In-situ Iridium Refractory Ohmic Contacts to p-InGaAs

27
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault, Arthur Gossard, Mark J. W. Rodwell University of California, Santa Barbara, CA Mark Wistey University of Notre Dame, IN

description

In-situ Iridium Refractory Ohmic Contacts to p-InGaAs. Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault, Arthur Gossard, Mark J. W. Rodwell University of California, Santa Barbara, CA Mark Wistey University of Notre Dame, IN. Outline. Experimental details Contact formation - PowerPoint PPT Presentation

Transcript of In-situ Iridium Refractory Ohmic Contacts to p-InGaAs

Page 1: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 1

In-situ Iridium Refractory Ohmic Contacts to p-InGaAs

Ashish Baraskar, Vibhor Jain, Evan Lobisser,

Brian Thibeault, Arthur Gossard, Mark J. W. Rodwell

University of California, Santa Barbara, CA

Mark Wistey

University of Notre Dame, IN

Page 2: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 2

Outline• Motivation

– Low resistance contacts for high speed HBTs

– Approach• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– Doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Page 3: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 3

Outline• Motivation

– Low resistance contacts for high speed HBTs

– Approach• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– Doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Page 4: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 4

Device Bandwidth Scaling Laws for HBT

To double device bandwidth:

• Cut transit time 2x

• Cut RC delay 2x

Scale contact resistivities by 4:1*

*M.J.W. Rodwell, CSICS 2008

bcWcTbT

eW

HBT: Heterojunction Bipolar TransistorRC

f in 2

1

effcbbb CR

ff

8max

Page 5: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 5

InP Bipolar Transistor Scaling Roadmap

Emitter256 128 64 32 nm width

8 4 2 1 Ω·µm2 access ρ

Base175 120 60 30 nm contact width

10 5 2.5 1.25 Ω·µm2 contact ρ

Collector

106 75 53 37.5 nm thick

9 18 36 72 mA/µm2 current

4 3.3 2.75 2-2.5 V breakdown

ft 520 730 1000 1400 GHz

fmax 850 1300 2000 2800 GHz

Contact resistivity serious challenge to THz technology

Less than 2.5 Ω-µm2 base contact resistivity required for simultaneous THz ft and fmax*

*M.J.W. Rodwell, CSICS 2008

Page 6: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 6

Approach - I

To achieve low resistance, stable ohmic contacts

• Higher number of active carriers

- Reduced depletion width

- Enhanced tunneling across metal-

semiconductor interface

• Better surface preparation techniques

- For efficient removal of oxides/impurities

Page 7: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 7

• Scaled device thin base

(For 80 nm device: tbase < 25 nm)

• Non-refractory contacts may diffuse at higher temperatures through

base and short the collector• Pd/Ti/Pd/Au contacts diffuse about 15 nm in InGaAs on annealing

Approach - II

100 nm InGaAs grown in MBE

15 nm Pd/Ti diffusion

Need a refractory metal for thermal stability

TEM: Evan Lobisser

Page 8: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 8

Outline• Motivation

– Low resistance contacts for high speed HBTs and FETs

– Approach• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– Doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Page 9: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 9

Semi-insulating InP Substrate

100 nm In0.52Al0.48As: NID buffer

100 nm In0.53Ga0.47As: C (p-type)

Epilayer growth by Solid Source Molecular Beam Epitaxy (SS-MBE)– p-InGaAs/InAlAs

- Semi insulating InP (100) substrate

- Un-doped InAlAs buffer

- CBr4 as carbon dopant source

- Hole concentration determined by Hall measurements

Epilayer Growth

Page 10: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 10

100 nm In0.52Al0.48As: NID buffer

100 nm In0.53Ga0.47As: C (p-type)

20 nm in-situ Ir

Semi-insulating InP Substrate

In-situ Ir contacts

In-situ iridium (Ir) deposition - E-beam chamber connected to MBE chamber- No air exposure after film growth

Why Ir? - Refractory metal (melting point ~ 2460 oC)- Easy to deposit by e-beam technique- Easy to process and integrate in HBT process flow

Page 11: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 11

TLM (Transmission Line Model) fabrication

• E-beam deposition of Ti, Au and Ni layers

• Samples processed into TLM structures by photolithography and liftoff

• Contact metal was dry etched in SF6/Ar with Ni as etch mask, isolated by wet etch

100 nm In0.52Al0.48As: NID buffer

100 nm In0.53Ga0.47As: C (p-type)

20 nm in-situ Ir20 nm ex-situ Ti

50 nm ex-situ Ni500 nm ex-situ Au

Semi-insulating InP Substrate

Page 12: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 12

• Resistance measured by Agilent 4155C semiconductor parameter

analyzer

• TLM pad spacing (Lgap) varied from 0.5-25 µm; verified from

scanning electron microscope (SEM)

• TLM Width ~ 25 µm

Resistance Measurement

W

RR ShC

C

22

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5

Gap Spacing (m)

Res

ista

nce

()

Page 13: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 13

• Extrapolation errors:– 4-point probe resistance

measurements on Agilent 4155C

– Resolution error in SEM

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6

Res

ista

nce

()

Gap Spacing (m)

R

d

Rc

Error Analysis• Processing errors:

Lgap

W

Variable gap along width (W)

1.10 µm 1.04 µm

– Variable gap spacing along width (W)

Overlap Resistance

– Overlap resistance

Page 14: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 14

Outline• Motivation

– Low resistance contacts for high speed HBTs and FETs

– Approach• Experimental details

– Contact formation

– Fabrication of Transmission Line Model structures

• Results

– Doping characteristics

– Effect of doping on contact resistivity

– Effect of annealing

• Conclusion

Page 15: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 15

1019

1020

40

50

60

70

80

0 10 20 30 40 50 60

hole concentration

mobility

Mob

ility

(cm

2 -Vs)

CBr4 foreline pressure (mtorr)

Hol

e C

once

ntra

tion

(cm

-3)

Doping Characteristics-I

Hole concentration Vs CBr4 flux

– Hole concentration saturates at high CBr4 fluxes– Number of di-carbon defects as CBr4 flux *

Tsub = 460 oC

*Tan et. al. Phys. Rev. B 67 (2003) 035208

Page 16: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 16

2

4

6

8

10

10 20 30 40 50 60

Group V / Group III

Hol

e C

once

ntra

tion

(10

19)

cm-3

As V/III ratio hole concentration

hypothesis: As-deficient surface drives C onto group-V sites

Doping Characteristics-IIHole concentration Vs V/III flux

CBr4 = 60 mtorr

Page 17: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 17

4 1019

8 1019

1.2 1020

1.6 1020

2 1020

300 350 400 450

Hol

e C

once

ntra

tion

(cm

-3)

Substrate Temp. (oC)

CBr4 = 60 mtorr

Doping Characteristics-IIIHole concentration Vs substrate temperature

*Tan et. al. Phys. Rev. B 67 (2003) 035208

Tendency to form di-carbon defects as Tsub *

Page 18: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 18

4 1019

8 1019

1.2 1020

1.6 1020

2 1020

300 350 400 450

Hol

e C

once

ntra

tion

(cm

-3)

Substrate Temp. (oC)

CBr4 = 60 mtorr

Doping Characteristics-IIIHole concentration Vs substrate temperature

*Tan et. al. Phys. Rev. B 67 (2003) 035208

1019

1020

0 20 40 60 80 100

Tsub = 460 oC

Tsub = 350 oC

CBr4 foreline pressure (mtorr)

Hol

e C

once

ntra

tion

(cm

-3)

Tendency to form di-carbon defects as Tsub *

Page 19: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 19

ρc lower than the best reported contacts to

pInGaAs (ρc = 4 Ω-µm2)[1,2]

1. Griffith et al, Indium Phosphide and Related Materials, 2005.

2. Jain et al, IEEE Device Research Conference, 2010.

Metal Contact ρc (Ω-µm2) ρh (Ω-µm)

In-situ Ir 0.58 ± 0.48 7.6 ± 2.6

• Hole concentration, p = 2.2 x 1020 cm-3

• Mobility, µ = 30 cm2/Vs• Sheet resistance, Rsh = 94 ohm/ (100 nm thick film)

Results: Contact Resistivity - I

0

5

10

15

0 1 2 3 4Pad Spacing (m)

Res

ista

nce

()

p = 2.2 x1020 cm-3

TLM width, W = 25 m

Page 20: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 20

*

p1expρC

Tunneling

Data suggests tunneling

ThermionicEmission c ~ constant*

High active carrier concentration is the key to low resistance contacts

* Physics of Semiconductor Devices, S M Sze

Results: Contact Resistivity - II

0

2

4

6

8

10

5 10 15 20 25

Co

nta

ct R

esis

tivity

, c (

-

m2 )

Hole Concentration, p (x1019 cm-3)

1

10

5 10 15

[p]-1/2 (10-11 cm-3/2)

c (

m

2 )

p = 2.2×1020 cm-3

p = 5.7×1019 cm-3

Page 21: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 21

Mo contacts annealed under N2 flow for 60 mins. at 250 oC

Thermal Stability - I

Before annealing After annealing

ρc (Ω-µm2) 0.58 ± 0.48 0.8 ± 0.56

0

5

10

15

0 1 2 3 4

Un-annealedAnnealed

Pad Spacing (m)

Res

ista

nce

()

TLM width, W = 25 m

p = 2.2 x1020 cm-3

TEM: Evan Lobisser

Page 22: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 22

Summary

• Maximum hole concentration obtained = 2.2 x1020 cm-3 at a substrate temperature of 350 oC

• Low contact resistivity with in-situ Ir contacts lowest ρc= 0.58 ± 0.48 Ω-µm2

• Need to study ex-situ contacts for application to HBTs

Page 23: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 23

Thank You !

Questions?

Acknowledgements:

ONR, DARPA-TFAST, DARPA-FLARE

Page 24: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 24

Extra Slides

Page 25: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 25

Correction for Metal Resistance in 4-Point Test Structure

WLsheet /metalR Wcontactsheet /)( 2/1

Error term (Rmetal/x) from metal resistance

L

W

I

I

V

V

xRWLW metalsheetcontactsheet ///)( 2/1

Page 26: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 26

Random and Offset Error in 4155C

0.6642

0.6643

0.6644

0.6645

0.6646

0.6647

0 5 10 15 20 25

Res

ista

nce

(

)

Current (mA)

• Random Error in resistance measurement ~ 0.5 m

• Offset Error < 5 m*

*4155C datasheet

Page 27: In-situ Iridium Refractory  Ohmic Contacts to p-InGaAs

NAMBE 2010 Ashish Baraskar, UCSB 27

Accuracy Limits

• Error Calculations– dR = 50 mΩ (Safe estimate)– dW = 1 µm– dGap = 20 nm

• Error in ρc ~ 40% at 1.1 Ω-µm2