Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular...

35
Si nanocrystals in SiO 2 Ta liner in Cu via, x-section Nanoparticles Integrated Circuits 50 nm New Materials LaVO 3 /SrTiO 3 Superlattice Imaging at the Nanoscale - Electron and X-Ray Beams David Muller Judy Cha, Peter Ercius, Lena Fitting, Jerome Hyun, Aycan Yurtsever, Applied and Engineering Physics, Cornell University

Transcript of Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular...

Page 1: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Si nanocrystals in SiO2 Ta liner in Cu via, x-section

Nanoparticles Integrated Circuits

50 nm

New MaterialsLaVO3/SrTiO3 Superlattice

Imaging at the Nanoscale -Electron and X-Ray Beams

David Muller

Judy Cha, Peter Ercius, Lena Fitting, Jerome Hyun, Aycan Yurtsever,

Applied and Engineering Physics, Cornell University

Page 2: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

60 nm

WSix

Poly-Si

Similar challenges (and tools)for semiconductor and life sciences

STEM (J. Wall, BNL)

T2 Bacteriophage

100 nm

2007

2003

Commercial CMOS

Page 3: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Single atom Sensitivity:

Electron Energy Loss Spectrometer

Annular Dark Field (ADF) detector

yx

200 kV IncidentElectron Beam

(∆E=0.5 eV)

Incr

easi

ngen

ergy

loss

1 atom wide (0.2 nm) beam is scannedacross the sample to form a 2-D image

Elastic Scattering ~ "Z contrast"

Scanning Transmission Electron Microscopy

0 0.5 1 1.

ADF Signal Er M4 Edge

Distance (nm)

3 Å

P. Voyles, D. Muller, J. Grazul, P. Citrin, H. Gossmann, Nature 416 826 (2002)U. Kaiser, D. Muller, J. Grazul, M. Kawasaki, Nature Materials, 1 102 (2002)

Page 4: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Why is the Probe so Large?Why is the Probe so Large?• Probe diameter is ~ 2 Å• Electron Wavelength at 200 kV is 0.0251 Å• Non-ideal lenses large aberrations tiny numerical apertures

2 Å

Cs=1mm Cs corrected

Corrector Benefits: Increased current, resolution, contrast[see P. E. Batson et al., Nature 418, 617 (2002)]

Page 5: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

150

100

50

0

curre

nt d

ensi

ty (n

A/n

m2 )

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3probe radius (nm)

Cs corrected uncorrected

FWHM: 0.05 nm

FWM: 0.13 nm

Cs-Corrected STEMDP2 paired-Sb defect

Corrector Benefits: Increased resolution,contrast or current.

corrected

uncorrected

Page 6: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Aberration-Corrected STEM

NION SuperSTEM with PEELS• 0.4 eV energy resolution• 0.05 nm spatial resolution• 1 nm depth of focus -> 3D!• EELS spectral maps in real time

This will be the world’s first5th-order corrected STEM

(x 4 improvement over previous)

Due early ‘06late

Page 7: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Single atom Sensitivity:

Electron Energy Loss Spectrometer

Annular Dark Field (ADF) detector

yx

200 kV IncidentElectron Beam

(∆E=1 eV)

Incr

easi

ngen

ergy

loss

1 atom wide (0.2 nm) beam is scannedacross the sample to form a 2-D image

Elastic Scattering ~ "Z contrast"

Scanning Transmission Electron Microscopy

0 0.5 1 1.

ADF Signal Er M4 Edge

Distance (nm)

3 Å

P. Voyles, D. Muller, J. Grazul, P. Citrin, H. Gossmann, Nature 416 826 (2002)U. Kaiser, D. Muller, J. Grazul, M. Kawasaki, Nature Materials, 1 102 (2002)

104

105

106

107

108

0 100 200 300 400 500 600 700

Inte

nsity

(arb

. uni

ts)

Energy Loss (eV)

O-K edge

Si L edge

Incident Beam

Valence Excitations

Page 8: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

10 nm

Tomographic reconstruction of the Silicon plasmon signal at 17eV

3D-Characterization of Si Nanoparticles embedded in Silicon Oxide

Page 9: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Silicon Nano-particles Embedded in Silicon Oxide

Tomographic reconstruction of the Silicon plasmon signal at 17eV

Page 10: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

520 530 540 550 560 570

0

200

400

600

800

1000

1200

1400

O-K

Edg

e In

tens

ity (a

rb. u

nits

)

Energy Loss (eV)

050100150200

-20

-10

0

10

20

30Bulk-like OxideSub-OxideTotal O Signal

Oxygen Signal (Arb. Units)

Dis

tanc

e (Å

)

5.42 Å

Interface States aa--SiSi

SiOSiO22

SiSi

STEM Image

1.6 nm wide oxygen profile with 0.8 - 1 nm Bulk SiO2

Atomic Scale Oxygen Bonding in SiO2

D. A. Muller et al., Nature 399, 758 (1999).

Page 11: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Implications for Scaling SiOImplications for Scaling SiO22

The Interface width is fixedThe Interface width is fixedThere will be no more BulkThere will be no more Bulk--like bonding when the like bonding when the Oxide is less than 0.7 nm.Oxide is less than 0.7 nm.

0

500

1000

00.511.52

Bulk-LikeTotal

# of

O a

tom

s

Oxide Thickness (nm)0

1

2

3

4

1996 1998 2000 2002 2004

Oxi

de T

hick

ness

(nm

)

Year

When?

Theory inJ. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rev. Lett. 85, 1298 (2000).

Page 12: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Does Clockspeed Matter?

0.1

1

10

100

103

104

105

1970 1980 1990 2000 2010

Clo

cksp

eed

(MH

z)

YearFrom 1970-2005, bits/second increased by x 3,000,000

Clockspeed increased x 40,0000Bus Width increased x 8“Smarter Design” - only x 5

D. A. Muller, Nature Materials, 4 p 645 (2005)

Page 13: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

How Bad is Radiation Damage?R. Henderson, Quarterly Reviews of Biophysics 28 (1995) 171-193.

It’s not the cross-section, but

How many damaging events per useful imaging event?

Least Damage:Elastic imaging - Electrons winsInelastic imaging - Soft X-rays win

Page 14: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

0.1

1

10

100

1000

1 10 100

ElectronsX-rays

σ Ioni

zing

/σE

last

ic E

vent

s

keV

NS

N

S MoreElasticinformationper damagingevent

Data from Breedlove and Trammell, Science 170 (1970) 1310-1313

Radiation Damage as a Fundamental limit

For electrons σi / σe ~ln (E)

Page 15: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

What Causes the Damage?

LF Drummy et al. Ultramicroscopy 99 247-256

CalculatedC-K shell ionizationCross-section

SuggestsAuger Transitionscould be suspect,Rather than the20 eV valence losses

(Temperature rise is < 2K- smaller beam is less)

Page 16: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Electron Beam (400 keV) Radiation Damage in Vitreous Ice

Hydrogen Bubblesform in densestsections

100 nm

50 e-/nm2 200 e-/nm2

10,000 e-/nm2 14,000 e-/nm2

(Damage Threshold ~ 500 e-/nm2)

Page 17: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Dose Required for 2D-Imaging

22

2

0 rfCknr

>

k : S/N = 3f : fraction contributing to Background = 1Cr: contrast = 0.3r: resolution

It’s almost impossible to do atomic-resolution phase contrast imaging with biological samples (except by averaging over many similar molecules)!

1

10

100

1000

104

105

0.1 1 10

Dos

e (e

- /nm

2 )

Resolution (nm)

0.45 nm 1.3 nm

Critical Dose

Cr=0.1

Cr=0.3

Page 18: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Dose Required for 3-D Reconstructionsis worse!

B. F. McEwen et al, Journal of Structural Biology 138 47–57 (2002) Saxberg & Saxton, W.O., Ultramicroscopy 6, 85–90 (1981)

Dose α 1/(Resolution)4

P α 1/(Contrast)2

DoseContrast

Resolution

Page 19: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

High Resolution= Thin Sections

Small features have low contrast (and for a fixed dose we trade 2D resolution for contrast)

Resolution α Sample Thickness

(unless we have a fluorescence detection method)

Need to make thin samples (true for x-rays as well as electrons)

Page 20: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Focused Ion Beam Milling

Water Droplets in Liquid Margarine

Cut out a shape with a 5-30 keV Ga+ ion beam

Sample can beAs thin as 100 nm(but damage layerIs 10-30 nm/side)

Page 21: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Tomography at the Nanoscale

Walter Hoppe, Angew. Chem. Int. Ed. Engl. 22 (1983) 456-485

3D resolution function along X, dx ~ 0.2 nm along Y, dy ~ 1 nm along Z, dz ~ 1 nm (due to limited tilt range and finite number of projection images)

Sample thickness: 20-600 nm

Page 22: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

High tilt tomography holder (Fischione 2020)

No tilt (0º)

Low magnification (57x)CCD image

-80º

Limit of goniometer α tilt

+80º

Limit of goniometer α tilt

Page 23: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

BPJ W-BPJ

5projections

11projections

21projections

31projections

46projections

±10°

±20°

±30°

±40°

±50°

±60°

BPJ W-BPJORIG.

Effe

ct o

f Tilt

Effe

ct o

f Sam

plin

g

Matthew Weyland

Finite Sampling

Page 24: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Original -32 -16 -8

-4 -2 0 2

4 8 16 32

Determining the tilt axis

60°

60°

a) b)

c)

Single Image Projection through aligned series

Power spectrum of (b)Matthew Weyland

Page 25: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Stress Void Reconstruction

Via is 250 nm thick, inside a 500 nm thick Cu section

P. Ercius, M. Weyland, D. A. Muller, L. M. Gignac, Appl. Phys. Lett. 88 243116 (2006).

Page 26: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

(100 nm wires inside an IBM chip)

Double liner

Roughness

3D Imaging Inside Interconnects

Page 27: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

(100 nm wires inside an IBM chip)

Double liner

Roughness

3D Imaging Inside Interconnects

Page 28: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

How Metal Contacts Form on a Carbon Nanotube

Page 29: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

-1

-0.5

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160

Series1

Time (s)

Ener

gy S

hift

(eV

)

A Remote Truck-DetectorNon-magneticChair

Environmental Sensitivity

•Can detect moving chairs, elevators, trucks and air pressure changes.

•“Drift to the right, rain tonight”

We don’t just see atoms:

Acousticbanner

Radiantcoolingpanel

Page 30: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Cooling and Airflow

“DuctSox”porous meshfor uniform,low airflow

Radiantcoolingpanel

Acousticdampingmaterial

Page 31: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

•Radiant cooling panel temperature regulated by closed-loop chiller

•Brings room into thermal equilibrium with panels by radiative transfer

•By tuning the panel temperature, we can keep the building heat from pulsing

•Effect is to add a huge thermal mass to the room (a giant wine cellar)

Radiant Cooling Panels: Heat Transfer without Airflow

60

65

70

0 10 20 30 40

Tem

p (F

)

Time (hours)

Panels on

Panels off

(allows us to cut back airflow – which is now used to control humidity)

Stable panel operating point

Page 32: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Outlook

• Electron Microscopy: 0.5-0.7 Å resolution (1-2 Å standard today)0.1-0.5 eV energy resolutionSample thickness < 100-1000 nmSmall working distance (~3-10 mm)Nitride-window e-cells for imaging liquids

• X-Ray Microscopy:•Radiation damage will be worse for elastic imaging (1/r4 in 3D)•Best resolution will require TEM-like sample preparation•10 nm res & 1- 10 µm thick samples for whole-cellmapping

silicon polysiliconSiO2

1 nm

Page 33: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Acknowledgements

L->R: Aycan Yurtsever, Matt Weyland, Jerome Hyun, David Muller, Lena Fitting, Earl Kirkland, John Grazul, Judy Cha

Peter Ercius

Funding: National Science Foundation, Office of Naval Research, Semiconductor Research Corporation

Page 34: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Acknowledgements

Cu/CoWP (Cornell)• Peter Ercius, Tom Shaw, Mike Lane, Lynne Gygnac, IBM

Grain Boundaries in Ni3Al (Cornell)• David Singh (NRL), Phil Batson (IBM), Shanthi Subramanian, Steve

Sass, John Silcox

Imaging Individual Dopant Atoms (Bell Labs)• Paul Voyles, John Grazul, Hans Gossmann, Paul Citrin, Ute Kaiser

(Jena)

SiO2 and High-k Gate Oxides (Bell Labs)• Frieder Baumann, Greg Timp, Ken Evans-Ludderodt, Tom Sorsch,

Glen Wilk, Yves Chabal, Jack Hergenrother, Jeff Neaton (Cornell)

Page 35: Imaging at the Nanoscale - Electron and X-Ray Beams · Electron Energy Loss Spectrometer Annular Dark Field (ADF) detector y x 200 kV Incident Electron Beam (∆E=0.5 eV) Increasing

Electron Backscatter Imaging

EBSD, EMPA,John Hunt

[email protected]

Use electron channeling patterns toProduce maps of grain orientations

Needs clean surfaces, grains > 200 nm

(With a FEG-SEM, as small as 20-50 nm)