Improved Axonal Regeneration Responses in the Injured ...

18
133 서 론 , 1) . , , , 2) , , , , 1,3) . 4) , , , , , , 5) . Improved Axonal Regeneration Responses in the Injured Sciatic Nerve of Rats by Danggui Treatment Hong Soon-Sung, Oh Min-Seok Dept. of Oriental Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Korea. Objective: This study was performed to examine Danggui (DG, Angelica gigas Nakai)’s potential activity for promoting axonal regeneration in the injured peripheral nerve. Methods: Using the sciatic nerve in the rats, DG extract 5 (10 / in 0.5% saline) was dripped into the injury site of the nerve. Results: DG treatment facilitated axonal elongation responses in the distal portion to the injury site. GAP-43 protein levels were upregulated by DG treatment in the injured nerve and also in the DRG, suggesting the induction of GAP-43 expression at gene expression level after nerve injury. Phospho-Erk1/2 protein levels were upregulated in the injured nerve area and also in the DRG, suggesting retrograde transport of phospho-Erk1/2 protein from the injury area to the cell body. Cdc2 protein levels were slightly upregulated by DG treatment. DG treatment increased the number of non-neuronal cells in the distal portion to the injury site. Conclusions: The present data suggest that DG is effective for enhanced axonal regrowth after sciatic nerve injury. Key Words : Danggui (DG, Angelica gigas Nakai), sciatic nerve, axonal regeneration 2008 3 14 2008 5 9 : , 2 1136 (Tel:+82-42-470-9136, Fax:+82-42-470-9008, E-mail:[email protected]) 홍순성, 오민석 Original Article 29 2 (2008 5 ) J Korean Oriental Med 2008;29(2):133-150

Transcript of Improved Axonal Regeneration Responses in the Injured ...

133

서 론

,

1).

,

, , 2),

,

, ,

1,3).

4),

, , , ,

, 5).

Improved Axonal Regeneration Responses in the Injured Sciatic Nerve of Rats by Danggui Treatment

Hong Soon-Sung, Oh Min-Seok

Dept. of Oriental Rehabilitation Medicine, College of Korean Medicine, Daejeon University, Korea.

Objective: This study was performed to examine Danggui (DG, Angelica gigas Nakai)’s potential activity for promoting axonal regeneration in the injured peripheral nerve.

Methods: Using the sciatic nerve in the rats, DG extract 5 (10 / in 0.5% saline) was dripped into the injury

site of the nerve.

Results: DG treatment facilitated axonal elongation responses in the distal portion to the injury site. GAP-43 protein

levels were upregulated by DG treatment in the injured nerve and also in the DRG, suggesting the induction of

GAP-43 expression at gene expression level after nerve injury. Phospho-Erk1/2 protein levels were upregulated in the injured nerve area and also in the DRG, suggesting retrograde transport of phospho-Erk1/2 protein from the injury

area to the cell body. Cdc2 protein levels were slightly upregulated by DG treatment. DG treatment increased the

number of non-neuronal cells in the distal portion to the injury site.

Conclusions: The present data suggest that DG is effective for enhanced axonal regrowth after sciatic nerve injury.

Key Words : Danggui (DG, Angelica gigas Nakai), sciatic nerve, axonal regeneration

2008 3 14 2008 5 9

: , 2 1136

(Tel:+82-42-470-9136, Fax:+82-42-470-9008,

E-mail:[email protected])

홍순성, 오민석

Original Article

29 2 (2008 5 )J Korean Oriental Med 2008;29(2):133-150

29 2 (2008 5 )

134

6)

, rat

,

,

.

재료 및 방법

1. 실험재료

1)

7

Sprague-Dawley(SD, , Korea)

30 . 1

.

, 22 2

4 , 50±10% ,

(12

/ ) .

2)

(Angelica gigas Naka)

.

3)

PVDF membrane

(Pall Corporation, USA), anti-rabbit IgG(Santa

Cruz Biotech, USA), anti-GAP-43 antibody(H-100,

rabbit polyclonal, Santa Cruz Biotech, USA),

anti-Cdc2 antibody(Santa Cruz Biotech, USA),

anti-β -tubulin antibody(Tuj-1, Covarice, USA),

anti-p-Erk antibody(Santa Cruz Biotech, USA),

anti-neurofilament200 antibody(NF-200, N52, Sigma,

USA), anti-actin antibody(MP Biomedicals, USA),

rho-damin-goat anti-rabbit antibody(Molecular Probes,

USA), carbocyanine dye l, l'-dioctodecyl-3 ,3 ,3'

,3' tetramethylindocarbo-cyanine perchlorate(DiI;

dimethylsulfixide 3%, Sigma, USA), poly-L-ornithine

(0.1 / , Sigma, USA), laminin(0.02 / ,

Collaborate Research, USA), DMEM medium

(Gibco, USA), type XI collagenase(2500 U/ ,

Sigma, USA) .

( , Korea), rotary

vaccum evaporator(Büchi B-480, Switzerland),

freeze dryer(EYELA FDU-540, Japan), CO2

incubator(Forma Scientific Co., USA), clean

bench(Vision Scientific Co., Korea), autoclave

(Sanyo, Japan), micro-pipet(Gilson, France), water

bath(Vision Scientific Co., Korea), vortex mixer

(Vision Scientific Co., Korea), blood glucose

meter(Lifescan, USA), spectro-photometer(Shimazue,

Japan), centrifuge(Sigma, USA), deep-freezer(Sanyo,

Japan), thermocycler system(MWG Biotech, Ger-

many), ice-maker(Vision Scientific Co., Korea),

homogenizer(OMNI, USA), plate shaker (Lab-Line,

USA), i-solution software(Image & Microscope

Technology Goleta, Canada), Kodak scientific

imaging film(Eastman Kodak Co., USA),

(Nikon E-600, Kawasaki, Japan)

.

2. 방 법

1)

54 g 2,000

3

6 g

, (-84 )

.

(356)

1 : rat

135

2)

3

.

(Control),

( ),

(

) .

(10 / in 0.5% ) 5

pipette

,

. 0.5% 5

.

3) 7)

. ketamine(80 / )

rompun(5 / )

(intraperitoneal injection) ,

(30×20 )

.

30 1

, 30 .

,

heating pad

36 37 .

4) Western blot analysis

137 mM NaCl, 2.7 mM KCl,

10mM Na2PO4, 2 mM KH2PO4(pH 7.4)

PBS 50 200 triton lysis

buffer(20 mM tris, pH 7.4, 137 mM NaCl, 25

mM β-blycerophosphate, pH 7.14, 2 mM sodium

pyrophosphate, 2 mM EDTA, 1 mM Na3VO4,

1% triron X-100, 10% glycerol, 5 / leupeptin,

5 / aprotinin, 3 µM benzamidine, 0.5 mM

DTT, 1 mM phenylmethylsulfonyl fluoride)

. sample

, 10

western blot analysis .

anti-glu 4 antibody .

Membrane proteins 12% SDS-PAGE(1.5 M

trizma base, 10% sodium dodecyl sulfate, 30%

acrylamide, 10% ammonium sulfate, TEMED)

PVDF membrane

. antibody

3% BSA, 0.1% tween 20

TBS buffer membrane 1

4 16 .

membrane wash-ing rat glut

4 C-terminal polyclonal antibody

blocking buffer(1× TBS buffer, 3% BSA, 0.1%

tween-20) 1:1000

30 . membrane

anti-rabbit IgG horser-

adish peroxidase 1:1000

30

. western blotting detection

system membrane

Kodak scientific imaging film

.

5) Hoechst

-20 cryostat

20

. (double immunofluo-

rescence staining) , 4% parafo-

rmaldehyde, 4% sucrose PBS

45 .

(357)

29 2 (2008 5 )

136

blocking buffer 4

1 . 1

anti-neurofilament200 antibody(NF-200),

anti-GAP-43 antibody, anti-Cdc2 antibody, anti-β

-tubulin antibody(Tuj-1), anti-p-Erk antibody

. 2.5% BSA, 2.5% horse

serum blocking buffer 1:600

4 16

. 1

PBST , 2.5% BSA, 2.5%

horse serum blocking buffer

fluorescein-goat anti-mouse rhodamin-goat anti-

rabbit antibody 1:100 1

30 2 . 2

3 PBST(phosphate-buffered

saline with 0.1% triton ×100) . Hoechst

2 0.25%

Hoechst 33258 PBST

PBST .

sample ,

Adobe photoshop

(version 5.5) green red

.

photoshop program layer blending mode options

.

3. 통계 처리

data student's t-test8)

. p 0.05

.

성 적

1. GAP-43 단백질 유도 생성의 변화

1) 3 western

blot analysis

3

, GAP-43

,

.

actin

(Fig. 1).

CTL SAL DG

GAP-43

Actin

Fig. 1.

(358)

1 : rat

137

2) 3

3

NF-200 ,

, 1

, 3

, 1

3

.

NF-200

GAP-43

, 1 3

GAP-43

(Fig. 2).

3) 7

7

NF-200 ,

7 ,

10

, GAP-43

CTL

SAL

1: Injury site

2: 1mm distal

3: 3mm distal

1: Injury site

2: 1mm distal

3: 3mm distal

DG

Fig. 2.

(359)

29 2 (2008 5 )

138

10

.

4) 3

3

, GAP-43

,

.

Tuj-1

(Fig. 4).

DG

SAL

Fig. 3.

CTL

DG

SAL

Fig. 4.

(360)

1 : rat

139

5) 7

7

, GAP-43

,

(Fig. 5).

2. p-Erk1/2 단백질 유도 생성의 변화

1) 3 western

blot analysis

3

, p-Erk1/2

,

. Actin

(Fig. 6).

2) 3

3

p-Erk1/2 ,

,

3

,

SAL DG

Fig. 5.

CTL SAL DG

p-Erk 1/2

Erk 1/2

Actin

Fig. 6.

(361)

29 2 (2008 5 )

140

3

(Fig. 7).

3) 7

7

p-Erk1/2 ,

3

,

3

(Fig. 8).

CTL

SAL

DG

Injury site 3 mm distal

Fig. 7.

SAL

DG

Injury site 3 mm distal

Fig. 8.

(362)

1 : rat

141

4) 3, 7

3

p-Erk1/2 ,

,

(Fig. 9A).

7

p-Erk1/2 ,

,

(merged image)

(Fig. 9B).

3 7

p-Erk1/2 7 3

.

3. Cdc2 단백질 유도 생성의 변화

1) 7 western

blot analysis

SAL

DG

SAL

DG

A B

Fig. 9.

CTL

Cdc2

SAL DG

Actin

Fig. 10.

(363)

29 2 (2008 5 )

142

7

, Cdc2 ,

. Actin

(Fig. 10).

2) 3, 7

3

Cdc2 ,

3

,

3

,

.

7

Cdc2 ,

3

(Fig. 11).

4. 비신경 세포 증식 효과

1) 3 Hoechst

3

Hoechst

, 0.1

450±83 , 1, 3

0.1

758±67 ,

780±79

(p<0.05).

CTL

SAL

DG

Injury site 3mm distal

3 days post crushInjury site 3mm distal

7 days post crush

Fig. 11.

(364)

1 : rat

143

,

,

,

,

(Fig. 12).

2) 7 Hoechst

7

Hoechst

CTL

SAL

DG

proximal Injury site 1 mm distal 3 mm distal

A

1200

1000

800

600

400

200

0

The number of nuclei

DG

SAL

Distance from the injury site (mm)

-1 0 1 3

B

Fig. 12.

SAL

DG

Injury site 3 mm distal 7 mm distal 10 mm distal

A

1200

1000

800

600

400

200

0

The number of nuclei

DG

SAL

Distance from the injury site (mm)

0 3 7 10

B

Fig. 13.

(365)

29 2 (2008 5 )

144

, 0.1

862±96 , 852

±102

(p<0.01).

3, 7, 10

,

(Fig. 13).

고 찰

,

1),

7).

,

9).

4),

, ,

, ,

, ,

, ,

,

, ,

, , ,

, 5).

·10)

,

,

, , , 11)

, ·12)

“ ”, ·12)

“ ”

11).

,

13),

14)

.

, , , ,

, , ,

6).

15),

16) 17),

18),

19)

, 20)

, 21,22)

,

.

, rat

, ,

.

(366)

1 : rat

145

GAP-43, p-Erk1/2, Cdc2

.

GAP-43 43 kDa axonal growth-

associated protein 1980

23), rat

,

24).

GAP-43 ,

. GAP-43

(presynaptic terminal)

protein kinase C

CaM kinase kinase25)

.

, GAP-43

26).

,

GAP-43

24).

3 7

GAP-43 ,

,

. GAP-

43

. GAP-43

.

.

rat GAP

-43

GAP-43

,

.

Erk1/2 MAP kinase

, 27)

.

MAP kinase c-Jun N-terminal

kinase(JNK) p38

28).

MAP kinase

, kinase

. , Erk1/2 kinase MEK1/2

, JNK kinase

MEK 4, 627)

. JNK

Erk1/2

.

MEK kinase

, Erk1/2 JNK

29). Erk1/2

.

p-Erk1/2 3

7

.

,

(367)

29 2 (2008 5 )

146

.

p-Erk1/2

p-Erk1/2

MEK 1/2 p-Erk1/2

.

p-Erk1/2

30).

p-Erk1/2

Erk1/2

, Erk1/2

Rsk CREB(cAMP responsiveness element

binding protein)27)

.

p-Erk1/2

.

Cdc2 cycle G2 phase M

phase

cyclin B 31)

. , Cdc2

G2 phase

cyclin B1 B2

,

32).

Cdc2 cyclin

, Cdc2

33). Cdc2

.

Cdc2

,

Cdk

(apoptosis) ,

(proapoptotic protein) Bad

34).

Cdc2

Cdc2

35).

Cdc2 7

western blot analysis .

3 7

Cdc2

,

.

Cdc2

.

.

,

37). ,

,

,

1).

Cdc2

,

(368)

1 : rat

147

,

. 3 3

,

. ,

7

,

(0 10 )

.

.

.

5 DiI

. 3

,

21.8%

. 7

3

,

69.7%

(p<0.01),

DiI

.

3

(T11-12) ventral horn

,

62.5%

(p<0.01),

7 ventral horn 3

,

50%

(p<0.05).

, 3

, DiI

5

..

3

.

.

DiI

10

20% .

.

.

.

(preconditioning)

3 10

,

in vivo

(369)

29 2 (2008 5 )

148

36,37).

(lesion signal)

,

.

37).

,

.

. 1

, 2

.

GAP-43 ,

. in vivo

.

.

,

(multiple effects)

.

, GAP-43, p-Erk1/2

,

.

,

.

,

.

결 론

.

1. NF-200

.

2. GAP-43

.

3. p-Erk1/2

.

4. Cdc2

.

5.

.

.

참고문헌

1. Fawcett JW, Keynes RJ. Peripheral nerve

regeneration. Annu Rev Neurosci. 1990;13:43

-60.

2. Dyck PJ. The cases. clasification and treatment

of peripheral neuropathy. N Engl J Med.

1982;307:283-6.

3. Schwab ME, Bartholdi D. Degeneration and

regeneration of axons in the lesioned spinal

(370)

1 : rat

149

cord. Physiol Rev. 1996;76(2):319-70.

4. . . : . 1992:

640, 641.

5. Havton LA, Hotson JR, Kellerth JO. theory of

muscl energy tequnique. Muscle Nerve. 2008;

24(5):662-6.

6. . . : . 1981:101-2.

7. Waller A. Experiments on the section of the

glossopharyngeal and hypoglossal nerves of

the frog and observations of the alterations

produced thereby in the structure of their

primitive fibers. Philos Trans R Soc Lond B

Biol Sci. 1850;140:423-9.

8. Daniel WW. A foundation for analysis in the

health sciences. third edition. USA:MIT. 1983:

136-46.

9. Al-Majed AA, Neumann CM, Brushart TM,

Gordon T. Brief electrical stimulation promotes

the speed and accuracy of motor axonal

regeneration. J Neurosci. 2000;1:20(7):2602-8.

10. . . :

. 1982: :322, 359, :49.( )

11. .

. : . 1995:28.

12. · . .

: . 1982:73, 572, 578..( )

13. Tohda C, Kuboyama T, Komatsu K. Search

for natural products related to regeneration of

the neuronal network. Neurosignals. 2005;14

(1-2):34-45.

14. Xu H, Jiang B, Zhang D, Fu Z, Zhang H.

Compound injection of radix Hedysari to

promote peripheral nerve regeneration in rats.

Chin J Traumatol. 2002;5:107-11.

15. .

. . 1984;7:261-71.

16. , , .

. . 1996;13

(2):254-62.

17. , , .

. . 1994;11(4):113-29.

18. , .

. .

1996;13(1):1-10.

19. .

.

. 1991;14:381-95.

20. , , .

Stress

. . 2006;23(3):47-56.

21. , .

Intraluminal Filament

.

. 2004;21(2):1-20.

22. , , .

.

. 2003;18(4):25-35.

23. Skene JH, Willard M. Axonally transported

proteins associated with axon growth in rabbit

central and peripheral nervous system. J Cell

Biol. 1981;89:96-103.

24. Meberg PJ, Gall CM, Routtenberg A.

Induction of F1/GAP-43 gene expression in

hippocampal granule cells afterseizures. Brain

Res Mol Brain Res. 1993;19(1-2):179.

25. Alexander KA, Wakim BT, Doyle GS, Walsh

KA, Storm DR. Identification and characterization

of the calmodulin-binding domain of neuro-

modulin, a neurospecific calmodulin-binding

protein. J Biol Chem. 1988;263(16):7544-9.

26. Curtis R, Stewart HJ, Hall SM, Wilkin GP,

Mirsky R, Jessen KR. GAP-43 is expressed

by nonmyelin-forming Schwann cells of the

peripheral nervous system. J Cell Biol.

1992;116(6):1455-64.

(371)

29 2 (2008 5 )

150

27. Grewal SS, York RD, Stork PJ. Extracellular-

signal-regulated kinase signalling in neurons.

Curr Opin Neurobiol. 1999;9(5):544-53.

28. Xia Z, Dickens M, Raingeaud J, Davis RJ,

Greenberg ME. Opposing effects of ERK and

JNK-p38 MAP kinases on apoptosis. Science.

1995;24:270(5240):1326-31.

29. Desbarats J, Birge RB, Mimouni-Rongy M,

Weinstein DE, Palerme JS, Newell MK. Fas

engagement induces neurite growth through

ERK activation and p35 upregulation. Nat Cell

Biol. 2003;5(2):118-25.

30. Perlson E, Hanz S, Ben-Yaakov K, Segal-

Ruder Y, Seger R, Fainzilber M. Vimentin-

dependent spatial translocation of an activated

MAP kinase in injured nerve. Neuron.

2005;3:45(5):715-26.

31. Doree M, Hunt T. From Cdc2 to Cdk1: when

did the cell cycle kinase join its cyclin partner.

J Cell Sci. 2002;115(12):2461-4. (:

- 33,34 )

32. Porter LA, Donoghue DJ. Cyclin B1 and

CDK1: nuclear localization and upstream

regulators. Prog Cell Cycle Res. 2003;5:335-

47.

33. Manes T, Zheng DQ, Tognin S, Woodard AS,

Marchisio PC, Languino LR. Alpha(v)beta3

integrin expression up-regulates cdc2, which

modulates cell migration. J Cell Biol. 2003;

161:817-26.

34. Konishi Y, Bonni A. The E2F-Cdc2 cell-cycle

pathway specifically mediates activitydepriv-

ation-induced apoptosis of postmitotic neurons.

J Neurosci. 2003;23(5):1649-58.

35. Han IS, Seo TB, Kim KH, Yoon JH, Yoon

SJ, Namgung U. Cdc2-mediated Schwann cell

migration during peripheral nerve regeneration.

J Cell Sci. 2007;120(Pt2):246-55.

36. Richardson PM, Issa VM. Peripheral injury

enhances central regeneration of primary sensory

neurones. Nature. 1984;309:791 3.

37. Smith DS, Skene JH. A transcription-dependent

switch controls competence of adult neurons

for distinct modes of axon growth. J Neurosci.

1997;17(2):646-58.

(372)