Indentaion Test- Theory

download Indentaion Test- Theory

of 17

Transcript of Indentaion Test- Theory

  • 8/13/2019 Indentaion Test- Theory

    1/17

    Mechanical Engineering Series

    Series Editors

    Ward O. Winer

    Arthur E. Bergles

    Georgia A. Klutke

    Kuo K. Wang

    Iain Finnie

    J. R. Welty

    Michael D. Bryant

    Henry T. Yang

    Van C. Mow

    Frederick A. Leckie

    Dietmar Gross

    For further volumes:

    http://www.springer.com/series/1161

  • 8/13/2019 Indentaion Test- Theory

    2/17

    Mechanical Engineering Series

    Frederick F. Ling

    Editor-in-Chief

    The Mechanical Engineering Series features graduate texts and research monographs to

    address the need for information in contemporary mechanical engineering, including areas

    of concentration of applied mechanics, biomechanics, computational mechanics, dynami-

    cal systems and control, energetics, mechanics of materials, processing, production systems,

    thermal science, and tribology.

    Advisory Board/Series Editors

    Applied Mechanics F.A. Leckie

    University of California,

    Santa Barbara

    D. Gross

    Technical University of Darmstadt

    Biomechanics V.C. Mow

    Columbia UniversityComputational Mechanics H.T. Yang

    University of California,

    Santa Barbara

    Dynamic Systems and Control/ D. Bryant

    Mechatronics University of Texas at Austin

    Energetics J.R. Welty

    University of Oregon, Eugene

    Mechanics of Materials I. Finnie University of California, Berkeley

    Processing K.K. Wang

    Cornell University

    Production Systems G.-A. Klutke

    Texas A&M University

    Thermal Science A.E. Bergles

    Rensselaer Polytechnic Institute

    Tribology W.O. Winer Georgia Institute of Technology

  • 8/13/2019 Indentaion Test- Theory

    3/17

    Anthony C. Fischer-Cripps

    Nanoindentation

    Third Edition

    1 3

  • 8/13/2019 Indentaion Test- Theory

    4/17

    ISSN 0941-5122 e-ISSN 2192-063XISBN 978-1-4419-9871-2 e-ISBN 978-1-4419-9872-9DOI 10.1007/978-1-4419-9872-9Springer New York Dordrecht Heidelberg London

    Springer Science+Business Media, LLC 2011All rights reserved. This work may not be translated or copied in whole or in part without the written

    permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-tion with any form of information storage and retrieval, electronic adaptation, computer software, or bysimilar or dissimilar methodology now known or hereafter developed is forbidden.The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are

    not identified as such, is not to be taken as an expression of opinion as to whether or not they are subjectto proprietary rights.

    Printed on acid-free paper

    Springer is part of Springer Science+Business Media (www.springer.com)

    Anthony C. Fischer-CrippsFischer-Cripps Laboratories Pty Ltd.Londonderry Drive 292087 Killarney Heights, New South WalesAustralia

    [email protected]

  • 8/13/2019 Indentaion Test- Theory

    5/17

    To Dianne, Raymond and Henry

  • 8/13/2019 Indentaion Test- Theory

    6/17

    vii

    Series Preface

    Mechanical engineering, an engineering discipline forged and shaped by the needsof the industrial revolution, is once again asked to do its substantial share in the call

    for industrial renewal. The general call is urgent as we face profound issues of pro-

    ductivity and competitiveness that require engineering solutions. The Mechanical

    Engineering Series features graduate texts and research mono-graphs intended to

    address the need for information in contemporary areas of mechanical engineering.

    The series is conceived as a comprehensive one that covers a broad range of con-

    centrations important to mechanical engineering graduate education and re-search.

    We are fortunate to have a distinguished roster of consulting editors on the advisory

    board, each an expert in one of the areas of concentration. The names of the consult-

    ing editors are listed on the facing page of this volume. The areas of concentration

    are applied mechanics, biomechanics, computational me-chanics, dynamic systems

    and control, energetics, mechanics of materials, processing, production systems,

    thermal science, and tribology.

    New York, New York Frederick F. Ling

  • 8/13/2019 Indentaion Test- Theory

    7/17

    ix

    Preface

    There has been considerable interest in the last two decades in the mechanical char-acterisation of thin film systems and small volumes of material using depth-sensing

    indentation tests utilising either spherical or pyramidal indenters. Usually, the prin-

    cipal goal of such testing is to obtain values for elastic modulus and hardness of the

    specimen material from experimental readings of indenter load and depth of pen-

    etration. The forces involved are usually in the millinewton range and are measured

    with a resolution of a few nanonewtons. The depths of penetration are in the order

    of nanometres, hence the term nanoindentation.

    This third edition of Nanoindentation adds the results of new research in this

    field, and includes more information about nanoindentation instrumentation and

    applications. The book is intended for those who are entering the field for the first

    time and to act as a reference for those already conversant with the technique.

    In preparing this book, I was encouraged and assisted by many friends and col-

    leagues. Particular thanks to Ben Beake, Trevor Bell, Avi Bendavid, Alec Bendeli,

    Robert Bolster, Andy Bushby, Yanping Cao, Yang-Tse Cheng, Christophe Comte,

    Peter Cusack, John Field, Asa Jamting, Nigel Jennett, Brian Lawn, Boon Lim,

    Alfonso Ngan, Darien Northcote, Paul Rusconi, Sergio Santos, Doug Smith, Jim

    Smith, Eric Thwaite, Stan Veprek, Yvonne Wilson, David Vodnick, Oden Warren,

    and Thomas Wyrobek for their advice and assistance. I thank Hysitron Inc. and

    Micro Materials Ltd for their important contributions. I gratefully acknowledge the

    support of the CSIRO Division of Telecommunications and Industrial Physics and,

    in particular, Ken Hews-Taylor who supported the UMIS instrument for many years

    in his management portfolio, the staff of the library, and the Chief of the Division

    for his permission to use the many figures that appear in this book. I also thank the

    many authors and colleagues who publish in this field from whose work I have

    drawn and without which this book would not be possible. Finally, I thank the edito-

    rial and production team at Springer-Verlag New York, Inc., for their very profes-

    sional and helpful approach to the whole publication process.

    Sydney, Australia Anthony C. Fischer-Cripps

  • 8/13/2019 Indentaion Test- Theory

    8/17

    xi

    Contents

    1 Contact Mechanics ....................................................................................... 11.1 Introduction ........................................................................................... 1

    1.2 Elastic Contact ...................................................................................... 1

    1.3 Geometrical Similarity .......................................................................... 6

    1.4 ElasticPlastic Contact .......................................................................... 8

    1.4.1 The Constraint Factor ................................................................ 8

    1.4.2 Indentation Response of Materials ............................................ 9

    1.4.3 ElasticPlastic Stress Distribution ............................................ 10

    1.4.4 Hardness Theories ..................................................................... 11

    1.5 Indentations at the Nanometre Scale ..................................................... 14

    References ...................................................................................................... 17

    2 Nanoindentation Testing.............................................................................. 21

    2.1 Nanoindentation Test Data .................................................................... 21

    2.2 Indenter Types ....................................................................................... 21

    2.3 Indentation Hardness and Modulus ....................................................... 24

    2.3.1 Spherical Indenter ..................................................................... 25

    2.3.2 Vickers Indenter ........................................................................ 26

    2.3.3 Berkovich Indenter .................................................................... 27

    2.3.4 Cube Corner Indenter ................................................................ 28

    2.3.5 Knoop Indenter .......................................................................... 28

    2.4 Load-Displacement Curves ................................................................... 29

    2.5 Experimental Techniques ...................................................................... 32

    2.5.1 Instrument Construction and Installation .................................. 33

    2.5.2 Indenters .................................................................................... 34

    2.5.3 Specimen Mounting .................................................................. 35

    2.5.4 Working Distance and Initial Penetration ................................. 35

    2.5.5 Test Cycles ................................................................................ 36

    References ...................................................................................................... 37

  • 8/13/2019 Indentaion Test- Theory

    9/17

    xii

    3 Analysis of Nanoindentation Test Data.................................................... 39

    3.1 Analysis of Indentation Test Data ..................................................... 39

    3.2 Analysis Methods .............................................................................. 39

    3.2.1 Cylindrical Punch Indenter ................................................... 39

    3.2.2 Conical IndenterCylindrical Punch Approximation.......... 413.2.3 Spherical Indenter ................................................................. 43

    3.2.4 Berkovich Indenter................................................................ 47

    3.2.5 Knoop Indenter ..................................................................... 52

    3.2.6 Effective Indenter Shape ....................................................... 55

    3.2.7 Energy Methods .................................................................... 59

    3.2.8 Dynamic Methods ................................................................. 67

    3.2.9 Other Methods of Analysis ................................................... 68

    References .................................................................................................... 72

    4 Factors Affecting Nanoindentation Test Data......................................... 77

    4.1 Introduction ....................................................................................... 77

    4.2 Thermal Drift..................................................................................... 77

    4.3 Initial Penetration Depth ................................................................... 78

    4.4 Instrument Compliance ..................................................................... 81

    4.5 Indenter Geometry ............................................................................ 84

    4.6 Piling-Up and Sinking-In .................................................................. 88

    4.7 Indentation Size Effect ...................................................................... 91

    4.8 Surface Roughness ............................................................................ 934.9 Tip Rounding ..................................................................................... 95

    4.10 The Plastic Depth .............................................................................. 97

    4.11 Residual Stresses ............................................................................... 99

    4.12 Friction and Adhesion ....................................................................... 101

    4.13 Specimen Preparation........................................................................ 102

    References .................................................................................................... 103

    5 Simulation of Nanoindentation Test Data................................................ 105

    5.1 Introduction ....................................................................................... 1055.2 Spherical Indenter ............................................................................. 105

    5.3 Berkovich Indenter ............................................................................ 107

    5.4 Conical and Power Law Indenters .................................................... 108

    5.5 Finite Element Analysis .................................................................... 111

    5.6 Comparison of Simulated and Experimental Data ............................ 113

    References .................................................................................................... 117

    6 Scaling Relationships in Nanoindentation............................................... 119

    6.1 Scaling Relationships in Nanoindentation ........................................ 119

    References .................................................................................................... 123

    Contents

  • 8/13/2019 Indentaion Test- Theory

    10/17

    xiii

    7 Time-dependent Nanoindentation.......................................................... 125

    7.1 Introduction ..................................................................................... 125

    7.2 Dynamic Indentation Testing .......................................................... 126

    7.2.1 Single Frequency Dynamic Analysis ................................ 126

    7.2.2 Multiple Frequency Dynamic Analysis ............................. 1347.3 Creep ............................................................................................... 136

    References .................................................................................................. 144

    8 Nanoindentation of Thin Films and Small Volumes of Materials....... 147

    8.1 Introduction ..................................................................................... 147

    8.2 Testing of Thin Films ...................................................................... 147

    8.2.1 Elastic Modulus ................................................................. 148

    8.2.2 Hardness ............................................................................ 150

    8.2.3 Film Adhesion ................................................................... 1528.3 Scratch Testing ................................................................................ 155

    8.4 Small Volumes of Materials ............................................................ 158

    References .................................................................................................. 159

    9 Other Techniques in Nanoindentation................................................... 163

    9.1 Introduction ..................................................................................... 163

    9.2 Acoustic Emission Testing .............................................................. 163

    9.3 Constant Strain Rate Testing ........................................................... 165

    9.4 Fracture Toughness ......................................................................... 1669.5 High-Temperature Nanoindentation Testing ................................... 169

    9.6 Strain-hardening Exponent ............................................................. 172

    9.7 Impact ............................................................................................. 174

    9.8 Residual Stress ................................................................................ 174

    9.9 Surface Forces ................................................................................. 177

    References .................................................................................................. 178

    10 Nanoindentation Test Standards............................................................ 181

    10.1 Nanoindentation Test Standards ...................................................... 18110.2 ISO 14577 ....................................................................................... 181

    10.2.1 ISO 14577 Part 1: Test Method ......................................... 183

    10.2.2 ISO 14577 Part 2: Verification and Calibration

    of Machines ....................................................................... 191

    10.2.3 ISO 14577 Part 3: Calibration of Reference Blocks ......... 194

    10.2.4 ISO 14577 Part 4: Test Method for Coatings .................... 194

    References .................................................................................................. 198

    11 Nanoindentation Instrumentation.......................................................... 199

    11.1 Specifications of Nanoindentation Test Instruments ....................... 199

    11.2 Head Design .................................................................................... 202

    11.2.1 Actuator ............................................................................. 203

    11.2.2 Force Measurement ........................................................... 204

    11.2.3 Depth Measurement .......................................................... 206

    Contents

  • 8/13/2019 Indentaion Test- Theory

    11/17

    xiv

    11.3 Frame Construction ....................................................................... 208

    11.4 Specimen Positioning .................................................................... 208

    11.5 Imaging .......................................................................................... 210

    11.6 Scratch Testing ............................................................................... 210

    References .................................................................................................. 211

    12 Applications of Nanoindentation............................................................ 213

    12.1 Introduction ................................................................................... 213

    12.2 Fused Silica.................................................................................... 214

    12.3 Titanium Dioxide Thin Film .......................................................... 215

    12.4 Superhard Thin Film ...................................................................... 216

    12.5 Diamond-like Carbon (DLC) Thin Film ....................................... 217

    12.6 Creep in Polymer Film .................................................................. 218

    12.7 Fracture and Delamination of a Silicon Oxide Film...................... 22012.8 High-temperature Testing .............................................................. 221

    12.9 Adhesion Measurement ................................................................. 222

    12.10 Dynamic Hardness ......................................................................... 222

    12.11 Repeatability Testing ..................................................................... 223

    12.12 Bone ............................................................................................... 224

    12.13 AFM Imaging ................................................................................ 226

    12.14 Conductive Nanoindentation ......................................................... 226

    12.15 Thermal Barrier Coating ................................................................ 227

    12.16 Hardness of Diamond .................................................................... 22712.17 Variation in H/E

    rwith Temperature ............................................... 229

    12.18 Impact Indentation of Wear Resistant Coatings ............................ 230

    12.19 Mechanical Property Mapping ...................................................... 231

    12.20 Other Applications ......................................................................... 231

    References .................................................................................................. 232

    13 Appendices 17......................................................................................... 235

    13.1 Elastic Indentation Stress Fields .................................................... 235

    13.1.1 Contact Pressure Distributions ......................................... 23513.1.2 Indentation Stress Fields .................................................. 236

    13.2 Surface Forces, Adhesion and Friction .......................................... 238

    13.2.1 Adhesion Forces in Nanoindentation ............................... 238

    13.2.2 Forces in Nature ............................................................... 239

    13.2.3 Interaction Potentials ........................................................ 239

    13.2.4 Van der Waals Forces ....................................................... 241

    13.2.5 Surface Interactions .......................................................... 241

    13.2.6 Adhesion ........................................................................... 243

    13.2.7 Friction ............................................................................. 247

    13.3 Common Indenter Geometries....................................................... 250

    13.3.1 Berkovich Indenter ........................................................... 250

    13.3.2 Vickers Indenter ............................................................... 251

    Contents

  • 8/13/2019 Indentaion Test- Theory

    12/17

    xv

    13.3.3 Knoop Indenter .............................................................. 252

    13.3.4 Sphero-Conical Indenter ................................................ 253

    13.4 Non-linear Least Squares Fitting ................................................... 253

    13.5 Properties of Materials................................................................... 257

    13.6 Frequently Asked Questions .......................................................... 25813.7 Specifications for a Nanoindenter ................................................. 269

    13.7.1 Instrument Function ....................................................... 270

    13.7.2 Basic Specifications and Construction ........................... 271

    13.7.3 Specimen Positioning ..................................................... 272

    13.7.4 Specimen Mounting ....................................................... 272

    13.7.5 Optical Microscope and Imaging ................................... 273

    13.7.6 Software ......................................................................... 273

    13.7.7 Accessories ..................................................................... 274

    13.7.8 Instrument Mounting and Isolation ................................ 27413.7.9 Delivery, Calibration and Warranty ............................... 274

    13.7.10 Instrument/Supplier Checklist ........................................ 275

    References .................................................................................................. 276

    Index.................................................................................................................. 277

    Contents

  • 8/13/2019 Indentaion Test- Theory

    13/17

    xvii

    List of Symbols

    cone semi-angle, geometry correction factor for Knoop indenter analysis,surface roughness parameter, thin film hardness parameter, buckling pa-

    rameter

    indenter cone inclination angle, indenter geometry shape factor

    phase angle between force and depth in oscillatory indentation tests

    distance of mutual approach between indenter and specimen

    strain

    half of the total energy required to separate two surfaces

    gamma function

    coefficient of viscosity

    angle

    number density of molecules

    normal stress

    I indentation stress

    r residual stress

    s maximum asperity height

    z normal pressure underneath the indenter

    shear stress

    coefficient of friction

    Poissons ratio

    frequency

    a radius of circle of contact, constant for linear fit

    A contact area, constant forPvs hrelationship

    ac radius of circle of contact at transition from elastic to plastic deformation

    with spherical indenter

    Af portion of contact area carried by film

    Ai area of contact that would be obtained for an ideal indenter at a particular

    penetration depth

    ao contact radius obtained for smooth surfacesA

    p projected contact area

    As portion of contact area carried by substrate

  • 8/13/2019 Indentaion Test- Theory

    14/17

    xviiixviii

    B length of the short diagonal of the residual impression made by a Knoop

    indenter, Burgers vector, constant for linear fit

    C constraint factor, coefficients for area function expansion

    Ce power law coefficient for elastic response

    Cp power law coefficient plastic responseC

    0 size of plastic zone

    Cf load frame compliance

    d length of diagonal of residual impression, diameter of residual impression,

    length of long side of impression from a Knoop indenter

    D diameter of spherical indenter, damping factor

    E elastic modulus

    E*Er combined or reduced elastic modulus

    Eeff

    effective modulus of film and substrate combination

    Ef film modulusE

    s substrate modulus

    F force

    FL

    lateral force (normal to scratch)

    FN

    normal force

    FT tangential force (parallel to scratch)

    G shear modulus, storage modulus, loss modulus

    H indentation depth

    H hardness

    h*

    characteristic length for depth dependence on hardnessh

    a depth of circle of contact measured from specimen free surface

    he elastic depth of penetration for unloading

    Heff

    effective hardness of filmsubstrate combination

    Hf film hardness

    hi initial penetration depth

    ho amplitude of oscillatory depth reading

    Ho hardness measured without presence of dislocations

    hc depth of circle of contact measured from maximum depth h

    max(the contact

    depth)hr depth of residual impression

    hrc

    contact depth of penetration for an equivalent punch

    hs penetration depth at unloading forceP

    s, depth at which spherical indenter

    tip meets conical support measured from indenter tip

    Hs substrate hardness

    hmax

    total indentation depth measured from specimen free surface

    Io weighting function for thin film analysis

    K constant for determining initial penetration depth, Boltzmanns constant,

    bulk modulus, intercept correction factor, coefficient for stressstrain

    response in uniaxial plastic regime

    Kc fracture toughness

    Ks stiffness of indenter support springs

    L,l length or distance

    List of Symbols

  • 8/13/2019 Indentaion Test- Theory

    15/17

    xixxix

    m mass of oscillating components, power law exponent that describes the

    form of the loading and unloading curves

    n Meyers index, slope of logarithmic method of determining hI

    P indenter load (force), hydrostatic pressure

    Pc critical load at onset of plastic deformation with spherical indenter, pull-offload due to adhesive forces

    PI indenter load at initial penetration

    pm mean contact pressure

    po amplitude of oscillatory force

    Pmax

    maximum load in an indentation test

    Ps indenter load at partial unload

    R spherical indenter radius

    r radial distance measured from axis of symmetry

    R+ equivalent rigid indenter radius for contact involving a deformable indenterof radius R

    Ri radius of indenter

    Ro initial radius of curvature

    Rr radius of curvature of residual impression

    S contact stiffness dP/dh

    SL

    slope of loading curve

    SU slope of unloading curve

    T temperature, interfacial shear strength

    t time, film thicknesstc coating (film) thickness

    tf film thickness

    ts substrate thickness

    U energy, work

    uz displacement

    V volume

    w interaction potential

    W work

    x strain-hardening exponentY yield stress

    Yf yield stress of film

    Ys yield stress of substrate

    zo equilibrium spacing in the Lennard-Jones potential

    List of Symbols

  • 8/13/2019 Indentaion Test- Theory

    16/17

    xxi

    Introduction

    Indentation testing is a simple method that consists essentially of touching the mate-rial of interest whose mechanical properties such as elastic modulus and hardness

    are unknown with another material whose properties are known. The technique has

    its origins in Mohs hardness scale of 1822 in which materials that are able to leave

    a permanent scratch in another were ranked harder material with diamond assigned

    the maximum value of 10 on the scale. The establishment of the Brinell, Knoop,

    Vickers, and Rockwell tests all follow from a refinement of the method of indenting

    one material with another. Nanoindentation is simply an indentation test in which

    the length scale of the penetration is measured in nanometres (109m) rather than

    microns (106m) or millimetres (103m), the latter being common in convention-

    al hardness tests. Apart from the displacement scale involved, the distinguishing

    feature of most nanoindentation testing is the indirect measurement of the contact

    areathat is, the area of contact between the indenter and the specimen. In conven-

    tional indentation tests, the area of contact is calculated from direct measurements

    of the dimensions of the residual impression left in the specimen surface upon the

    removal of load. In nanoindentation tests, the size of the residual impression is of

    the order of microns and too small to be conveniently measured directly. Thus, it is

    customary to determine the area of contact by measuring the depth of penetration of

    the indenter into the specimen surface. This, together with the known geometry of

    the indenter, provides an indirect measurement of contact area at full load. For this

    reason, nanoindentation testing can be considered a special case of the more general

    terms: depth-sensing indentation (DSI) or instrumented indentation testing (IIT).

    It is not only hardness that is of interest to materials scientists. Indentation tech-

    niques can also be used to calculate elastic modulus, strain-hardening exponent,

    fracture toughness (for brittle materials), and viscoelastic properties. How can such

    a wide variety of properties be extracted from such a simple test, which, in many

    respects, can be considered a non-destructive test method? Consider the load-dis-

    placement response shown in Fig. 1. This type of data is obtained when an indenter,

    shaped as a sphere, is placed into contact with the flat surface of the specimen witha steadily increasing load. Both load and depth of penetration are recorded at each

    load increment (ultimately providing a measure of modulus and hardness as a func-

    tion of depth beneath the surface). Following the attainment of the maximum load,

    http://-/?-http://-/?-
  • 8/13/2019 Indentaion Test- Theory

    17/17

    xxii Introduction

    in the material shown in Fig. 1a, the load is steadily removed and the penetrationdepth recorded. The loading part of the indentation cycle may consist of an initial

    elastic contact, followed by plastic flow, or yield, within the specimen at higher

    loads. Upon unloading, if yield has occurred, the load-displacement data follow a

    different path until at zero applied load, a residual impression is left in the specimen

    surface. The maximum depth of penetration for a particular load, together with the

    slope of the unloading curve measured at the tangent to the data point at maximum

    load, lead to a measure of both hardness and elastic modulus of the specimen mate-

    rial. In some cases, it is possible to measure elastic modulus from not only the un-

    loading portion, but also the loading portion of the curve. For a viscoelastic materi-al, the relationship between load and depth of penetration is not linearly dependent.

    That is, for a given load, the resulting depth of penetration may depend upon the rate

    of application of load as well as the magnitude of the load itself. For such materi-

    als, the indentation test will be accompanied by creep, and this manifests itself

    as a change in depth for a constant applied load as shown in Fig. 1b. An analysis of

    the creep portion of the load-displacement response yields quantitative information

    about the elastic solid-like properties of the specimen, and also the fluid-like or

    out-of-phase components of the specimen properties. In brittle materials, crack-

    ing of the specimen may occur, especially when using a pyramidal indenter such asthe three-sided Berkovich or the four-sided Vickers indenter. As shown in Fig. 1c,

    the length of the crack, which often begins at the corners of the indentation impres-

    sion, can be used to calculate the fracture toughness of the specimen material.

    More advanced methods can be employed to study residual stresses in thin films,

    the properties of materials at high temperatures, scratch resistance and film adhesion,

    and, in some cases, van der Waals type surface forces. In this book, all these issues

    are examined and reported beginning with a description of the method of test and the

    basis upon which the analysis is founded. Later chapters deal with the various correc-

    tions required to account for a number of instrumental and materials related effects

    that are a source of error in the measurement, theoretical aspects behind the constitu-

    tive laws that relate the mechanical properties to the measurement quantities, recent

    attempts at formulating an international standard for nanoindentation, examples of

    applications, and a brief description of how nanoindentation instruments are designed.

    Fig. 1 Load-displacement curves for (a) an elastic plastic solid and (b) a viscoelastic solid for a

    spherical indenter and (c) cracks emanating from the corners of the residual impression in a brittle

    material

    http://-/?-http://-/?-http://-/?-http://-/?-