Inclusion of metal-organic complexes into cucurbit[8]uril

25
Inclusion of metal-organic complexes into cucurbit[8]uril Moscow 2005 Vladimir P. Fedin, Tatiana V. Mitkina, Olga A. Gerasko Nikolaev Institute of Inorganic Chemistry Russian Academy of Sciences, Siberian Branch Novosibirsk

description

Nikolaev Institute of Inorganic Chemistry Russian Academy of Sciences, Siberian Branch Novosibirsk. Inclusion of metal-organic complexes into cucurbit[8]uril. Vladimir P. Fedin, Tatiana V. Mitkina, Olga A. Gerasko. Moscow 2005. 2. The cucurbit[n]uril family ( CB[n]). - PowerPoint PPT Presentation

Transcript of Inclusion of metal-organic complexes into cucurbit[8]uril

Page 1: Inclusion of metal-organic complexes into cucurbit[8]uril

Inclusion of metal-organic complexes into cucurbit[8]uril

Inclusion of metal-organic complexes into cucurbit[8]uril

Moscow2005

Vladimir P. Fedin, Tatiana V. Mitkina, Olga A. Gerasko

Nikolaev Institute of Inorganic Chemistry Russian Academy of Sciences, Siberian Branch

Novosibirsk

Page 2: Inclusion of metal-organic complexes into cucurbit[8]uril

The cucurbit[n]uril family (CB[n])The cucurbit[n]uril family (CB[n])22

R. Behrend, E. Meyer, F. Rusche, Liebigs Ann. Chem. 1905, 339, 1.

W. A. Freeman, W. L. Mock, N. Y. Shih, J. Am. Chem. Soc. 1981, 103, 7367.

Page 3: Inclusion of metal-organic complexes into cucurbit[8]uril

The cucurbit[n]uril family (CB[n])The cucurbit[n]uril family (CB[n])22

82 164 280 480

Cavity volume (Å3)

Page 4: Inclusion of metal-organic complexes into cucurbit[8]uril

Electrostatic potential maps for a) -CD and b) CB[7] The red to blue color range spans –80 to 40 kcal mol-1.

(K. Kim et al., Acc. Chem. Res. 2003, 36, 621)

CB[n]s exhibit a pronounced preference to interact with cationic rather than neutral or anionic guests whereas CDs prefer to bind to neutral or anionic

rather than cationic guests.

Page 5: Inclusion of metal-organic complexes into cucurbit[8]uril

cucurbit[8]uril (CB[8])C48H48N32O16

cucurbit[n]urilС6nH6nN4nO2n

n = 5 10symmetry Dnh

The cucurbit[n]uril family (CB[8])The cucurbit[n]uril family (CB[8])

17.5 Å

8.8 Å

6.9 Å

9.1 Å

dimensions of CB[8] molecule

22

M

LL

NHNH2H2N

L

NH

NH NH

HN

M

NH2

NH2

M

H2N

H2N

L

L

Guests:

Page 6: Inclusion of metal-organic complexes into cucurbit[8]uril

Possible approaches to synthesis of inclusion compounds of metal-organic

complexes into CB[8]

Possible approaches to synthesis of inclusion compounds of metal-organic

complexes into CB[8]

1) “metal aqua-complex + ligand@CB[8]” scheme

2) direct reaction “host + guest”

3) “guest substitution” approach

33

Page 7: Inclusion of metal-organic complexes into cucurbit[8]uril

+ Ni2+

12-fold excess of NiCl2·6H2O

yellow crystals, yield = 89%,

hot water soluble

Synthesis of {[Ni(cyclam)]@CB[8]}Cl2 ·16H2OSynthesis of {[Ni(cyclam)]@CB[8]}Cl2 ·16H2O

NHNH

NH NH

NN

NN

Ni

cyclam@CB[8]· 4HCl18H2O

1) The approach “metal aqua-complex + ligand@CB[8]”

Aqueous solution, reflux,

100°C, 2 h.

44

Page 8: Inclusion of metal-organic complexes into cucurbit[8]uril

The structure of {[Ni(cyclam)]@CB[8]}Cl2·16H2OThe structure of {[Ni(cyclam)]@CB[8]}Cl2·16H2O55

X-ray: square-planar environment of NiII; the angle between NiN4 plane and equatorial plane of CB[8] ~ 70°

ESI-MS: m/z = 793.245 {[Ni(cyclam)] + CB[8]}2+

Absorption spectra comparison:

side view

IR: CB[8] vibrations

Page 9: Inclusion of metal-organic complexes into cucurbit[8]uril

NiII/NiIII oxidation within the CB[8] cavity. Synthesis of {[NiIII(cyclam)]@CB[8]}(SO4)1.5·14⅔H2O

NiII/NiIII oxidation within the CB[8] cavity. Synthesis of {[NiIII(cyclam)]@CB[8]}(SO4)1.5·14⅔H2O

{[NiII(cyclam)]@CB[8]}2+ + Ce4+ {[NiIII(cyclam)]@CB[8]}3+ + Ce3+

X-ray cryst.: square-planar environment of NiIII; the angle between NiN4 plane and equatorial plane of CB[8] ~ 70°

IR: CB[8] vibrations, (SO42-) = 1121,

619 cm-1

Solid-state ESR: low spin (S = ½) d7 square-planar NiIIIN4 (!),

А = 286 G, gx = 2.142, gy = 2.277, gz = 2.209.

greenish-yellow crystals, water-insoluble, yield 88%

66

hyperfine structure

ESR

Page 10: Inclusion of metal-organic complexes into cucurbit[8]uril

cucurbit[8]uril

2) Direct approach “host + guest”77

2+NN

NN

Ni

Page 11: Inclusion of metal-organic complexes into cucurbit[8]uril

Synthesis of {trans-[M(en)2X2]@CB[8]}Cln·mH2O (M = CuII, NiII, CoIII ; X = Cl-, H2O)

Synthesis of {trans-[M(en)2X2]@CB[8]}Cln·mH2O (M = CuII, NiII, CoIII ; X = Cl-, H2O)

cucurbit[8]uril

2+ + 2+

NH2

NH2

Co

H2N

H2N

Cl

Cl

NH2

NH2

Cu

H2N

H2N

OH2

OH2

NH2

NH2

Ni

H2N

H2N

OH2

OH2

2) Direct approach “host + guest” 88

Page 12: Inclusion of metal-organic complexes into cucurbit[8]uril

NH2

NH2

Co

H2N

H2N

Cl

Cl

H2N

H2N

NH2Co

H2N

Cl

Cl

+ +Aqueous

solution, reflux, 100°C, 2 h.

CB[8]20H2O dark-green crystals, yield = 97%, hot water soluble

Synthesis of {trans-[Co(en)2Cl2]@CB[8]}Cl·17H2O Synthesis of {trans-[Co(en)2Cl2]@CB[8]}Cl·17H2O

ClCo

H2N

H2N NH2

H2N

Cl

+

+

+

99

Selective inclusion of trans-isomer !

2) Direct approach “host + guest”

cis

trans

Page 13: Inclusion of metal-organic complexes into cucurbit[8]uril

Orientations of the ethylenediamine complexes inside the cavity of CB[8]Orientations of the ethylenediamine complexes inside the cavity of CB[8]

NiCu Co

1010

{[Co(en)2Cl2]@CB[8]}+{[Ni(en)2(H2O)2]@CB[8]}2+{[Cu(en)2(H2O)2]@CB[8]}2+

Claq

aq

= 16°, Ni–N 2.10 Å,

Ni–O 2.13 Å

= 0°, Cu–N 2.00 Å, Cu–O 2.55 Å

= 90°, Co–N 1.92 Å, Co–Cl 2.24 Å

Page 14: Inclusion of metal-organic complexes into cucurbit[8]uril

trans-{[Ni(en)2(H2O)2]@CB[8]}2+

= 2.92 Å (Ni–N = 2.10 Å)

trans-{[Cu(en)2(H2O)2]@CB[8]}2+

= 0.42 Å (Cu–N = 2.00 Å)

13.01 Å

13.43 Å

11.46 Å

14.38 Å

NiCu

Distortion of CB[8] molecule upon encapsulation of guestsDistortion of CB[8] molecule upon encapsulation of guests

Page 15: Inclusion of metal-organic complexes into cucurbit[8]uril

X-ray cryst., elemental analysis

ESI-MS: m/z = 756 {CB[8] + Cu(en)2}

2+

ESR: g|| = 2.212, g = 2.049

IR: CB[8] vibrations

Dissociation upon dissolution in water: {[Cu(en)2(H2O)2]@CB[8]}2+

[Cu(en)2(H2O)2]2+ + СB[8]

Cu

Ni

Co

Cu

Ni

Co

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O)

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O)

1111

Page 16: Inclusion of metal-organic complexes into cucurbit[8]uril

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O)

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O) X-ray cryst., elemental analysis

ESI-MS: m/z = 510 {CB[8] + Ni(en)2 + Na}3+

1H NMR: CB[8] resonanses became broadened and en signals disappeared upon inclusion

IR: CB[8] vibrations

Stable in solution

May undergo reactions of guest substitution 2X + {Y@CB[8]} Y + {(X)2@CB[8]} N

C

N

X =

Cu

Ni

Co

Cu

Ni

Co

1212

Page 17: Inclusion of metal-organic complexes into cucurbit[8]uril

Cu

Ni

Co

Cu

Ni

Co

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O)

Solution and solid state studies of {trans-[M(en)2X2]@CB[8]}Cln·mH2O

(M = CuII, NiII, CoIII ; X = Cl-, H2O) X-ray cryst., elemental analysis

ESI-MS: m/z = 754 {CB[8] + Co(en)2}2+

IR: CB[8] vibrations

transcis isomerization (120°С, 45 hours)

ClCo

H2N

H2N NH2

H2N

Cl

+

+

H2N

H2N

NH2Co

H2N

OH2

OH2

3+

Absorption spectra comparison: hypsochromic schift upon inclusion

1313

Page 18: Inclusion of metal-organic complexes into cucurbit[8]uril

CB[8]

CB[8]

CB[8]

CH2 (en)NH2

(en)

original complex

inclusion compound

ClCo

H2N

H2N NH2

H2N

Cl

NH2

NH2

Co

H2N

H2N

Cl

Cl

+

+

1H NMR-spectra comparison of D2O solutions of [trans-Co(en)2Cl2]Cl

and {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O

1H NMR-spectra comparison of D2O solutions of [trans-Co(en)2Cl2]Cl

and {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O

= - 0.85 ppm = - 0.63 ppm

en resonanses are strongly upfield-shifted

upon inclusion

1414

Page 19: Inclusion of metal-organic complexes into cucurbit[8]uril

Thermogravimetric data for {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O, trans-[Co(en)2Cl2]Cl and CB[8]17H2O samples

Thermogravimetric data for {[trans-Co(en)2Cl2]@CB[8]}Cl·17H2O, trans-[Co(en)2Cl2]Cl and CB[8]17H2O samples

NH2

NH2

Co

H2N

H2N

Cl

Cl

+

225°|

medium: argon

ClCo

H2N

H2N NH2

H2N

Cl

+

T(decomposition of trans-[Co(en)2Cl2]Cl) increased by 135°С upon inclusion into CB[8]

NH2

NH2

Co

H2N

H2N

Cl

Cl

+

|360°

|225°

ClCo

H2N

H2N NH2

H2N

Cl

+

NH2

NH2

Co

H2N

H2N

Cl

Cl

+

T(decomposition of trans-[Co(en)2Cl2]Cl) increased by 135°С upon inclusion into CB[8]

|360°

||225°

Page 20: Inclusion of metal-organic complexes into cucurbit[8]uril

NHHN

HNNH

Ni

NHHN

HNNH

Ni

Violet crystals, yield 60%

NHNH2H2N Cu

N

N

OH2

+ + 2

Synthesis of {[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}(ClO4)4·11H2OSynthesis of {[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}(ClO4)4·11H2O

{[Ni(cyclam)]@ CB[8]}Cl2 ·16H2O

10-fold excess of [Cu(dien)(4,4’-bipy)

(H2O)](ClO4)2

2+

2+

4+2+

3) “Guest substitution” approach

NHNH2H2N Cu

N

N

OH2

NHNH2

H2NCu

N

N

H2O

Water solution, reflux, 100°C,

3 h.

1616

Page 21: Inclusion of metal-organic complexes into cucurbit[8]uril

The X-ray crystal structure of {[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}

(ClO4)4·11H2O

The X-ray crystal structure of {[Cu(dien)(4,4’-bipy)(H2O)]2@СB[8]}

(ClO4)4·11H2O X-ray cryst. structure, elemental analysis

Absorption spectra: (): 600 (185), 270 (sh), 240 (46200) ( = , of free guest)

ESI-MS: m/z = 825.8 {CB[8] + Cu(dien)(4,4´-dipy)}2+

Solid-state ESR: gz = 2.312, gx = gy = 2.045 (g|| = 2.24, g = 2.06 for free guest) – Cu-OH2 become longer

IR: vibrations of CB[8], (С=С) and (С=N) 4,4´-dipy, (R2N-H) dien, (ClO4

-)

1717

Page 22: Inclusion of metal-organic complexes into cucurbit[8]uril

1818

ConclusionsConclusions

Inclusion into the cavity of cucurbit[8]uril may be helpful for:

1) isolation of metal complexes with unusual oxidation states and coordination environments

2) stabilization of guest complexes in solid state and in solution towards thermolysis, isomerization etc.

Page 23: Inclusion of metal-organic complexes into cucurbit[8]uril

Tatiana V. Mitkina Dr. Olga A. Gerasko

Page 24: Inclusion of metal-organic complexes into cucurbit[8]uril

AcknowledgementAcknowledgement

RFBR

INTAS (Prof. F. Secheresse)

RAS Target Programme (Prof. A.I. Konovalov)

1919

Page 25: Inclusion of metal-organic complexes into cucurbit[8]uril