Improving Fatigue Life

download Improving Fatigue Life

of 48

Transcript of Improving Fatigue Life

  • 7/29/2019 Improving Fatigue Life

    1/48

    AM 11/03 1

    VII Improving the fatigue

    life of weldments

  • 7/29/2019 Improving Fatigue Life

    2/48

    AM 11/03 2

    Outline

    n Obvious things to do

    n Problems the weld toe

    n Fatigue life Improvement Strategies

    n Light and heavy industry weldments

    n Improving the bad weldments

  • 7/29/2019 Improving Fatigue Life

    3/48

    AM 11/03 3

    Crude! (bad)

  • 7/29/2019 Improving Fatigue Life

    4/48

    AM 11/03 4

    Better

  • 7/29/2019 Improving Fatigue Life

    5/48

    AM 11/03 5

    Bad - planar weld discontinuities

  • 7/29/2019 Improving Fatigue Life

    6/48

    AM 11/03 6

    Outline

    n Obvious things to do

    n Problems the weld toe

    n Fatigue life Improvement Strategies

    n Light and heavy industry weldments

    n Improving the bad weldments

  • 7/29/2019 Improving Fatigue Life

    7/48

    AM 11/03 7

    Weld toe is a stress concentration

  • 7/29/2019 Improving Fatigue Life

    8/48

    AM 11/03 8

    Slag entrapments at toe?

    Virtually

    eliminates

    fatiguecrack

    initiationlife NI

  • 7/29/2019 Improving Fatigue Life

    9/48

    AM 11/03 9

    Welding procedure A Welding procedure B

    Cold-lap defects at weld toe

    Cold laps virtually eliminate thefatigue crack initiation life (NI)

    Such weldments may have

    an appreciable fatigue crackinitiation life (NI)

    NominalPerfect

  • 7/29/2019 Improving Fatigue Life

    10/48

    AM 11/03 10

    Cold lap at a weld toe

    LoadingDirection

    D

    Weld Metal

    Base MetalHeat Affected Zone

    Weld Toe LocationWithout Cold-Lap Defect

    Curved PathVertical Path

    r

  • 7/29/2019 Improving Fatigue Life

    11/48

    AM 11/03 11

    Effect of cold lap depth

    1

    10

    0.001 0.01 0.1

    D = 0.0 mm, MK CG

    , curved path from

    weld toe locationD = 1.0 mm, M

    K CG, curved path from

    cold-lap defectD = 1.0 mm, MK CG

    , vertical path from

    cold-lap defect

    K

    Crack length / main plate thickness, (a/T)

    2-D FEM

    Weld

    geometrycorrectionfactor,MK

  • 7/29/2019 Improving Fatigue Life

    12/48

    AM 11/03 12

    Effect of flank angle

    1

    10

    0.001 0.01 0.1

    = 30o

    = 45o

    = 60o

    K

    Crack length / main plate thickness, (a/T)

    2-D FEM

    D = 1.0 mm

    Weldgeometrycorrectionfactor,MK

  • 7/29/2019 Improving Fatigue Life

    13/48

    AM 11/03 13

    Effect of cold root radius

    1

    10

    0.001 0.01 0.1

    D = 0.00 mm, weld toe location

    D = 2.00 mm, rcl

    = 0.146 mm

    D = 2.00 mm, rcl

    = 0.025 mm

    K

    Crack length / main plate thickness, (a/T)

    Weldgeometrycorrectionfactor,MK

  • 7/29/2019 Improving Fatigue Life

    14/48

    AM 11/03 14

    Recent study on rail welds

    Toe Radius, R

    Weld

    Reinforcement

    Height, H

    Base Metal

    Thickness, TbWeld Collar

    Width, W

    Flank

    Angle,

  • 7/29/2019 Improving Fatigue Life

    15/48

    AM 11/03 15

    Geometric Parameters

    Fin Length, Lf

    Cold Lap

    Length, Lcl

    Fin Thickness,

    Tf

    Flank

    Angle,

  • 7/29/2019 Improving Fatigue Life

    16/48

    AM 11/03 16

    Weld with a Fin and a Cold Lap

  • 7/29/2019 Improving Fatigue Life

    17/48

    AM 11/03 17

    Deformed Shape

  • 7/29/2019 Improving Fatigue Life

    18/48

    AM 11/03 18

    Nominal Weld Geometry

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 10 20 30 40 50 60 70 80 90

    Flank Angle, (Deg.)

    R=.5mm

    R=1mm

    R=3mm

    R=6mm

  • 7/29/2019 Improving Fatigue Life

    19/48

    AM 11/03 19

    1

    2

    3

    4

    5

    6

    7

    0 2 4 6 8 10 12 14

    Fin Length, Lf (mm)

    Elastic

    StressConcentrationFa

    ctor,

    Kt(-)

    Fin Thickness = .5mm

    Fin Thickness=1mm

    Fin Thickness=2mm

    Fin length

  • 7/29/2019 Improving Fatigue Life

    20/48

    AM 11/03 20

    Fins and Cold Laps

    1

    2

    3

    4

    5

    6

    7

    -4 -2 0 2 4 6 8

    Cold Lap Length, Lcl (mm)

    Cold Lap; NO Fin

    Cold Lap with Fin 0.5 mm Thick

    Cold Lap with Fin 1 mm Thick

    Cold Lap with Fin 2 mm Thick

    Defect Free

    For All TestsR=3mm and

    =30

  • 7/29/2019 Improving Fatigue Life

    21/48

    AM 11/03 21

    Trends in Ideal1.0-in platethickness, non-loadcarrying cruciform

    weldments fatiguestrength.

    R = 0

    Welding residualstresses = 50% of

    SYBM Sfab SYBM

    Predicted effect of SuBM

    0

    10

    20

    30

    40

    50

    60

    0 50 100 150 200

    FatigueStrengthat1E+07cycle

    s,Sa(ksi)

    Base Metal Ultimate Strength, SuBM

    (ksi)

    As Welded, Sfab

    = 0

    As Welded, Sfab

    = SyBM

    Over Stressed

    Hot Rolled Steel Q & T Steel

    Stress Relieved

  • 7/29/2019 Improving Fatigue Life

    22/48

    AM 11/03 22

    Outline

    n Obvious things to do

    n Problems the weld toe

    n Fatigue life ImprovementStrategies

    n Light and heavy industry weldments

    n Improving the bad weldments

  • 7/29/2019 Improving Fatigue Life

    23/48

    AM 11/03 23

    Good - grind off reinforcement

  • 7/29/2019 Improving Fatigue Life

    24/48

    AM 11/03 24

    Good - burr grind weld toe

  • 7/29/2019 Improving Fatigue Life

    25/48

    AM 11/03 25

    Very good - full face grinding

  • 7/29/2019 Improving Fatigue Life

    26/48

    AM 11/03 26

    Shot peened weld toe

  • 7/29/2019 Improving Fatigue Life

    27/48

    AM 11/03 27

    Remelted weld toe (laser)

  • 7/29/2019 Improving Fatigue Life

    28/48

    AM 11/03 28

    TWIsuggestions

    as to weldimprovement

    procedures

    Improvement Strategies

  • 7/29/2019 Improving Fatigue Life

    29/48

    AM 11/03 29

    100

    10

    153045

    153045

    1530

    45

    1 10001

    100

    Fatigue

    Strength

    (ksi)

    at106

    cycles

    Base metal UTS (ksi)

    Plainplate

    As Welded

    Stress Relieved

    Over Stressed

    Improvement strategies

    Shot Peen

    Residual stress

    Geometry

    Base metal strength

  • 7/29/2019 Improving Fatigue Life

    30/48

    AM 11/03 30

    Example

    IP model predictions

    and experimental

    data.

  • 7/29/2019 Improving Fatigue Life

    31/48

    AM 11/03 31

    ASTM A 36 butt weldment

  • 7/29/2019 Improving Fatigue Life

    32/48

    AM 11/03 32

    ASTM A 514 butt weldment

  • 7/29/2019 Improving Fatigue Life

    33/48

    AM 11/03 33

    Outline

    n Obvious things to do

    n Problems the weld toe

    n Fatigue life Improvement Strategiesn Light and heavy industry

    weldments

    n Improving the bad weldments

  • 7/29/2019 Improving Fatigue Life

    34/48

    AM 11/03 34

    Light industry weldments are presumed to be

    fabricated from 1/2 or smaller plate and not

    to have large fabrication stresses.

    Heavy industry weldments are presumed to

    be fabricated from larger than 1 thick plates

    and to possess large fabrication stresses.

    Light, heavy industry weldments

  • 7/29/2019 Improving Fatigue Life

    35/48

    AM 11/03 35

    104

    105

    106

    107

    108

    1

    10

    100

    Toe Ground (radius = 0.1 in.)Over StressedStress Relieved

    Weld Profile (flank angle 20 o)

    As Welded

    Fatigue Life, NT

    (cycles)

    RemoteStressRange,

    S(ksi)

    t = 0.5-in. (12mm); R = 0

    Without Fabrication Stresses

    Nominal

    Ideal

    Light industry weldments

  • 7/29/2019 Improving Fatigue Life

    36/48

    AM 11/03 36

    104

    105

    106

    107

    108

    1

    10

    100

    Toe Ground (radius = 0.1 in.)Over Stressed

    Stress Relieved

    Weld Profile (flank angle 20 o)As Welded

    Fatigue Life, NT

    (cycles)

    RemoteStressRange,

    S(ksi)

    t = 2.0-in. (50 mm); R = 0

    With Fabrication Stresses

    Nominal

    Ideal

    Heavy industry weldments

  • 7/29/2019 Improving Fatigue Life

    37/48

    AM 11/03 37

    Outline

    n Obvious things to do

    n Problems the weld toe

    n Fatigue life Improvement Strategies

    n Light and heavy industry weldments

    n Improving the bad weldments

  • 7/29/2019 Improving Fatigue Life

    38/48

    AM 11/03 38

    Weldment with a transverse attachment

    Transverse attachme

    Good weldment

  • 7/29/2019 Improving Fatigue Life

    39/48

    AM 11/03 39

    Weldments with longitudinal attachments have a low fatigue resistancebecause of the presence of weld terminations. Starts and stopsintroduce weld discontinuities. Residual stresses very high. 3-D stress

    concentrations effects

    C

    Longitudinal attachment

    Bad weldment

  • 7/29/2019 Improving Fatigue Life

    40/48

    AM 11/03 40

    Examples of terminations

    C

    C

    a

    b

    C

    L-P

    L-P

    L

    P

    C

    C

    C

  • 7/29/2019 Improving Fatigue Life

    41/48

    AM 11/03 41

    Longitudinal attachment

    Longitudinal attachment with stress diffusers

    Stress diffuser

    Placement of stress diffuser

  • 7/29/2019 Improving Fatigue Life

    42/48

    AM 11/03 42

    3-D FEM modeling

  • 7/29/2019 Improving Fatigue Life

    43/48

    AM 11/03 43

    Effectiveness of a stress diffuser

    Longitudinal attachmentLongitudinal attachment

    with stress diffuser

  • 7/29/2019 Improving Fatigue Life

    44/48

    AM 11/03 44

    Effect on MK and NP

    1

    2

    3

    4

    0.001 0.01 0.1

    L.A.

    L.A. with stress diffusers

    Transverse attachment

    Weldgeometrycorrectionfactor,M

    K

    Crack length / main plate thickness, (a/T)

    105

    106

    107

    0.002 0.02 0.2

    L.A.

    L.A. with stress diffusersTransverse attachment

    FatigueCrackPropagationLife

    ,N

    P(cycles)

    Initial crack length / main plate thickness, (ao

    /T)

  • 7/29/2019 Improving Fatigue Life

    45/48

    AM 11/03 45

    Fatigue test results

    40

    60

    80

    100

    300

    500

    105 106 107

    L.A., Series 1

    L.A., Series 2

    L.A., Series 3

    L.A. with stress diffusers, Series 1

    L.A. with stress diffusers, Series 3

    R

    emoteStressRange,S(MPa)

    Fatigue Life, N (cycles)

  • 7/29/2019 Improving Fatigue Life

    46/48

    AM 11/03 46

    40

    60

    80

    100

    300

    500

    105 106 107

    Transverse attachments, databaseLongitudinal attachments, databaseLA specimens, Procedures 1 and 2LA specimens, Procedure 3SD specimens, Procedure 1SD specimens, Procedure 3

    Fatigue Life, N (cycles)

    Fatigue test results

  • 7/29/2019 Improving Fatigue Life

    47/48

    AM 11/03 47

    Summary

    The fatigue strength of Ideal weldments can be muchimproved; whereas, the fatigue strength of Nominalweldments cannot.

    Weld toe grinding or weld profile control works best forIdeal weldments at short lives. Beware of corrosionpitting.

    Smaller Ideal weldments are more susceptible to

    improvement than larger weldments.

    Fabrication stresses are critically important.

  • 7/29/2019 Improving Fatigue Life

    48/48

    AM 11/03 48

    The behaviors of light and heavy industry weldments aredissimilar.

    Stress relief annealing and over-stressing works best for Idealweldment at long lives. Beware of compressive overloads.

    Fatigue behavior of weldments and effective life improvementmethods depends upon weldment size and weld quality

    Stress-diffuser can substantially improve the fatigue life ofterminations without post-weld processing.

    Summary