping instruments)0.7 mm Microincisional cataract surgery (MICS)anterior vented gas forced infusion (AVGFI) system, 15capsulorhexis, 18conditions and application, 14drawbacks, 14fl uid outfl ow, irrigating choppers, 15, 1625-gauge transconjunctival sutureless vitrectomy, 21–22sglaucoma surgery, 20–21hydrodissection, 18incision, 18irrigating instruments, 17–18vs. 0.9 mm MICS, 16phacoemulsifi cation, 19–20phaco tip, 16–17

Page 5: Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic IOL, 249 selection, 250–251 shrink wrap effect, 252 spherical aberration, 249

Index 317

prechopping, 18–19pressured infusion, 14–15principles, 14vacuum level, 16

Micro-incisional cataract surgery intraocular lenses (MICS IOL)

AcriFlex MICS 46CSE IOL, 215, 216AcriTec IOL, 266–269Akreos AO MI60 IOL, 269–270Akreos MI60 AO micro-incision IOL, 213capsular bag stability and PCO rate, 217CareFlex IOL, 215Hoya Y-60H, 215–216incision size, 209–210injectable polymers, 273–275IOLtech MICS lens, 214MicroSlim and SlimFlex MICS IOLs, 214–215Minifl ex IOL, 216optical quality, 216–219Rayner IOL, 271–273refractive index, 210requirement, 209–210Smart IOL, 265, 266Staar Afi nity IOL, 265–267Tetrafl ex IOL, 270–271TetraFlex KH-3500 and ZR-1000, 214ThinOptX IOL, 264ThinOptX MICS IOLs, 212–213Zeiss–Acri.Tec MICS IOLs, 210–212

Microkeratome, 294–295Microphthalmos, 167Micro-pulse phaco, 45MicroSlim and SlimFlex MICS intraocular lens, 214–215Minifl ex intraocular lens, 216Mix and match implantation, 272Morcher pupil dilator type 5S ring, 101Morcher pupil expander ring, 169Multifocal intraocular lenses (MIOL)

Acri.LISA characteristics, 244–245Acri.LISA toric, 247biometry, 247defocus curve, 245, 246halos, 246–247intermediate distance vision, 246near vision, 246photopic contrast sensitivity, 245, 246satisfaction score, 245, 247visual acuity, 245, 246

Mydriasis, 100

NNichamin triple choppers, 30, 31Non-longitudinal phaco

elliptical phaco, 45–46micro-pulse phaco, 45torsional phaco, 45, 46

Nucleus emulsifi cation, 8–9

OOcclusion, 44, 45, 294Oertli OS3 and Oertli CataRhex SwissTech platforms

bimanual MICS, 66coaxial MICS, 66equipment, 66–67machine settings, 67

One-hand chopper maneuvers, 30Ophthalmic viscosurgical device (OVD), 294

capsular staining, 129–130classifi cation, 125–127Fuchs endothelial dystrophy, 129intraoperative fl oppy iris syndrome, 130–131rheology, 125routine, 126–128soft shell technique (SST), 126trabeculectomy, 128–129ultimate soft shell technique (USST), 126zonular defi ciency, 129

Optical coherence tomography (OCT). See also Incision quality

MICS incision evaluation, 287objective analysis, 286

PPars plana vitrectomy, 164, 171, 192Phacoemulsifi cation

aspiration fl uid, 202bimanual micro-incisional phaco, 47chopping technique, 203–205fl ipping technique, 204incision leakage, 202infusion rate, 201–202micro-incisional coaxial phaco, 47–48micro-incisional phaco, 47vaccum levels, 202–203Vejarano’s irrigating chopper, 202

Phaco power modifi cationduration alteration, 40–41emission alteration, 41–42stroke length alteration, 40

Polar cataract, 163–164Posterior assisted levitation (PAL) technique, 192Posterior capsule opacifi cation (PCO), 209Post-occlusion surge (POS)

experimental setup, 72Infi niti, Legacy, Millennium and Sovereign machines, 73Stellaris vs. Signature machines, 73, 74

Postoperative endophthalmitis (POE)antibiotic prophylaxis (see Antibiotic prophylaxis)wound construction (see Wound construction)

Power generationfrequency, 37phaco energy, 38stroke length, 37sustained cavitation, 39transient cavitation, 38–39tuning, 37–38

Power modulationphacoemulsifi cation, 69post-occlusion surge, amplitude measurement, 72–74ultrasound, intricacies, 70–71unoccluded fl ow vacuum, 69–70wound burn rates, variable incidence, 71–72

Page 6: Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic IOL, 249 selection, 250–251 shrink wrap effect, 252 spherical aberration, 249

318 Index

Prechopping instrumentsadvantages, 30Akahoshi super micro combo prechopper, 31cutting movements, 30Fukasaku hydrochop canula, 31Nichamin triple choppers, 30, 31one-hand chopper maneuvers, 30Scimitar prechopper, 30

Pseudoexfoliation, 166Punctured posterior capsule, 165Pupil dilation

Beehler pupil dilator, 100hydroview iris protector ring, 101Malyugin ring, 101, 102Morcher pupildilator type 5S, 101mydriasis, 100nylon hooks, 101pupil ring expanders, 101small pupil management, 99titanium hooks, 100–101viscoelastic device, 100

RRadial keratotomy (RK), 172Rayner intraocular lenses

capsular bag lenses, 271–272Sulcofl ex® lenses, 272–273

Refractive lens exchange, 171–172Rhein tubular 23g capsulorhexis forceps, 29Rock-hard nuclei, 166–167

SSafety, MICS vs. coaxial phaco

biaxial approach benefi ts, 277corneal changes, 280–283corneal incision burns, 279–280incision damage, 278–279infection, 283–284visual outcomes, 278

Scimitar prechopper, 30Scissors, 34Scotopic vision, 259Seidel test, 106Shallow anterior chambers, 171Side-port incisions, 113–116Smart intraocular lenses, 265, 266Staar Afi nity intraocular lenses, 265–267Staphylococcal epidermidis infection, 283Stellaris vision enhancement system

BMICS, 92–93ergonomic six crystal handpiece, 91safety features, 90–91solid chamber stability, 90wireless dual linear foot pedal control, 91

Storz MICS capsulorhexis forceps, 29Stroke length, 37Sub-2 injection techniques

anterior chamber injection, 232–233anterior chamber pressurization, 231cartridge loading, 231–232incision construction, 231

injector loading, 232IOL positioning, 233plunger insertion, 232prerequisites, 221thin roller injector, 233, 234VES removal, 233visco-injection technique, 231wound-assisted technique, 230–231

Subluxed cataract, 164Sulcofl ex® lenses, 272–273Sulcus piggy-back IOL implantation, 272Surge, 43–44Surgeon’s technique assessment

antisepsis, 104corneal incision, 104–105outbreak of infection, 104statistical analysis, 104subconjunctival injections, 104

Surgically induced astigmatism (SIA), 286

TTetraFlex KH-3500 and ZR-1000 lenses, 214, 270–271Thermal incision damage

BiMICS vs. CoMICS, 122energy emissionfactors involved, 118incision construction, 120–121irrigating fl uid, 121sleeve constriction, 120–121tip design, 121–122tip position, 121viscoelastic device, 121

ThinOptX intraocular lenses, 212–213, 264Toric posterior chamber intraocular lenses (T-IOL)

astigmatism defi nition, 236–237calculation, 237, 238clinical indications, 238custom-made lenses, 239–240, 242models, 237, 239–241postoperative astigmatism, 236practice, 242preoperative marking, 238, 242

Torsional phaco, 45, 46Torsional ultrasound vs. longitudinal phaco

cadaver study, 7disadvantages, 7–8effi ciency and safety, 7heat generation, 7

Triamcilonone acetonide anterior chamber injection, 188

VVacuum sources, 43–44Vejarano’s irrigating chopper, 202Venturi-based aspiration system, 79–80Visante anterior segment optical coherence tomography, 298Visual rehabilitation, 278Vitrector, 171Vitreous loss

clinical features, 188cortex, 191–192extracapsular technique, 192

Page 7: Index [link.springer.com]3A978-3-642...preoperative vs. post operative aberration, 254 pseudophakic IOL, 249 selection, 250–251 shrink wrap effect, 252 spherical aberration, 249

Index 319

pars plana vitrectomy, 192posterior assisted levitation (PAL) technique, 192posterior capsule tears, 188–191vitreous prolapse, 188–191zonulolysis, 192–193

WWhitestar micropulse technology, 279–280Wound-assisted technique (WAT), 230–231Wound construction

clear corneal incisions, 160risk, 159–160smaller incisions, 160sutureless clear corneal incisions, 160

YYellow chromophore, 258

ZZeiss–Acri.Tec MICS IOL

corneal aberrations, 211decentration, 211modulation transfer function (MTF), 211types, 210–211visual acuity, 211–212

Zernike polynomials, 287Zonular dialysis, 164–165, 167Zonulolysis, 192–193