Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter...

26
Imaging,Visible, Tunable, Imaging,Visible, Tunable, Narrow- Passband Passband Filter System Filter System A Multiple Fabry-Perot Etalon Interferometer for the ATST G. Allen Gary/MSFC, K. S. Balasubramaniam/NSO, Michael Sigwarth/KIS, Thomas Kentischer/KIS, Gil Moretto/NSO, and the ATST team 27 August 2003 – ATST Conceptual Design Review

Transcript of Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter...

Page 1: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Imaging,Visible, Tunable, Imaging,Visible, Tunable, Narrow-Passband Passband Filter SystemFilter System

A Multiple Fabry-Perot Etalon Interferometer for the ATST

G. Allen Gary/MSFC, K. S. Balasubramaniam/NSO, Michael Sigwarth/KIS, Thomas Kentischer/KIS, Gil Moretto/NSO, and

the ATST team

27 August 2003 – ATST Conceptual Design Review

Page 2: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Outline of the Presentation

• The MFPI concept• Baseline Instrument: Triple Fabry-Perot

Etalons• Optical Layout and Interface for the ATST• Technology development• Estimated Cost • Science

Page 3: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Fabry-Perot Etalons

• Commensurate spectral resolution for high resolution imaging at telescope resolution• 1/250,000 at 500 nm

• High light throughput• Sufficient number of spectral samples within solar oscillation

periods, solar feature changes

• Rapid tuning, calibrations• Better compensation for atmospheric effects, • And stability

• Provides simple spectroscopy and polarimetry of multiple lines in encompassing fashion

• Polarization fidelity and purity

• Uses commercial technology

• Visible range coverage (450nm-750nm)

Page 4: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Comparison with other alternativesATST VisibleNarrow-Band Filter

Candidates

Air-GapFabry-PerotInterferometer

SolidFabry-PerotInterferometer

LyotBirefringentFilter

Solid PolarizingMichelsonInterferometer

FWHM(minimum) ~2pm (NSO - Dual Etalon) ~10pm (APL - Flare Genesis) ~10pm (LMSAL - SOUP) 2-10pm (NSO - GONG)

TransmittancePrefilter FactorTotal Throughput

~90% ~60%~50%

~30%~60%~50%

~14%~60%~8%

~90%~8% - 50%

~8-50%

Pre-Filter Requirement 0.2nm Interference filter 0.2nm Interference filter 0.2nm Interference Filter Lyot plus 0.2nm Interf. filter

FOV Variation n2 ne-no)/neno2 p2/n2- p1/n1)/

p2n2- p1n1)

Tuning Device Piezoelectric Lithium niobate Rotating polarizers Rotating waveplates

Technology Requirements Large etalons, Ghost reflections,Mountings

Thin elements,Superpolishing,Refractive index

Improve Transmittance,Longer and thinner elements

Multiple elements,Archomatic refractive index,Larger path differences

OperationalInstruments

KIS TESOS, USAF ISOON,ItalianUBI, Sac Peak Dual FPI

Flare Genesis,Mees UHIMaX IAC (dev)

NSO UBF,LMSAL SOUP

MSO GONG,SOHO MDISWIFT WAMDII

MajorDisadvantages

Large etalons required,Local finesse variation

requires obtaining very good flat fields.

Wavefront error,A minimum etalon thickness

and minimum FWHM ~8pm,

High voltages are required

Temperature sensitivity, low transmittance,

Maximum and minimum calcite elements pushing technology and availability

Wavelength range is restricted and multiple wavelength elements are required.

Prefilter requirements restricts transmittance

MajorAdvantages

Overall Simplicity,Known technologyWorking system,Universal filter with the 2pm

FWHM, high transmittance

Larger FOV than air-gap FPI,Universal filter

Large FOV,Universal filter

Largest FOV for specified ,Simplicity of operation

Gary, G. A., & Balasubrumanium, K. S., 2003, Additional Notes Concerning the Selection of A Multiple_Etalon for the Advanced Technology Solar Telescope .

Page 5: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Multiple Imaging Modes

• Imaging spectrograph/spectropolarimeter ( 2pm, 0.5-1’ FOV)

• TESOS, IBIS, NSO Dual FPs

• Imaging Spectro-polarimeter /Imaging Magnetograph, (5pm – 12pm, 3’ FOV)

• UBF/Filter Magnetographs

• Intermediate-band filter (20pm – 30pm, 1-3’ FOV)

• Dual FP System, UBF-FP combination filters

• Broad-band filter (0.1nm - 2nm, 3’FOV)

• Reflection slit-jaw spectroscopy, UBF-like spectroscopy

Spectral Coverage 450 – 750 nmImaging Spectrographic Observations

Page 6: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Multiple Observational Modes

Filter Mode

Observations Passband FWHM (pm)

Field of View (arcmin)

Typical Spectral Lines (nm)

Peak Transmission

A. Narrow Passband (Dual/Triple Etalon Configuration)

Spectro-polarimetry using I,Q,U,V Stokes fractional parameters 3D Spectrometry & 3D Tomography & Flow Geometry

2.0 1 FeI: 524.70, 525.02, 525.06, 630.15, 630.28 629.87, 868.8 CaII: 863.5 FeI: 569.1,557.6, 684.27 CI:538.03

>50%

B. Medium Passband (Single or Dual Etalon Configuation)

Filter Vector Magnetograms Filtergrams

12.0 3 FeI: 525.02, 525.06, 630.15, 630.28 CaII: 863.5 CaII: 863.5 MgI : 517.2

>60%

C. Intermediate Passband (Single Etalon Configuration)

Dopplergrams High-Speed Imagery & Flares

20-30 3 HI: 656.3 FeI: 543.45, 557.6, 630.15 HI: 656.3

>70%

D. Broad Passband (Interference Blocking Filters only)

Advective Flows-Transverse Flows Movies &Active Region Evolution

100-1000 3 CN: 430.5 CaI: 399.3 CN: 430.5 Continuum 450.8

>80%

Page 7: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Resolution & Spectral Purity

• Single etalon system– Airy Function, very narrow

blocking filter (~0.2nm)– for R=0.94, minimum

transmittance is 10-3 of the maximum.

• Multiple etalon system – Reflectance of coatings, of

combined etalons– Narrow blocking filters (~1nm)– Optimize spectral purity with

• Ratio of Finesse• Free spectral range• Design of prefilters

• Triple Etalons have superior out-of-band rejection by placement of etalon minima

– Darvaan and Owner-Peterson (1994) Performance based on analysis of maximum ghost and SNR

Reference: Gary, G. A., Balasubramaniam, K. S., and Sigwarth, M.: 2003,’ Multiple Etalon Systems for the Advanced Technology Solar Telescope’, SPIE proceeding: “Innovative Telescopes and Instruments for Solar Physics”, eds. Stephen L. Keil and Serge V. Avakyan, SPIE 4853-37, p. 252-272.

10-4

Page 8: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Single vs. Multiple Etalons

Objective: Spectral resolution = ~ 0.5x10-5 or 2 pm

• Single etalon system– Spectral resolution: ~ F 2 d

– F is the finesse and d is the etalon gap distance. – For d~1mm, =500nm, ~10-3 /F; the FSR=0.1nm, and narrow FWHM blocking filters are

required. Spectral resolution of 10-5 requires high finesse (F>100!).

• Multiple etalon system – Spectral resolution is given by~ FSR / F

– FSR is the free spectral range of the multi-etalons in combination.

– For =500nm, then ~ 10-3FSR , the Spectral resolution of 10-5 requires only a FSR~10nm, hence need low finesse of 20 and wide FWHM for the blocking filters

Page 9: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

TESOS Heritage

Page 10: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

AB

C

Required Etalon Aperture

The wavelength variation versus aperture, for 4m ATST primary with FOV's of 1 and 3’. The solid lines are for 5250Å and the dashed curve is for 6302Å. For 3’ FOV the shift is 120mA for 250mm-aperture (A). For a 1’ FOV a 100mm etalon would allow a reasonable shift of ~100mA across the field of view (B) . The narrow band filter system in a ~100mA mode could do filter magnetograms. For a spectro-polarimeter with (~20mA) it seems that 150-200mm aperture is required for 1’ FOV (C). Grey Bar: F~25 realistic apertures

n=1 (Air/He gap)

n=2.1 (liquid gap)

x 0.48

FOV=3’

FOV=1’

200mm

Page 11: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Requirements

• Minimum aperture: 200mm diameter • Wavelength range: 450-750nm• Bi-modal operation - dual and triple system• Spectral resolution

– 1/250,000 for triple etalon - 50,000 for dual etalon• Minimum Peak Transmission

– 50% (with blocking filters)• Minimum Peak Transmission

– 10-4

• Maximum Stray-light– 10-3

• Drift Stability– 1mÅ/hr

Page 12: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

TESOS/KIS Optics

Page 13: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

TESOS/KIS Optical Design

3 or 2 Etalons

Laser Source

Monitors

Cameras Ghost Suppressors

Focal Plane Reticules, PinholesTargets, & Stops

White Light Imaging, radiance, scaling Alignment Mask

Variable

Motorized

Page 14: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

ATST Telecentric Optical Design

Page 15: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

MFPI 36”FOV MODE

Optical Design Specifications:

• Input Beam: ATST Coudé F/20

• 200MM Etalons on F/300 Tel. Beam

• 100MM Collimated Beam (Filters)

• WVL Band: 450 to 750nm

• 36” FOV Camera: Ps=1.25”/mm

• All Spherical Lenses

• All Spherical Mirrors

Gil Moretto/NSO

Page 16: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

ATST COUDÉ F/20 + MFPI 36”FOV MODE

Page 17: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

MFPI 36”FOV MODE LAYOUT

Page 18: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

TELECENTRICITY

Page 19: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

MFPI 36”FOV CAMERA OPTICAL PERFORMANCE

POLYCHROMATIC

Page 20: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Issues

• Determine etalon parameters (d,R,F) Detail Darvann-Owner-Peterson- Analysis: Minimize light from parasitic orders Emphasizing compatible with operation: actual parameters, electronic control, optical setup, & drifts

• The final finesse and tunability of the 20cm etalons Early purchase and test of first (or a) 20cm etalon

• Flat fielding problems due to drift Atmospheric monitoring and correction

• Polarimeter design Refine dual camera polarimeter Compatibility with multiple mirror and nonpolarizing beam splitters and ATST Mueller matrix

Page 21: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Issues

• Spatial reflection ghost Tilt, wedge angles, calibration, optical testing at TESOS

• Determine building strategy Full or partial construction, prefilter set

• Refine estimated cost Updated pricing and cost analysis

• Telecentric beam/ Collimated Option F/250 at FPIs Detail pupil apodization analysis

• Complexities of off-axis optical systems Detail optical ray tracing and analysis Polarization study and Coude focus

Page 22: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Technology Studies

• Laura Allaire (Ph.D. student) in Optics at the University of Rochester is centering her thesis work on multiple Fabry-Perot interferometry and will assist in the ATST MFPI design. She started this summer (2003).

• Gil Moretto/NSO will continue to improve the breadboard design of the ATST MFPI.

• Ghost, apodization,and general concerns listed above will continue to be studied. (Allaire/UR)

• A second observational run at TESOS will hopefully provide a more through understanding of their instrument (e.g. ghost, drift, and spectral resolution). Thomas Kentischer/KIS is active member of the team.

• An improved cost estimate will be developed (lens vs mirrror)• Alternate concepts will be explored, e.g. dual etalons, as first

light configuration• Flexible optical design to be considered to allow for

advancement in technology.

Page 23: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Cost estimate (preliminary)

• Engineering design…………………....$ 1,200,000• [Optical, Mechanical, Electronic–Engineers and

Scientist-Project Manager for 2 years each]• Optical elements……………………….$ 21,000• Mechanical elements………………….$ 12,000• Electronic elements……………………$ 140,000• Three 20cm etalons……………………$ 834,000• Commercial software ………….……...$ 4,000• Electronic and computer Interface…....$ 175,000• Assembly, test, & integration…………$ 300,000 • [Optical, Mechanical, Electronic-Engineers and

Scientist-Project Manager for 1/2 years each]• Total…… $2,686,000

Page 24: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

ATST Science

• The imaging filter system for the ATST will provide the observational opportunities to spectrally probe the magnetic and hydrodynamic fine structures of the photosphere and the chromosphere at ultra-high spatial resolution.

• This filter will possess high-transmittance, and allow instantaneous, narrow-band spectral observations over an extended area of the Sun.

• The observations will allow rapid 3D-imaging spectrometry, Stokes spectropolarimetry, accurate surface photometry, and provide spectroheliograms that will measure Doppler velocity, transverse flows, and allow feature tracking, and the study of evolutionary changes of solar activity. When incorporated with the adaptive optics (AO) system, (with added optical correction techniques such as speckle interferometry), focal-volume and other post-focal techniques will allow finer spatio-spectral analysis.

• Narrow-band spectral imagery offers the advantage of avoiding spectrograph rasterization, with a distinct disadvantage of sequential tuning; but its high throughput and resultant cadence, coupled with active and adaptive optics corrections provide a good mitigation for this disadvantage.

• Provide one of the core instruments in multiple instrument mode of observing solar phenomena.

Page 25: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

Summary

• Multiple-Filter Modes• Narrow Passband Spectral Power: 250,000 (2pm)

• Throughput: 50% (goal)• Field of View: 1-3 arcmin (mode dependent)• Wavelength Coverage: 450-750 nm • Dual Camera Polarimetry• Spectral Purity: Parasitic peaks < 10-4

• Existing Technology

Page 26: Imaging,Visible, Tunable, Passband Filter System Imaging,Visible, Tunable, Narrow-Passband Filter System A Multiple Fabry-Perot Etalon Interferometer for.

References

• Gary, G. A., Balasubramaniam, K. S., & Sigwarth, M.: 2003, “Multiple-etalon Systems for the Advanced Technology Solar Telescope, Innovative Telescopes and Instrumentation for Solar Astrophysics”, eds. S. L. Keil and S. V. Avakyan, SPIE Proceedings 4853, 252.

• Gary, G. A., Balasubramaniam, K. S., & Sigwarth, M.: 2003, “Additional Notes Concerning the Selection of a Multiple-Etalon System for the Advanced Technology Solar Telescope”, Internal ATST document (currently)

• Kentischer, T., Sigwarth, M., Schmidt, W., and v. Uexkull, M.: 1998, “TESOS-Telecentric Etalon Solar Spectrometer”, TB v1.0, Kiepenheuer Institut fur Sonnenphysik, Freiburg, Germany.

• Kentischer, T., Sigwarth, M., Schmidt, W., and v. Uexkull, M.: 1998, "TESOS, a double Fabry-Perot instrument for solar spectroscopy", A&A, 340, 569.

• Langhans, K.; Schmidt, W.; Tritschler, A., 2002,“2D-spectroscopic observations of G-band bright structures in the solar photosphere”, Astronomy and Astrophysics, 394, 1069.

• Tritschler, A.; Schmidt, W.; Langhans, K.; Kentischer, T., 2002,“High-resolution solar spectroscopy with TESOS - Upgrade from a double to a triple system”, Solar Physics, 211, 17.

• von der Lühe, O. and Kentischer, Th. J.: 2000, “High Spatial Resolution of a Triple Fabry-Perot Filtergraph”,Astron. Astrophys. Suppl. Ser., 146, 499.