IM266 8H 5 - ABBEN ISO 9001: 1994 Cert. No. Q5907 ISO 9001: 2000 Cert. No. 9/90A Cert. No. 0255 0255...

44
Operating instruction IM/266_8H_5 Field IT 2600T Series Pressure Transmitters Models 266H/N Models 268H/N

Transcript of IM266 8H 5 - ABBEN ISO 9001: 1994 Cert. No. Q5907 ISO 9001: 2000 Cert. No. 9/90A Cert. No. 0255 0255...

  • - 1 -

    Operating instructionIM/266_8H_5

    FieldIT

    2600T Series Pressure Transmitters

    Models 266H/NModels 268H/N

  • - 2 -

    The Company

    ABB is an established world force in the design and manufacture ofinstrumentation for industrial process control, flow measurement, gas andliquid analysis and environmental applications.

    As a part of ABB, a world leader in process automation technology, we offercustomers application expertise, service and support worldwide.

    We are committed to teamwork, high quality manufacturing, advancedtechnology and unrivalled service and support.

    The quality, accuracy and performance of the Company’s products result fromover 100 years experience, combined with a continuous program of innovativedesign and development to incorporate the latest technology.

    The NAMAS Calibration Laboratory No. 0255(B) is just one of the ten flowcalibration plants operated by the Company, and is indicative of ABB dedicationto quality and accuracy.

    Use of Instructions

    Warning .An instruction that draws attention to the risk of injury ordeath.

    Caution.An instruction that draws attention to the risk of damageto the product, process or surroundings.

    Although Warning hazards are related to personal injury, and Caution hazards are associated with equipment or propertydamage, it must be understood that operation of damaged equipment could, under certain operational conditions, result indegraded process system performance leading to personal injury or death. Therefore, comply fully with all Warning andCaution notices.

    Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manualfor any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approvalof ABB Technical Communications Department.

    ✶ Note.Clarification of an instruction or additional information.

    Information.Further reference for more detailed information ortechnical details.

    ABB

    Health and SafetyTo ensure that our products are safe and without risk to health, the following points must be noted:

    1. The relevant sections of these instructions must be read carefully before proceeding.

    2. Warning labels on containers and packages must be observed.

    3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with theinformation given. Any deviation from these instructions, will transfer the complete liability to the user.

    4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of highpressure and/or temperature.

    5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handlingprocedures must be used.

    6. When disposing of chemicals ensure that no two chemicals are mixed.

    Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) maybe obtained from the Company address on the back cover, together with servicing and spares information.

    EN ISO 9001: 1994

    Cert. No. Q5907

    ISO 9001: 2000

    Cert. No. 9/90A

    Cert. No. 02550255

  • - 3 -

    Section Page

    INTRODUCTION............................................................ 3TRANSPORT, STORAGE, HANDLING ANDPRODUCT IDENTIFICATION ........................................ 4SAFETY PHILOSOPHY, MANAGEMENT OFFUNCTIONAL SAFETY, INFORMATIONREQUIREMENTS .......................................................... 5LIFE-CYCLE ACTIVITIES .............................................. 6FAULT OUTSIDE THE FUNCTIONAL SAFETY............ 8PRINCIPLE OF OPERATION ........................................ 9INSTALLATION............................................................ 12ELECTRICAL CONNECTIONS ................................... 15ELECTRICAL REQUIREMENTS ................................ 17COMMISSIONING AND CONFIGURATIONISSUES ........................................................................ 18CALIBRATION ............................................................. 19PRE-STARTUP ACCEPTANCE TEST,PROOF TESTS ............................................................ 21DISMANTLING AND REASSEMBLY .......................... 22SIMPLE FAULT FINDING ............................................ 23RETURNING FORM .................................................... 24ADDENDUM FOR "METERS" OPTION OFTHE TRANSMITTERS ................................................. 25ADDENDUM FOR COMETER OR INDICATORWITH HART PROGRAMMING CAPABILITY ANDPROMETER - PROGRAMMABLE INDICATOR .......... 26ADDENDUM FOR PV-SCALING OPERATION ........... 31ADDENDUM FOR "SURGE PROTECTION" OPTIONOF THE TRANSMITTERS ........................................... 32ADDENDUM FOR SELECTABLE OUTPUTFUNCTIONS ................................................................ 35ADDENDUM FOR OUTPUT % RERANGING ............. 38ADDENDUM FOR "EX SAFETY" ASPECTSAND "IP" PROTECTION (EUROPE) ........................... 39

    CONTENTS INTRODUCTION

    The 2600T series is a modular range of field mounted, micro-processor based electronic transmitters, using a uniqueinductive sensing element. The Model 266/268H/N is apressure transmitter with "single port" process connection; thisprovides accurate and reliable measurement of gauge andabsolute pressure, in the even most difficult and hazardousindustrial environments.

    Now a Safety pressure Transmitter is included in the 2600TSeries, with its analog output signal plus HART digitalcommunication.The HART digital protocol allows remote re-ranging,calibration and diagnostics, without any interference with thestandard 4-20 mA analog output signal.This operating instructions manual describes the Safetyversion of the 2600T Series transmitters and specify allinformation necessary to safely connect the Safety 2600Tpressure transmitter in a Safety Instrumented System.It details also how the signals from the input field device shouldbe interpreted.

    Refer to the shortened contents of this manual, here in thispage for addressing the section of your interest, and also to thesupplementary documentation for additional remarks.

    SUPPLEMENTARY DOCUMENTATION

    Reference information on remote seals and configuration ofthe transmitter can be found in the following documents:

    SS/S26 Remote Seal Specification

    SS/268xx Data Sheets

    IM / 691HT Hand-Held Communicator

    Online HELP SMART VISION Configuration Program

    IEC 61508 Functional Safety of e/e/pe Safety-related systems

    ISA S84.01 Application of Safety Instrumented Systems for theProcess Industries

    NE43 Standardization of the signal level for the breakdowninformation of digital transmitters

    Other helpful or general information can be found in the ABBweb site, at www.abb.com

  • - 4 -

    Important - The instrument serial number must always be quoted when making enquiries.

    PRODUCT IDENTIFICATIONThe instrument is identified by the data plates shown inFigure 1.The Nameplate (Ref.A) provides information concerning thecode number, maximum working pressure, range and spanlimits , power supply and output signal. See code/specificationsheet for detailed information. This plate also shows thetransmitter serial number. Please refer to this number whenmaking enquiries .A dedicated label (Ref. B) is welded as standard to the primaryunit, carrying specific details of the transducer (diaphragmsmaterial, fill fluid, range limits and identification number).A Safety Marking plate ( Ref. C) is fitted when the transmitteris required to comply with hazardous area regulations, e.g.flameproof or intrinsic safety protection. Additionally Tag plate(ref. D) provides the customer tag number and calibratedrange, maximum process working pressure (PS) and tempera-ture (TS).The instrument may be used as a safety accessory (categoryIV) as defined by the Pressure Equipment Directive 97/23/EC.In this case, near the CE mark, there is the number of thenotified body (1130) that verified the compliance.

    Fig. 1 - Product identification

    TRANSPORTAfter final calibration, the instrument is packed in a carton(Type 2 to ANSI/ASME N45.2.2-1978), intended to provideprotection from physical damage.

    STORAGEThe instrument does not require any special treatment ifstored as despatched and within the specified ambientconditions level (Type 2 to ANSI/ASME N45.2.2-1978).There is no limit to the storage period, although the terms ofguarantee remain as agreed with the Company and as givenin the order acknowledgement.

    HANDLINGThe instrument does not require any special precautionsduring handling although normal good practice should beobserved.

    Ref. B

    Primary Unit

    Ref. C

    Ref. D

    SERIALNUMBER

    URL

    DIAPHRAGMMATERIAL

    FILLFLUID

    NameplateRef. A

    3rd and 4th numerals showthe year of construction

    (Ex) - - X X - - - -

  • - 5 -

    SAFETY PHILOSOPHY

    The Safety 2600T Pressure Transmitters are field devicesdesigned according the requirements of the standard IEC61508for the Safety Related Systems. Standard currently used focuson individual parts of all the safe instrumentation used toimplement a safety function. The IEC61508 definesrequirements related to all the system that normally comprisesinitiating devices, logic solver and final elements. It alsointroduces the concept of Safety lifecycle defining the sequenceof activities involved in the implementation of the safetyinstrumented system from conception throughdecommissioning. For a single component it is not correct todefine a SIL level. The term SIL (Safety Integrity Level) refersto the complete safety loop therefore the single device shall bedesigned in order to be suitable to achieve the desired SIL levelin the entire Safety Loop.

    ApplicationThe Safety 2600T Pressure Transmitters are intended to beapplied for safety relevant application in the process industry.They are suitable to be used in SIL2 applications. Specialattention has to be given to the separation of safety and non-safety relevant use.

    Physical EnvironmentThe transmitter is designed for use in industrial fieldenvironments and must be operated within the specifiedenvironmental limits as indicated in the Transmitter DataSheet.

    Role an ResponsibilitiesAll the people, departments and organisations involved in thelife-cycle phases which are responsible for carrying out andreviewing the applicable overall, E/E/PES (Electrical/Electronic/Programmable Electronic System) or software safety lifecyclephases of a Safety Instrumented System shall be identified. Allthose specified as responsible for management of functionalsafety activities shall be informed of the responsibilities assignedto them. All persons involved in any overall, E/E/PES orsoftware safety lifecycle activity, including managementactivities, should have the appropriate training, technicalknowledge, experience and qualifications relevant to the specificduties they have to perform.

    MANAGEMENT OF FUNCTIONALSAFETY

    For each application the installer of the owner of a safetysystem must prepare a Safety Planning which must be updatedthroughout the Safety Life-cycle of the Safety InstrumentedSystem. The requirements for the management of functionalsafety shall run in parallel with the overall safety lifecyclephases.

    Safety PlanningThe Safety Planning shall consider:• policies and strategies for achieving safety;• safety life-cycle activities to be applied, including names of responsible persons and departments;• procedures relevant to the various life-cycle phases;• audits and procedures for follow up.

    INFORMATION REQUIREMENTS

    The information shall comprehensively describe the systeminstallation and its use in order that all phases of the overallsafety lifecycles, the management of functional safety,verification and the functional safety assessment can beeffectively performed.

    Overall Safety Life-cycle InformationThe overall safety lifecycle shall be used as the basis forclaiming conformance to the standard IEC61508. The lifecyclephases consider all the activities related to the SafetyInstrumented System (SIS) from the initial concept throughdesign, implementation, operation and maintenance todecommissioning.

    The relevant lifecycle phases for the 2600T Safety PressureTransmitter used in a SIS are listed below:

    Overall scope definition;Hazard and risk analysis;Overall safety requirements;Safety requirement allocation;Overall Operation and Maintenance planning;Overall Installation and Commissioning planning;Overall Installation and Commissioning;Overall Safety Validation (SIS Start-up documentation);Overall Operation (diagnostic messages documentation);Overall maintenance and retrofit (critical system maintenancetracking);Overall modification (management of changes andmodifications);Decommissioning (out of service notification).

    Application Software Safety life-cycle information

    Not defined.

  • - 6 -

    LIFE-CYCLE ACTIVITIES

    Application Scope

    Definition of the Application TargetThe process equipment shall be described in order to defineclearly the application target with its hazard potential.

    Applicable LAWS and StandardsAll applicable general Laws and Standards related to theallowed operations of the equipment, as EU-Directives shallbe collected. The plant owner shall produce a RegulatoryRequirements List document.

    Definition of the Application ScopeThe scope for the safety-related application shall be fullydescribed in order to produce the following documentation:- Safety Integrity Level classification;- Functional safety requirements of the equipment under control

    Necessary steps for the definition of the above listed documentsare:- Detailed investigation about which potential hazards of the

    process equipment have been reduced by design or anindependent layer of protection.

    - Checking of the necessary functional requirements requiredby the applicable laws and Standards.

    - Determination of the Safety Integrity Level with a specific riskreduction method.

    - Specification of each functional risk reduction by its physicalrisk, properties to be measured, its safe action to be performed

    Functional Safety Requirements of the TargetEquipment

    Safety FunctionsThe documents:- Safety Requirement Specification;- Piping and Instrument Diagram;

    Shall be produced in order to fully define the safety functionsof the Safety Instrumented System. Necessary steps for thedefinition of the above listed documents are:

    - Definition of the required Safety Functions.- List of all the process conditions under which the safe action

    is required.- Investigation of the effect of common cause failures.- Specification of the actions required for the process

    measurement failures which are not covered by the SafetyFunctions.

    - Identification if the required safe actions are dependent onoperating states or are effective under all operating states.

    - Transformation of the verbal functional requirements into agraphical form.

    Process InterfaceThe documents:- Functional Requirement Specification;- Piping and Instrument Diagram;- Functional DiagramShall be produced in order to fully describe the processinterface and connections. Necessary steps for the definitionof the above listed documents are:

    - Definition of the Process Interface requirements.- Identification of the instrumentation for every physical risk

    property (input) and define their fail safe signal.- Definition of the required amount of instruments and

    certifications according the SIL requirements- Iwdentification of the type of actuator and definition of their

    fail safe position for the required safe action- Definition of the required redundancy and certification- Completion of the functional diagram with instrumentation

    details- Definition of the necessity of a regulatory body approval;

    System Safety Requirement Assignment

    I/O System Response TimeThe total system response time is determined by the followingelements:- Sensor detection time,- Logic solver time;- Actuator response time;The total system response time must be less than the processsafety time. To ensure a safe operation of the system, the scanrate of each section of the logic solver multiplied by the numberof channels must be less than the safety time less actuator andsensor response time.

    I/O System SelectionThe I/O system selection is mainly dictated by the requiredlogic solver time. Appropriate selection procedures and analysisshall be used.

    System StructureSystem configuration drawings shall be available to describethe equipment and interfaces required for a completeoperational system. The system must be fully operationalbefore start-up.

    Safety Requirement AllocationEach safety function, with its associated safety integrityrequirement, shall be allocated to the designated safety-related systems taking into account the risk reductions achievedby the other technology safety-related systems and externalrisk reduction facilities, so the necessary risk reduction for thatsafety function is achieved. The allocation indicated shall bedone in such a way that all safety functions are allocated andthe safety integrity requirements are met for each safetyfunction.

    Programming EnvironmentComputer system which provides the necessary software toprogram, compile, and load an application shall be separated.

    Safety RoutinesSafety additional requirements may be defined in order toensure the correct functionality of sequences in the SafetyInstrumented System.

    Safety TemplatesSafety Templates must be followed for particular applications.(e.g. SIL 2 and burner management applications have certified"Templates" that adhere to all the rules spelled out by theapplicable regulations).

    Separation of Safety FunctionsEach safety function shall be separated in a differentprogramming section.

  • - 7 -

    Application Software Development

    Programming EnvironmentThe application software of the Safety 2600T has beendeveloped in ANSI C language using the IAR 1.31B compiler.Emulation and system testing have been performed with thesupport of Mitsubishi ICE development system.

    Program Structure for Safety ApplicationsThe complete software has been separated in a safety relevantand a non-safety relevant sections. The safety relevant area isconstituted by a set of modules and functions which arerigorously separated and checked in their correct execution.

    Safety Logic ProgrammingA specific document has been developed to define the basicrules for C-Programming in safety related system applicationsin compliance with what defined by the IEC 61508-3. Thesoftware development of the Safety 2600T has been carriedout following the restrictions and recommendation containedin the above mentioned documents.

    Program CompilationSpecial accuracy have been used in the software developmentin order to avoid any error and warnings.

    Application Software TestingA Safety 2600T transmitter functional test report documenthas been issued after the operational and the safety relatedprogram have gone through their initial check. It verifies thatthe program will perform as desired and specified.

    Application Software Safety ValidationThe Safety 2600T Application Software testing has beencarried out and audited by TUV PS. A Test Report documentapproved by TUV states that the system reacted in each testas expected and that the safety related program fulfil theSafety Requirement Specification

    Installation

    Environmental RequirementsThe Safety 2600T pressure transmitter has been designed tooperate in a wide range of environmental conditions typical ofindustrial field and in hazardous environments. Theenvironmental conditions under which the measuring equipmentis designed to operate within its specified accuracy limits andwithout impairment of its operating characteristics are specifiedin the "Specification Sheet" document.

    Mechanical installation and System completionAll the necessary operations to correctly installing the devicein order to assure operator and plant safety are described inthe section "installation" of the present manual.

    System WiringThe procedures to safely make the electrical connections ofthe device are described in the section "electrical connections"of the present manual. For installation in hazardous areas,compliance with safety information on the safety marking plateshall be ensured.

    Commissioning

    Field Instrument FunctionalityAll the necessary activities to assure that the process sensor

    or final element are operating together and perform the requiredfunction are described in the "Electrical connections" and"Calibration" sections of the present document.

    Overall System FunctionalityThe activities to validate the required safety functionality of thesystem together with the target equipment according to theSafety Requirement Specification are Pre-Startup Acceptancetest section of the present document.

    Operation

    System Operating DisciplineA Plant policy guideline document containing the specific plantpolicy guideline for the daily safe operation has to be producedand periodically reviewed by representatives of the ProcessControl Service.

    MaintenanceMaintenance is defined as the routine activities which arecarried out to detect unrevealed faults.

    Preventive and Routine MaintenancePreventive and routine maintenance activities are defined inthe maintenance section of the present manual.

    Function-unit ReplacementIn case of hardware failure corrective actions may be carriedout. In case of transmitter replacement all the operationsdescribed in "Electrical Connection", "Calibration" and "Pre-Startup Acceptance tests" shall be conducted.All maintenance activities shall be documented in the systemdocumentation. Possible safety critical failures shall be reportedusing the Incident Report process.

    Function-unit RepairThe transmitter is constituted of two main units (transducer andelectronics). It can be repaired following the informationcontained in the Dismantling and Reassembly section of thepresent manual.Central repair shall maintain a record of detected failures,calculate actual failure rates and compare with the expectedfailure rate. Extensive failure rates shall be communicated tothe supplier.

    Modification RequestRequest of modification due to possible safety critical failuresand performance deviations shall be reported to the factory.Modifications shall follow the company modification procedures.

    Management of ChangeAll process changes or SIL category change shall follow theprocedures defined in the safety life-cycle of the system andshall be reviewed and validated by the external competentbody for a new functional safety assessment.

    Management of change Process Components and RolesEach process component needs to be defined in detailsaccording to the requirements and the relevant documentation.Each process component change shall follow the activitiesdefined in the overall safety life cycle.

    Management of change Documentation and TrainingRequirementsThe Management of Change process shall follow documentationand training requirements defined in the system implementation.

    . . . . LIFE-CYCLE ACTIVITIES

  • - 8 -

    FAULTS OUTSIDE THE FUNCTIONAL SAFETY

    The redundant algorithms and the electronics are designed to detect all the internal hardware faults therefore the transmitterdiagnostic is not able to detect faults related to the process and to the installation configuration. In the following table the knownweaknesses resulting from the transducer FMEA (Failure Mode and Effect Analysis) are listed.

    Assembled material at the pipes of the transmitter,blockage of pipe.

    Application outside specified temperature range.Excess of temperature

    Assembled gas at the transmitter, if the transmitteris mounted above the process line

    Overload pressure, high peak pressure pulses inprocess lines

    Penetration of hydrogen, diaphragm crack inapplications with hydrogen process medium.

    Thin walled diaphragm, leaky diaphragm inapplications with abrasive medium.

    Thin walled diaphragm, leaky diaphragm inapplications with corrosive medium.

    Higher diaphragm stiffness, crack in applicationwith contamination of metal ions

    Mechanical damage through cleaning, damageof the coating, corrosion.

    Other considerationsThe alarm levels of the transmitter (down-scale or up-scale)can be selected by the user. For some faults (e.g. crystalbreakdown), the output will latch at 22 mA even if the downscale alarm level is selected.

    failure failure effect Comments

    ∆p-levelmeasurement is wrong

    wrong measurement

    insensitive, wrongmeasurement

    wrong measurement aftercompression stress

    insensitive measurement,breakdown

    wrong measurement,breakdown

    wrong measurement,breakdown

    insensitivemeasurement

    faulty or insensitivemeasurement, breakdown

    Piping should be periodicallyinspected and cleaned.

    The transmitter should operateinside the specified temperatureranges.

    Transmitter should be installedproperly as specified in thismanual.

    The transmitter should operateinside the specified temperatureranges.

    Hydrogen service allowed with theapplication of a special grace ondiaphragms or by using goldplated diaphragms.

    Transmitter manual specifies thepreventive periodic maintenance.

    Appropriate materials should beselected for corrosiveapplications.

    Appropriate materials should beselected for particularapplications.

    Transmitter manual specifiescorrect maintenanceprocedures.

  • - 9 -

    The instrument consists of two functional units:- Primary Unit- Secondary Unit

    The Primary Unit includes the process interface and thesensor, the Secondary Unit includes the electronics, the terminalblock and the housing. The two units are mechanically coupledby a threaded joint. All units are based on custom integratedcomponents (Application Specific Integrated Circuit - ASIC).The principle of operation of the Primary Unit is as follows. Theprocess fluid ( liquid, gas or vapour ) exerts pressure on to themeasuring diaphragm via flexible, corrosion-resistant isolatingdiaphragm and the fill fluid (see Fig. 2a). The other side of themeasuring diaphragm is either at "atmosphere", for gaugemeasurement, or at "vacuum", for absolute measurement. Asthe measuring diaphragm deflects in response to input pressurechanges, it simultaneously produces variations in the gapbetween the magnetic disc and the magnetic core of the coil,which is mounted rigidly on to the primary body. As a result, theinductance of the coil changes.The inductance values of the coil is compared to that of areference inductor carried by the primary electronics.

    PRINCIPLE OF OPERATION

    The unit also includes a temperature sensor. The two inductancevalues and the sensor temperature, are combined in theprimary electronics to provide a proprietary standard signal. Consequently the further elaboration, together with temperaturesignal is equivalent allowing to use the same secondaryelectronics.In the manufacturing process the sensor output characteristicsare compared with reference pressures and temperatures: the"mapped" parameters are then stored in EEPROM # 1.The measured values and the sensor parameters are transferredto the Secondary Unit, where a microprocessor computesprecise primary output linearisation, compensating for thecombined effects of sensor non linearity and temperaturechanges. In the secondary electronics EEPROM #2 storesspecific transmitter information:- non modifiable data such as the serial number, the UID

    (Unique Identifier), the manufacturer's name and device type,the hardware and software version of the electronics.

    - the modifiable data such as the final trimming and calibrationie., all data that can be changed by the user through theconfigurator devices.

    External Zero/Spanadjustments

    Fig. 2b - Secondary Unit

    Output meter(option)

    Surge protector(option)

    Terminalblock

    Housing Electronics

    RFI filter

    Fig. 2a - Primary Unit

    Primary ElectronicsPrinted Circuit

    Processconnection

    Sensor Diaphragm

    Inductance Coil& Magnetic Core

    Ferrite disc

    Isolating Diaphragm

    Reference chamber

    Input

  • - 10 -

    . . . PRINCIPLE OF OPERATION

    2600T Safety Transmitter takes advantage of the intrinsicredundancy of the 2600T series differential inductive sensor.The two inductive signals are separately detected in theprimary unit by two independent ASICs and separatelyelaborated internally to the electronics. Calculations followindependent flows and they are compared in the microcontrollerin order to validate the output pressure signal. If a differencebetween the two measurements is detected the analog outputis driven to a safety condition. Internal diagnostics algorithms

    are implemented to check correctness and validity of allprocessing variables and the correct working of memories.A supplementary shut down circuitry provides a safe shut downwhen a fault occurs in the analog section of the electronics. Theoutput stage is also checked by reading back the analog outputsignal. The feedback loop is obtained by an additional A/Dconverter put at the end of the output stage, which translatesthe 4-20 mA signal into a digital form suitable to be comparedby the microcontroller.

    Pressure SensorThe pressure sensor gives the primary input signal to theelectronics. The input pressure is converted in a (micro)displacement "d" of a metal diaphragm (measuring diaphragm)whose stiffness determines the URL of the sensor. Thediaphragm displacement changes the gap of a magneticcircuit, generating the variation of the inductive pick-up detectorconstituted of two inductances called L1 and L2. One of theinductance values increases the other decreases. Theinductance value is measured by forming an oscillator with anextra capacitor (C1,C2). The oscillation is excited by a pulseand simultaneously measured by two ASIC5 (see the pictureabove). The fundamental frequency of oscillation relates to theinductance values with the following law: (T=2PI*SQR(LC)).

    Temperature SensorThe temperature sensor measures the temperature of thepressure sensor. The resulting value is used by the µP fortemperature compensation purposes.

    SAFETY 2600T Pressure Transmittersblock diagram

    Pressure sensor

    Ferrite

    L2

    L1

    P2P1

    Measuringdiaphragm

    d1 (gap)

    d2 (gap)

    ASIC5(trigger

    andreading)

    PrimaryElectronics

    EEPROM

    EEPROMA/D

    converter

    ASIC7

    µP

    SecondaryElectronics "µP"

    ASIC5(only

    reading)

    T5 Generator+0.33% / °C

    1.watchdog

    2.watchdog

    &

    L1

    L2

    P1

    P1

    PressureSensor

    TemperatureSensor

    PWMFilter

    TX2

    TX1

    CE2CE1

    CalibrationParameter

    SensorParameter

    Display

    ResetReset

    HARTmodem

    Tx

    4...20 mAreading

    HARTmodem

    Rx

    over-voltage

    detection

    DC/DCConverter

    GND

    const.current

    generator3.6 mA

    const.current

    generator0.4...16.4

    mA

    secondshutdown

    >20 mA

    4...20 mA10.5...42 V

    KeySpan

    KeyZero

    SecondaryElectronics "PS"

    VCC

    D0...7 A0...9

    HARDWARE DESCRIPTION

    General hardware descriptionThe electronic hardware structure is described in the following figure.

  • - 11 -

    . . . PRINCIPLE OF OPERATIONPrimary ElectronicsMain purpose of this unit is to convert the pressure signal to anelectronic pulse-width signal. As help for added accuracy bothtemperatures and static pressure of the transducer aremeasured.

    ASIC5The ASIC5 components contain the basic pulse width convertersthat convert the input frequency coming from the sensor in tworedundant pulse-width signals proportional to the two inductancevalues L1 and L2. The two independent output time-durationsignals from ASIC 5 are applied to the secondary unit throughindependent lines.

    EEPROM1 MemoryThis EEPROM memory is used by the "µP" described later. Itcontains all the relevant information for the sensorcharacterization and for the transmitter calibration.

    Secondary Electronics " µP"This unit uses a µP and an ASIC to convert the basic measureddata into correct scaled data. Compensation for temperatureand static pressure are also performed. The output data valueis converted into a pulse-width signal that is filtered and thatactivates the 4-20 mA transmitter. The bi-directional, digitalcommunication using the standard “HART” protocol isimplemented as part of this unit.

    ASIC7The main input to ASIC7 are the two independent pressuresignals combined on two lines from ASIC5 called TX1 and TX2.The ASIC7 converts in two independent counter sections thepulse widths to two sets of five 24 bits numbers (A/D conversion).The pulse-width information are stored in two different RAMlocations and used by the µP to perform all the necessarycalculations and consistency checks and to calculate thecompensated output with correct scaling. Afterwards the µPwrites the calculation results into two 8 bit registers in ASIC7.

    Watchdog1A watchdog function is implemented in the ASIC7. It interactswith the µP via the Reset block described later. In case of errorat first the watchdog resets the µP. After three retries it drivesthe PWM output in alarm condition (UP/DOWN scale).

    HART ModemA modem circuit for demodulation is implemented in the ASICboth for receiving and transmitting.

    µPThe µP performs all the calculations and the diagnostic functions.It drives also the supplementary shut down in case of errors inthe analog part.

    ResetThere are four reset functions for the µP. “Power On Reset”,reset on ASIC7 request as described above and reset onpower supply too low or too high.

    PWM FilterThis first order RC filter gives an average value of the pulsewidth signal from ASIC 7.

    T5 Time GeneratorThe ASIC7 generates a temperature dependent current (+0.33%/ °C) applied to the T5 generation circuit that provides a timeduration signal (T5) used to measure the temperature in thesecondary electronics.

    Watchdog2A secondary watchdog is used to monitor the correct working

    of the main clock. In case the main clock doesn't work it givesa signal to the supplementary shutdown logic block that providesto force the output in safety condition.

    4-20 mA readingThe internal microprocessor 8 bit A/D converter provides toconvert to a digital value the analog feedback signal from the4÷20 mA output current loop. The obtained value is internallycompared with the digital value of the actual output current fordiagnostic purposes.

    EEPROM2 MemoryThe EEPROM2 memory is used by the µP to store and readconfiguration data and data concerning calibration of the 4-20mA generator.

    Secondary Electronics "PS"This unit contains the 4-20 mA transmitter, the power supplyand the basic analog part of the “HART” protocol.

    Constant Current Generator 0-16 mAThis block converts the filtered DC voltage representing thepressure into a 0-16 mA current. The block is trimmed togetherwith the power supply to maintain the stable 4 mA basic currentmaking the total current 4-20 mA.

    Constant Current Generator 3.6 mAThis block generates a stable current basically close to 4 mA.The current generator is also used by the HART protocol in thetransmit mode to generate a +/- 400 µA current. Externally thiswill generate a +/- 100 mV signal across a 250 ohm minimumresistor.

    Local keysThe pressure transmitter has two screws hidden under thenameplate. They can be used for setting ZERO and SPANvalues in the unit. The screws turn a magnet, that closes a reedrely, that activates the µP. The ZERO gives the present sensorvalue as the reference point. The SPAN gives the presentsensor value as FULL SCALE value. The screws with themagnet can be removed to prevent unauthorized changes.

    DC/DC converterThe input voltage is stabilized and regulated with a DC-DCconverter to provide the circuit power supply.

    HART RxThe HART modem receiving data are pre-filtered and bufferedin this block.

    Over voltage detectionThe power supply is continuously monitored. In case thevoltage exceeds a fixed dangerous value a reset command tothe microprocessor is generated.

    Second shut-downAn additional current generator in parallel to the output regulatorallows having an independent shutdown of the output signal. Incase of a failure of the microprocessor due to a clock failure orof a failure in the analog output stage the second shut-down isactivated forcing in this way the output signal to the up-scalealarm value.

    4÷20 mA readingA buffer amplifier connected to the microcontroller reads avoltage in the analog output stage proportional to the PWMfiltered voltage. It constitutes a feedback signal of the outputcurrent.

    DisplayOptional. Not Safety relevant.

  • - 12 -

    INSTALLATION

    CAUTION - Proper location of the transmitter withrespect to the process pipe will depend upon the service forwhich the instrument is used. Care should be exercised toidentify correct process connections.

    The secondary unit of the transmitter may be rotated through360° approx. with respect to the primary unit without degradingperformance or damaging the internal wiring. Do not force theprimary unit to rotate; use the 2 mm Allen key supplied to unlockand lock the tang grub screw (see Fig. 7). This feature, obtainedby unscrewing (one turn is sufficient) the Allen screw, isparticularly useful for reaching optimum access to the electricalconnections and visibility of the output indicator.

    WARNING - In order to ensure operator safety andplant safety it is essential that installation is carried out bysuitably trained personnel according to the technical dataprovided in the Data Sheet for the relevant model includedin the supplementary documentation, in particular in the"Operative limits" section.

    The transmitter may be mounted on a 2-inch pipe (figg. 4, 5a,5b, 5c, 6a and 6b) by means of the proper mounting bracket.The transmitter may also be directly, supported by the pipingconnection.

    Fig. 4 - Mounting on pipe

    Fig. 5a

    WARNING - For installation in Hazardous Areas,i.e. areas with dangerous concentrations of e.g. gases ordusts that may explode if ignited, the installation must becarried out in accordance with relative standards either EN60079-14 or IEC 79-14 and/or with local authorityregulations, for the relevant type of protection adopted.Together with safety information here and after enclosedsee also the Addendum for "Ex Safety" aspects which ispart of this instruction manual.

    WARNING : The transmitter when installed inaccordance with this instruction manual will not besubjected to mechanical stresses.

    WARNING: the transmitter should not be installedwhere it may be subjected to mechanical and thermalstresses or where it may be attached by existing orforeseable aggressive substances.ABB cannot guarantee that a construction material issuited to a particular process fluid under all possibleprocess conditions. See also the paragraph on "Operati-ve limits".

    1/2in - 14 NPT female connection

    Note: dimensions are expressed in mm. (Between parenthesis the same dimensions expressed in inches).

    86 (3.39)

    CH 32

    S

    NOSSTIUCRIC

    SEL

    NOI

    NETS

    OST U

    RREV

    UOCE

    LRE

    DR

    AG

    TNE' M

    EF NE B EL CI

    QUAT

    E

    ALSTIU

    CRIC

    I VE

    H

    COPE

    EK

    VERTIGT

    E

    H

    WN

    !

    18 (0

    .71)

    100

    (3.9

    4)

    ø 65 (2.56)

    135 (5.31)

    16 (0

    .63)

    57 (2.24)

    127 (5.00)17 (0.67)

    17 (0.67)36 (1.42)

    19 (0

    .75)

    36 (1

    .42)

  • - 13 -

    DIN–EN837–1 G 1/2in B connection

    86 (3.39)

    CH 32

    S

    NOSSTIUCRIC

    SEL

    NOI

    NETS

    OST U

    RREV

    UOCE

    LRE

    DR

    AG

    TNE' M

    EF NE B EL CI

    QUAT

    E

    ALSTIUCRI

    C

    I VE

    H

    COPE

    EK

    VERTIGT

    E

    H

    WN

    !

    18 (0

    .71)

    100

    (3.9

    4)

    135 (5.31)16

    (0.6

    3)

    G 1/2"B

    57 (2

    .24)

    42 (1

    .65)

    ø 17.5 (0.69)

    ø 65 (2.56)

    57 (2.24)

    127 (5.00)17 (0.67)17 (0.67)

    36 (1.42)

    1/2 in – 14 NPT male connection

    86 (3.39)

    CH 32

    S

    NOSSTIUCRIC

    SEL

    NOI

    NETS

    OST U

    RREV

    UOCE

    LRE

    DR

    AG

    TNE' M

    EF NE B EL CI

    QUAT

    E

    ALSTIUCRI

    C

    I VE

    H

    COPE

    EK

    VERTIGT

    E

    H

    WN

    !

    86 (3.39)

    S

    NOSSTIUCRIC

    SEL

    NOI

    NETS

    OST U

    RREV

    UOCE

    LRE

    DR

    AG

    TNE' M

    EF NE B EL CI

    QUAT

    E

    ALSTIUCRI

    C

    I VE

    H

    COPE

    EK

    VERTIGT

    E

    H

    WN

    !

    57 (2.24)

    ø 65 (2.56)

    18 (0

    .71)

    100

    (3.9

    4)

    135 (5.31)

    16 (0

    .63)

    1/2" - 14 NPT

    ø 65 (2.56)

    57 (2.24)

    127 (5.00)17 (0.67)

    17 (0.67)36 (1.42)

    39 (1

    .54)

    54 (2

    .13)

    18 (0

    .71)

    100

    (3.9

    4)

    16 (0

    .63)

    ø 41.3

    ø 65 (2.56)135 (5.31) 1

    7.5

    (0.6

    9)

    127 (5.00)17 (0.67)

    17 (0.67)

    36 (1.42)

    34 (1

    .34)

    . . . INSTALLATION

    Adapter straight (180 °) entry connection ( 7/16in – 20 UNF drilling)

    Fig. 5b

    Fig. 5c

    Fig. 6a

  • - 14 -

    . . . INSTALLATION

    Fig. 6b

    Adapter angle (90 °) entry connection ( 7/16in – 20 UNF drilling)

    86 (3.39)

    S

    NOSSTIUCRIC

    SEL

    NOI

    NETS

    OST U

    RREV

    UOCE

    LRE

    DR

    AG

    TNE' M

    EF NE B EL CI

    QUAT

    E

    ALSTIUCRI

    C

    I VE

    H

    COPE

    EK

    VERTIGT

    E

    H

    WN

    !

    ø 65 (2.56)

    18 (0

    .71)

    100

    (3.9

    4)

    49.5

    (1.9

    5)

    ø 41

    .3(1

    .63)

    ø 39 (1.54)

    135 (5.31)

    31 (1

    .22)

    127 (5.00)17 (0.67)

    17 (0.67)36 (1.42)

    16 (0

    .63)

    42.5 (1.67)

  • - 15 -

    WARNING - For installation in Hazardous Areas,i.e. areas with danger of fire and/or explosion, prior tomaking electrical connections, ensure compliance withsafety information on the Safety Marking plate. Failure tocomply with this warning can result in fire or explosion.

    Signal terminals are located in a separate compartment of thesecondary unit housing. The housing incorporates two con-nection ports for cable glands or conduit fittings. They areprotected with a temporary plastic plug for transit purposewhich should be replaced with a suitable permanent plug in theunused port. Connections can be made by removing the cover(indicated in Fig. 7); first screw down the locking screw locatedbelow the cover, using a 3 mm Allen Key.

    WARNING - For Hazardous Areas installations,theconnection of cables and conduits to the transmitter shallbe made in accordance with the requirements of therelevant type of protection. Cables and cable-glands mustbe in accordance with the type of protection.Unused openings for connection shall be closed withblanking elements suitable for the relevant type ofprotection. With the exception of intrinsically safetransmitters, the means provided for this shall be such thatthe blanking element can be removed only with the aid oftools. The blanking elements must be certified for the typeof protection. See standards either EN 60079-14 or IEC79-14. The transmitter connections must also guaranteethe degree of protection of the transmitter enclosure, e.g.IPxx according to EN 60529 standard (or IEC529). Seealso the Addendum for "IP" protection (and Ex Safety)which is part of this instruction manual.

    The signal cable should be connected to the terminals markedrespectively (+) and (-). If an internal output meter - either withanalog or digital indication - is installed, it should be removedin order to make the connection, simply by pulling it out from itssocket. After the connections have been made, reinstall theoutput meter. Refer to the Meters Option addendum fordetails.The power to the transmitter is supplied over the signal wiringand no additional wiring is required. The signal wiring does notneed to be shielded but the use of a twisted pair is highly

    ELECTRICAL CONNECTIONS

    recommended. The cable shield should be grounded in oneside only, to avoid dangerous earth paths.

    WARNING - For Hazardous Areas installations,when the ambient temperature is higher than 70°C, thecable used for the connections must be suitable for 5°Cabove the ambient temperature.

    Normal practice is to ground in the control room side, in whichcase the field side of the screen should be adequatelyprotected to avoid contact with metallic objects. Signal wiringmay be ungrounded (floating) or grounded at any place in thesignal loop, but for intrinsically safe installations the wiring andgrounding must follow the specific rules for this technique. Thetransmitter case may be grounded or ungrounded: a groundconnection is provided internally (in the terminal compartment)and externally.

    Do not run the signal wiring in close proximity to power cableor high power equipment; use dedicated conduits or trays forsignal wiring.

    CAUTION - Do not connect the powered signalwiring to the mA signal testing terminals as this coulddamage the by-pass diode.

    After the connections have been completed check the integrityof the cover O-ring, screw down the cover and secure it byunscrewing the safety screw.

    CAUTION - Unless absolutely necessary, avoidthe removal on site of the protective cover which givesaccess to the electronic circuitry. Although the electro-nics are fully tropicalized they should not be subjectedto humidity for long periods.

    WARNING - For Hazardous Locationinstallations, at least eight (8) threads on each covermust be engaged in order for the transmitter to meet(FLAME PROOF - explosion-proof) requirements.

    Fig. 7 - Location of the locking screws and terminals

    Grub screw

    Secondary Unit

    Cover lockingscrews (in the

    position indicatedby the arrows)

    Primary Unit

    Remove thiscover toaccessterminals M

    TEST COMM

    Hand Held CommunicatorTerminals

    Test Terminals

    OutputMeterSocket

    Ground TerminalSignal Terminals

    Fig. 8a - Terminals arrangements

    Shortcircuit link

  • - 16 -

    . . . ELECTRICAL CONNECTIONS

    WARNING : DO NOT ATTEMPT TO CONNECTAN AMPEROMETER BETWEEN A "TEST" TERMINALAND A "COMM" TERMINAL. THE RESULT TO THEPOWER SUPPLY IS A SHORT WHICH WILL BLOWFUSES AND POSSIBLY DAMAGE YOUR EQUIPMENT,ALSO CAUSING TO INTERRUPT FUNCTION OFOTHER DEVICES POWERED FROM SAME SUPPLY.

    NOTE: If the use of the Hand Held Communicator isforeseen, a resistance of 250 ohms minimum must beincluded in the current loop, between the power supply andthe connection point of the Hand Held Terminal, forcommunication purpose.

    Here below is given an explanation regarding the possibleconnection of the terminal block to the power supply and arepresentation of the connection in case of remote indicatorpresence (See fig. 8b and 8c).

    Fig. 8b - Electrical connections

    Fig. 8c - Electrical connections with remote indicator

    +

    +

    -

    -

    ++

    --

    Line load

    GND

    Hand-heldcommunicator

    Powersource

    Optional

    Receiver

    Test points4-20 mA

    250 ohm min

    Internal groundtermination point

    691HT

    A B C

    1

    D E F

    2

    G H I

    3

    J K L

    4

    M N O

    5

    P Q R

    6

    S T U

    7

    V W X

    8

    Y Z #

    9

    @ % & /

    0

    +-

    PV

    REVIEW SERIALLINK

    TRIM

    F1 F2 F3 F4

    CONF

    External groundtermination point

    M

    TEST COMM

    +

    +

    -

    -

    ++

    --

    Line load

    GND

    Hand-heldcommunicator

    Powersource

    Optional

    Receiver

    Test points4-20 mA

    250 ohm min

    Internal groundtermination point

    Remote indicator

    691HT

    A B C

    1

    D E F

    2

    G H I

    3

    J K L

    4

    M N O

    5

    P Q R

    6

    S T U

    7

    V W X

    8

    Y Z #

    9

    @ % & /

    0

    +-

    PV

    REVIEW SERIALLINK

    TRIM

    F1 F2 F3 F4

    CONF

    External groundtermination point

    M

    Kent-Taylor

    0

    43

    56 7 8

    9

    1020

    40

    0

    60

    100%

    2 80

    M+

    -

    TEST COMM

    Model 691HT Communicatormay be connected at any wiringtermination point in the loop,providing the minimumresistance is 250 ohm.If this is less than 250 ohm,additional resistance should beadded to allow communications.

  • - 17 -

    ELECTRICAL REQUIREMENTS

    The transmitter operates on a minimum voltage of 10.5 Vdc toa maximum of 42 Vdc and is protected against polarityinversion.

    Note - The transmitter operates from 10.5 to 42 Vdcwith no load (additional load allows operation over 42Vdc). For EEx ia and intrinsically safe approval powersupply must not exceed 30 Vdc.In some countries the maximum power supply voltage islimited to a lower value.

    Installing optional devices the minimum voltage increases to:- 10.5 Vdc with no option- 10.7 Vdc with output analog indicator- 12.5 Vdc with LCD ProMeter- 12.3 Vdc with surge protection- 13.3 Vdc with LCD CoMeter- 15.3 Vdc with no link on output indicator plugThe total loop resistance is indicated in the expression below.

    The Smart 600T EN Transmitter Specification Sheets provideall information concerning the Range and Span limits in relationto the model and the sensor code.

    The terminology currently used to define the variousparameters is as follows:

    URL : Upper Range Limit of a specific sensor. The highestvalue of the measured value that the transmitter can beadjusted to measure.

    LRL : Lower Range Limit of a specific sensor. The lowest valueof the measured value that the transmitter can be adjusted tomeasure.

    URV : Upper Range Value. The highest value of the measuredvalue to which the transmitter is calibrated.

    LRV : Lower Range Value. The lowest value of the measuredvalue to which the transmitter is calibrated.

    SPAN : The algebric difference between the Upper and LowerRange Values. The minimum span is the minimum value thatcan be used without degradation of the specified performance.

    TURN DOWN RATIO : is the ratio between the maximum spanand the calibrated span.

    The transmitter can be calibrated with any range between theLRL and the URL with the following limitations:

    LRL ≤ LRV ≤ (URL - CAL SPAN)CAL SPAN ≥ MIN SPAN

    URV ≤ URL

    RANGE AND SPAN CONSIDERATIONThe total loop resistance is the sum of the resistance of allelements of the loop, including wiring, conditioningresistor,safety barriers and additional indicators (excluding theequivalent resistance of the transmitter).

    Where a configuration device (HART), such as the Hand HeldCommunicator or a Modem is likely to be used, a resistance of250 ohm minimum should be present between the powersupply and the point of insertion of these devices, to allowcommunication.

    Several types of safety barriers, either passive or active, can besatisfactorily used in conjunction with the Smart 2600Ttransmitters. Nevertheless, in case of use of active barriers,check with the supplier if the model is suitable for use withsmart transmitters allowing the connection of the configurationdevices in the "safe" or non-hazardous area.

    TRANSMITTER OUTPUT SIGNALThe 2600T Safety transmitter provides both the analog 4÷20mA and the digital HART communication. HART signals do notaffect safety during trading operations. HART writings arepermitted only in maintenance (out of safety) condition.

    Analog SignalTwo-wire 4 to 20 mA dc, user-selectable for linear or squareroot output; power of 3/2 or 5/2, 5th order or two 2nd orderswitching point selectable programmable polynomial outputcan be also selected for version with HART communication.

    HART SignalDigital process variable (%, mA or engineering units)superimposed on the 4 to 20 mA signal, with protocol based onBell 202 FSK standard.

    Output current limits (compliant to NE 43 NAMURregulation)Overload condition:- Lower limit 3.8 mA dc- Upper limit : 20.5 mA dc

    R (kΩ) =Supply voltage - min. operating voltage (Vdc)

    22.5

    Transmitter failure mode (compliant to NE 43 NAMURregulation)The output signal can be user-selected to a value of 3.7 or 22mA on gross transmitter failure contition, detected by self-diagnostics.

    WARNING - The transmitter may be used as asafety accessory (as defined by the Pressure EquipmentDirective 97/23/EC) i.e. as part of a shutdown system.In this case it is recommended to select the correct failsafe mode for the 4-20 mA signal (as per Namur NE43recommendation).See also the instructions relevant to fail safe selection(Up/Down scale mode) in the addendum to the instructionmanual on "Use of hardware links on the secondaryelectronics" .

  • - 18 -

    The 600T Safety transmitters contain inside its non-volatilememories a number of parameters. Some of them, factorydefined, are typical of the sensor and are not user-modifiable,the other are configuration parameters and can be modified bythe user.During the normal operation status, with the transmitter insafety conditions, all remote and local configuration shall be

    COMMISSIONING AND CONFIGURATION ISSUES

    The transmitter is considered in safety condition (normaloperating mode) when the switch is in Write Protect (off). In thatcondition only reading commands are enabled. The specialprocedure which shall be performed to put the transmitter inoperating mode is described in the following section.

    Operating mode enabling and disablingOperating mode can be enabled/disabled depending onSwitch 5 (Write) position at power on condition. The switch islocated on the secondary electronics unit under the housingcover. To ensure safety operations of the device a specificHART command shall be performed in order to enable thecondition changes.

    disabled. The Safety 2600T pressure transmitter is protectedagainst undesirable configuration changes by a dedicatedhardware link placed on the secondary electronics board whichis identified as Write Protect Mode Link (see fig. 9).The following figure described the maintenance-operatingphilosophy:

    (Switch 5)Write Protect Modelink position at Start-up(power on)

    Transmitterstatus

    Operations required to pass to theopposite condition

    1. Switch in OFF position2. HART Command ("Change transmitter status to operating") or Power OFF/Power ON

    1. Switch in ON position2. HART Command ("Change transmitter status to maintenance") or Power OFF/Power ON

    ON

    OFF

    Maintenance

    Operating

    Table 1

    WARNING - After any configuration operation, the transmitter must be put in operating condition as describedin Table 1. During this change a software reset is performed and the transmitter is not working for few seconds.

    COMMISSIONING/ MAINTENANCE OPERATING

    HARTRead - WriteCommand

    HART Read Command

    Reset & Dip Switch Write Protect Mode = OFFHART command &

    Dip Switch Write Protect Mode = OFF

    Local KeyRead-WriteOperationand read

    UP-DOWN SCALEDip Switch

    HART command &Dip Switch Write Protect Mode = ON /

    Reset SW andRead UP-DOWN SCALE Dip Switch

    Reset & Dip Switch Write Protect Mode = ON /Read UP-DOWN SCALE Dip Switch

    Configuration enable/disable switch modeled by Finite states machine

    Upscale/Downscalelink

    5 6

    Write ProtectMode link

  • - 19 -

    CALIBRATION

    Set up an appropriate test rig in accordance with the requiredcalibration. Figure 11 shows a complete test rig that can beselectively used to suit the calibration.

    Note that calibration accuracy is strictly related to the accuracyof the test equipment: the use of a dead weight tester is highlyrecommended.

    The zero and span calibration screws are located behind theNameplate. To gain access slacken the nameplate screw androtate 90° ; proceed in the reverse mode when the calibrationprocedure has been completed. Fig. 12 shows the calibrationscrews: they provide two large plastic heads that can rotate 90°in the direction indicated by the arrows, with spring-return tonormal. The calibration screws can be removed after thecalibration, to avoid improper use by inserting a screwdriverblade below the plastic flange and pulling out.

    Fig. 12 - Top view of the calibration devices

    M1 - Pressure gauge

    Fig. 11 - Calibration pressure connections

    M1

    A

    Pressure Generator orDead Weight Calibrator

    V.G.

    V.P.

    BV.G. - Vacuum GaugeV.P. - Vacuum Pump

    Fig. 9 Location of the links on the electronics

    Unlike conventional electronic transmitters, the use of amicroprocessor and the presence of serial communicationsbetween the transmitter and the configuration device, allows theuse of several different approaches in calibration and servicing.Different methods can be used to calibrate the Safety transmitter:i) using the zero and span calibration screws in the

    transmitter secondary unit.ii) using the Hand Held Communicator.iii) using the Personal Computer Configuration Software

    Package.

    This chapter describes the first method; the others aredescribed next or in the relevant Instruction Manuals ofconfiguration tools. If the calibration screws are not fittedcalibration must be done by method ii) or iii).In the Safety 2600T Series it is also possible to apply a scalingto the reading of the transmitter.The operation is called PV-scaling and is used to align the"zero" of the process with the "zero" reading of the transmitter.See the description in the Addendum for PV scaling operation.

    Note : Unless otherwise specified the instrument isfactory calibrated at maximum span with the LRV set to truezero. Instruments adjusted and tagged for a specific rangewill not require recalibration. Rezeroing of the transmittermay be required in order to compensate for zero shiftarising from the installation.

    Preliminary operation

    Before commencing calibration ensure that:i) the required span, the upper and lower range value (URV &

    LRV) are within the span and range limits (URL & LRL)indicated on the nameplate (please refer to "Range andSpan" consideration on the previous page).

    ii) the transmitter is properly powered and the electricalconnections correctly made.

    iii) the Write Protect Mode link, located on the electronicsmodule is in position ON (write allowed). Access to the linkis gained by unscrewing the secondary unit housing coverat the opposite end to the terminal cover (See Fig. 9).

    iv) the Upscale/Downscale link is positioned to the requiredfunction: ON for Downscale OFF for Upscale (see Fig. 9).

    v) make the electrical connections, as indicated in Fig. 10.Connect a precision milliammeter as shown and remove theshort circuit link.

    Upscale/Downscalelink

    5 6

    Write ProtectMode link

    The calibration screws can be of type "Push buttons" withexactly the same functionality; keep it pressed for at least twoseconds.

    PrecisionMilliameter

    Power Supply10.5 to 42 V. d.c.

    Short circuit link

    Fig. 10 - Calibration electrical connections

    M

    TEST COMM

  • - 20 -

    . . . . CALIBRATION

    In some cases, expecially for tank level measurement, thecalibration can also be obtained automatically by the indicationof the actual output percentage, without any calculation forLRV and URV. The operation is called Output % Rerangingand can be performed using a HART configuration tool (see theADDENDUM on Output % Reranging).

    WARNING. In order to ensure the correct operationof the transmitter, after the calibration procedure thedevice must be put in "Operating Condition" as describedin Table 1, in the section Commissioning and Configurationissues.

    Absolute pressure

    Use the zero and span procedure above but apply to theprocess connection absolute pressures equal to the LowerRange Value (LRV) and then to the Upper Range Value (URV),turning, for at least 1 second, the zero and span screwsrespectively.

    Zero elevation procedure

    This procedure applies to the gauge pressure transmitter, only.The zero can be elevated up to a full vacuum.Apply pressures equal to the LRV (this value is thereforebetween the zero gauge pressure and the full vacuum) andthen equal to the upper range value (URV) and correspondinglyturn the zero and span screws respectively.

    Note - If during the calibration procedure thereadings on the digital milliammeter are outside itsinherent accuracy, output trimming of the transmittermay be requested. This operation can only be performedusing the Hand Held Terminal Communicator or thePersonal Computer Configurator. If this equipment isnot available the transmitter should be returned to aService Center for recalibration.

    Zero and span - true zero procedureGauge pressure

    - Set the A-B switch into "A" position

    - Switch on the power supply.

    - With no pressure applied to the transmitters, the value readon the digital milliammeter should be 4 mA ; if it is not turn thezero screw for at least 1 second. After this operation thereading should move to 4 mA; if no change occurs repeat theoperation.

    - Apply a pressure equal to the upper range value (URV) andallow time for the pressure to stabilize.

    - Turn the span screw for at least 1 second: after this operationthe reading on digital milliammeter should be 20 mA and thecalibration procedure is complete. If no change occurs eitherthe calibration procedure was not correctly performed or thespan exceeds the limit; correct and repeat the operation.

    Absolute pressure

    - Set the A-B switch into "B" position

    - Switch on the power supply.

    - Operate the vacuum pump connected to the transmitter anddraw the maximum possible vacuum obtainable. The valueread on the digital milliammeter should be 4 mA ; if it is not turnthe zero screw for at least 1 second. After this operation thereading should move to 4 mA; if no change occurs repeat theoperation.

    - If the value of the calibration span (URV) is less thanatmospheric pressure gently open the vent valve so increasingthe pressure to the Upper Range Value. If the calibration span(URV) is greater than the atmospheric pressure then set the A-B switch to "A" position and generate a pressure correspondingto the URV. Allow time for the pressure to stabilize.

    - Turn the span screw for at least 1 second: after this operationthe reading on digital milliammeter should be 20 mA and thecalibration procedure is complete. If no change occurs thecalibration procedure was not correctly performed or the spanexceeds the limit; correct and repeat the operation.

    Zero suppression procedureGauge pressure

    Two different methods (a) or (b) can be used :

    a) After completion of the zero and span procedure above,apply a pressure equal to the pressure to be suppressed. Allowtime for pressure stabilization and then turn the zero screw forat least 1 second. After this operation the digital milliammeterreading should be 4mA and the Upper Range Valueautomatically moved to a value equal to the sum of thepressure to be suppressed and the previous calibrated span.

    b) Use the zero and span procedure above but apply pressuresequal to the Lower Range Value (LRV) and then to UpperRange Value (URV), and turning, for at least 1 second, the zeroand span screws respectively.

  • - 21 -

    PRE-STARTUP ACCEPTANCE TEST

    After the installation of the device in order to validate therequired safety functionality of the system together with thetarget equipment according to the Safety RequirementSpecification a Pre-Startup Acceptance test shall be performedas following:

    1. Put the Write Protect Mode switch in operating position2. Power-on the transmitter: the transmitter performs

    automatically a self-test that consists in the operationsbelow:- Switch-on of the Secondary output- Test of the analog output stage and of the feedback A/D converter

    In case the first condition wouldn't happen, the transmitter shallbe considered failed and not possible to use. In case thesecond test would fail the transmitter will drive the output to theselected alarm status. In this case a correction action consistsin the re-calibration of the A/D converter. After the correctionaction the pre-startup test shall be repeated.3. Put the Write Protect Mode switch in Write Enable condition.4. Perform the Hart Command "Change Transmitter status to

    Maintenance"5. Perform the Hart Command "Clock monitor test". The

    transmitter simulates a clock failure and put the output toUp-scale by the supplementary output stage. In case thiscondition wouldn't happen, the transmitter shall beconsidered failed and not possible to use.

    6. Power-off the transmitter7. Put the Operating/maintenance switch in operating condition8. Power-on the transmitter.

    A pre-startup acceptance test report shall be produced torecord the test results.

    PROOF TESTS

    Safe undetected faults could occur during the operation of thetransmitters. These failures do not affect the transmitteroperations. To maintain the claimed Safety Integrity Level(SIL 2) a proof test procedure is requested every 1 year .The proof tests consists in the following operations:

    1. Put the Write Protect Mode switch in Write Enable condition.2. Perform the Hart Command "Change Transmitter status to

    Maintenance"3. Perform the Hart Command "Clock monitor test". The

    transmitter must go to up-scale setting the secondaryoutput stage. To recover from the alarm status a power-off,power-on operation is required.

    4. Power-off the transmitter5. Put the Write Protect Mode switch in Write Disable condition.6. Power-on the transmitter. The transmitter must go first to

    up-scale setting the secondary output stage, then finally theoutput must provide the actual pressure value.

    Location of the links on the electronics

    Upscale/Downscalelink

    5 6

    Write ProtectMode link

  • - 22 -

    DISMANTLING AND REASSEMBLY

    WARNING - Process fluids and/or pressure retainedin the transmitter primary unit can cause severe injury anddeath or damage to the equipment. It is the userresponsibility to make sure that no pressure is appliedbefore removing the instrument from service or whendraining or venting.Dangerous fluids .In case of toxic or otherwise dangerous process fluid, takeany precautions as recommended in the relevant MaterialSafety Data Sheet.

    CAUTION - Dismantling and reassembly should notbe carried out on site because of the risk of damage tocomponents and printed circuits as a result of adverseenvironmental conditions such as humidity,dust,etc. Thedismantling and reassembly procedures given belowshould be carried out in the listed order to avoid instrumentdamage.

    Required tools2 mm Allen key3 mm Allen keySmall Phillips screwdriverSmall flat-bladed screwdriver13 mm spanner13 mm torque wrench - (Range > 17 Nm - 12.6 foot lbs)

    Dismantlinga) Screw down completely the cover locking screw, electronics

    side, using the 3 mm Allen keyb) Unscrew and remove the coversc) Unscrew the two fixing screws and remove the

    secondary electronic assemblyd) Unplug the sensor cablee) Remove the tang grub screw using the 2 mm Allen keyf) Unscrew the housing taking care not to damage the

    sensor cable or the connector.

    Reassembly

    WARNING - Assembling flanges with incorrectfixing bolts and nuts and improper "O rings" can causefracture or overstressing of bolts and release of pressurizedprocess material. Use only official spare parts (*) includedin the supplementary documentation, follow thereassembly procedure herebelow described and do notexceed the specified torque limits. DO NOT REMOVE the"O ring" fitted in the sensor neck: it provides the housinga degree of protection.

    a) Insert the sensor cable in its recess at the bottom of thehousing.

    b) Screw the housing down completely until the nesting ofhousing/sensor assy is reached, then unscrew by onecomplete turn maximum. Rotate the topwork in thedesired position and lock it with the tang grub screwpreviously removed.

    c) Plug the sensor cable to the secondary electronics. Fixthe electronic circuit by its screws.

    d) Refit the covers and tighten securely.

    WARNING - For Hazardous Location installations,at least eight (8) threads on the cover must be engagedin order to meet the flameproof (explosion-proof)requirements.

    e) Unscrew the cover locking screw to secure the covers.This is mandatory to meet "Flameproof requirements"for Hazardous Areas installation.

    PRESSURE TEST WARNINGOnce reassembled the process flanges and the transducer,a pressure test is required. At this purpose, apply a hydrostaticpressure of the maximum overrange pressure rating to bothprocess connections simultaneously. Wait for one minute,then verify that no leakages occurred, otherwise repeat theassembly procedure and the pressure test.

    Transmitter Sectional View

    WARNING - L'elettronics unitand transducer are inseparable partsof the 2600T Safety transmitters. Anyreplace of these two parts outsidethe factory will result of a less of theclaimed SIL.

    (*) The spare parts list isavailable at:www.abb.com- searching for:SL262_4H.pdfor from local ABBrepresentatives.

    Blind cover

    Analog or digitaloutput indicator

    Extended

    Blind cover

    TangTerminalblocks

    Secondary

    Electronics screw

    Sensor assembly

    NameplateCalibration

  • - 23 -

    Start (power off)

    OK

    No output

    OK

    Repair or replacepower supply

    Check the transmitterpower supply (*)

    Check the transmitterpower supply (*)

    Stop

    Repair or replacepower supply

    High, Low or Irregular Output

    Start (power off)

    OK

    OK

    OK

    Clean out

    Remedy

    Faulty

    Still faulty

    OK

    OK

    Fit replacementelectronic circuit

    Faulty

    StopOK

    Fit replacementtransducer assembly

    Still faulty

    Stop

    Stop

    Stop

    StopOK

    Clean connectors.Reassemble, switch on andcheck instrument operation

    Faulty

    Check for trapped gasin liquid lines and liquidin dry lines

    Check for sedimentin process connection

    Disconnect sensorconnector from theelectronic circuit.Clean connector,Reassemble, switch onand check instrumentoperation

    Fit replacementelectronic circuit

    Fit replacementtransducer assembly

    Stop

    Present

    Present

    Faulty

    SIMPLE FAULT FINDING (HART)

    This part is applicable only for a quick fault finding in the case that the Hand Held Terminal or the P.C. Configurator Packageare not available.If the transmitter does not appear to be working satisfactory, carry out the following fault finding checks before contacting yournearest Service Centre.If the instrument is to be returned for repair, ensure that it is adequately packed using the original polystyrene box or high densitychip foam: the trouble sheet/returning form should be sent with the instrument, filled in all its parts. If the transmitter needsto be dismantled follow the procedures of the previous section.

    WARNING : If the transmitter forms part of a control loop, the plant must be placed under local manual control whilethe instrument is examined or taken out of service. Take all precautions to avoid damages caused by pressure ordangerous fluids release.

    Equipment neededVoltmeter , milliammeter (0 to 100 mA d.c.), solvent contact cleaner.

    (*) If the source of the problem is suspected to be the power supply, check it by disconnecting the wires from the transmitterand testing the volts available at the wires.

    WARNING - If the transmitter needs to berepaired, the faulty unit/assembly must be replaced by anequivalent unit/assembly.

  • - 24 -

    Specify location, environmental conditions, type of service and approximate number of operating hours or date of installation if known.• OPERATING CONDITIONS

    • REASON FOR RETURN

    Trouble found during :

    Customer

    Purchase order No.

    Plant

    Name of person to contact

    Instrument tag No.

    Model

    Serial No.

    WARRANTY REPAIR REPAIR ORDER

    • IDENTIFICATIONRejection or discrepancy reports Not availableCopy attached

    Shipping information for the return of the equipment

    MaintenanceCommissioningInstallation

    On serviceAt start up

    Please enclose this sheet duly completed to cover letter and packing list

    Date Signature Originator

    Material returned for factory repair, should be sent to the nearest ABB Service Center, transportation charges prepaid by the Purchaser.

    TROUBLE SHEET

    • DANGEROUS FLUIDS In case of toxic or otherwise dangerous process fluid, please attach the relevant Material Safety Data Sheet.

  • - 25 -

    ADDENDUM FOR "METERS" OPTION OF THE TRANSMITTERS

    Fig. 1 - Analog meter adj.

    Zero adj.

    ANALOG OUTPUT METER

    The analog output meter provides a 90° scale indication. It haseither a 0 to 100 linear scale or a 0 to 10 square root scale.

    ANALOG OUTPUT METER CALIBRATION

    The calibration of the analog type meter only involves zeroing.Fig. 1 shows the analog output meter and the location of thezero adjustment.The calibration is quite simple using one of the followingmethods:- with the loop unpowered adjust the zero screw to read exactly

    the true zero mark on the scale (Fig. 1).- with the transmitter transmitting 4 mA adjust the zero screw

    to read exactly the live zero of the scale.

    GENERAL DESCRIPTION

    This option provides three different indications (meters) inside the transmitter housing. The "output meters" can be mounted onthe terminal block (field terminals) side; one is of "analog" type, the second is of "digital" type (LCD, ProMeter) and the third isthe CoMeter. They are operated by the output signal of the transmitter. The meters can be rotated to exactly match the mountingposition of the transmitter . The above mentioned CoMeter (abbreviation of Communication Meter) can be used both as a displayand as a configuration tool for the Safety 2600T.

    0 100

    4

    %

    806040

    20

    20

    128 16mA Fig. 2 - Cover Internal label

    To install (or to replace) the meter, use the following procedure:1) If the transmitter is part of a control loop, put the loop in

    manual.2) Remove the cover on the terminal block side; inside of

    which is affixed the label shown in Fig. 2.3) Remove the link shown on the label by pushing down at its

    left extremity and then its right . Alternatively it can beremoved on the left side only in preparation for a furtherrefit.

    4) Plug the meter into the socket. The digital indication metercan rotate, for easy viewing, in 15° steps, 90° degreeclockwise and 255° counterclockwise.Further rotation causes damage to the meter stops or to the"banana" connections and should be avoided. Note thatconsiderable effort must be applied for 15° rotation. Theanalog output meter can also rotate for easy viewing.

    5) Check that the cover O-ring gasket is properly in place,screw on the extended windowed cover and tighten properly.

    To remove the meter simply pull it out from the socket and fita replacement following the above procedure.

    CAUTION - If the meter is removed, ensure that it isreplaced immediately by another one or with the properlink provided. This operation is important for I.S.loop operation.

    METER INSTALLATION OR REPLACEMENT

    WARNING - If the transmitter is not certified asIntrinsic Safety type, DO NOT REMOVE ANY COVERin areas classified as "HAZARDOUS LOCATIONS:CAN RESULTS IN HAZARD OF FIRE ANDEXPLOSION". Contact your Safety Dpt. in order toestablish correct installation procedure.

  • - 26 -

    The name CoMeter is an acronym for COMMUNICATINGMETER. The name ProMeter stands for PROGRAMMABLEMETER.It can be connected, plug & play, into the standard terminalblock of the 2600T Series Pressure Transmitter.It is capable to provide both reading and configurationoperations, when used in connection with the analog-onlyversion, the ProMeter is only indicator. The LCD display hasthree lines; the first one is used for 5 numeric characters, up to99999, plus a minus (-) sign on the left and a star (*) sign, upon the right, to indicate HART communication is in progress;the second line is a 10 segments bargraph used to show theoutput, from 0% to 100% in 10% steps;

    the third line is used for seven alphanumeric characters todisplay units or messages.In addition to the display the plastic membrane has 4 pushbuttons used for programming and for menus navigation.And more precisely, they are:

    top left position: ESCAPE key

    top right position: ENTER key

    bottom left position: NEXT key

    bottom right position: PREVIOUS key

    Fig. 3 - CoMeter and ProMeter

    The normal operating condition for CoMeter and ProMeter isto display the analog output signal of the transmitter, expressedin milliAmpere (this is the default setting), or in percentage orin engineering unit, with all the units available as for the HARTCommunication Protocol.In addition to the indicator functionality, the CoMeter can beused as a configuration tool, where both the CoMeter itself andthe transmitter can be configured. ProMeter is programmableonly. In the CoMeter, in fact, two are the main menu : ConFMETER" and "ConF XMTR ".

    ACCESS TO CONFIGURATION

    To enter these menù in both indicators, the keys PREV andNEXT must be pressed simultaneously for 3 seconds, then theuser can switch between the XMTR and the METERconfiguration using the NEXT and the PREV key.In the ProMeter entry is directly in Manual Configuration, asshown in the next page.

    NOTE: when the Configuration action is finished,remember to press the ESC key to return to display theprevious selected value.

    ConF METER - METER CONFIGURATION

    PASSWORDThe access to the configuration menus can be protected by a5 digits numeric password.It is under the ConF METER menu that the password can bedefined and enabled.See figure 4 for the access to the "ConF PASSWORD " menu.Once you have entered the "ConF PASSWORD" menu thecursor is blinking on the most significant digit.Press ENTER, if you want to change the digits, initially set tozero (0).Use the NEXT and PREV key to increase or decrease the valueof the single digit, use the ENTER key to move the cursor to thenext digit, use the ESC key to move back to the previous digit.When the string "UPDATE? " appears on the display you canuse the ENTER key to accept the new password or the ESCkey to abort the password definition.When all digits are set to zero, the password is disabled.

    ESC key

    Bargraph foranalog output indication

    NEXT key

    ENTER key

    Sign for HARTcommunication(CoMeter only)

    PREV key

    12.000 *0% / - - - - - / 100%

    mA

    *

    ADDENDUM FOR COMETER OR INDICATOR WITH HART PROGRAMMINGCAPABILITY AND PROMETER - PROGRAMMABLE INDICATOR

  • - 27 -

    Fig. 4 - ConF METER menu

    ConFMETER

    ENTER

    ConFAUTO

    ESC

    ENTER

    ESC

    . . . *LOADING

    NEXTPREV

    ENTER

    NEXTPREV

    ConFUPDATE?

    ConFVIEW ?

    ESC

    ESC

    ESC

    0.000ZERO

    40.000FULL SC

    KPA

    ConFMANUAL

    OUTPUT

    LINEARSQR

    ESC ENTER

    NEXTPREV

    NE

    XT

    PR

    EV

    4000ZERO

    0400004000040000000000000ZERO

    20000FULL SC

    20000FULL SC

    20000200002000020000

    NEXTPREV

    NEXTPREV

    ENTER

    ES

    C EN

    TE

    R

    ESC ENTER ESC ENTER

    EN

    TE

    R

    ES

    C

    ENTER

    ESCENTER

    UNITS

    NE

    XT

    PR

    EV

    KPATORRATMMPA

    IN H2O

    KG / CM2

    ENTER

    NEXT PREVNEXT PREV

    ENTER

    ENTER

    NEXTPREV

    NEXTPREV

    NEXTPREV

    ENTER

    ConFCURRENT

    ConFUPDATE?

    ConFPERCENT

    ESC ENTER

    ENTER

    ConFPASSWD

    NEXTPREV

    NEXTPREV

    ESC ENTER

    LINEAR

    ConFUPDATE ?

    SQR

    ESC ENTER

    NE

    XT

    PR

    EV

    01234PASSWD

    00000010000120001230 E

    NT

    ER

    ES

    C

    UPDATE?

    ESC ENTER

    ESC ENTER

    ENTER

    ENTER

    NEXTPREVNEXT

    PREV

    ESC

    ConFOK

    ENTER

    ESC

    NEXTPREV

    NEXTPREV

    UPDATE ZERO,FULL-SCALE

    AND UNIT

    SET 4÷20 mAINDICATION

    SET 0÷100% INDICATION(WITH OR WITHOUT

    SQUARE ROOT)

    UPDATE NEWPASSWORD

    ADDENDUM FOR COMETER OR INDICATOR WITH HART PROGRAMMING CAPABILITYAND PROMETER - PROGRAMMABLE INDICATOR

    COMETER ONLY COMETER and PROMETER

    The other options under ConF METER menu are:

    ConF AUTOBy selecting this option, the CoMeter is automatically updatedwith the LRV, URV and Unit of the HART transmitter connected.Before accepting the transmitter configuration by pressingENTER at the request "ConF UPDATE? ", it is possible to viewthe LRV (ZERO), the URV (FULL SC) and the UNIT.If the output transfer function of the transmitter is not linear,ProMeter and CoMeter show the message: ConF NO_LIN andthe user cannot update the configuration.It is necessary to change the output transfer function of thetransmitter to linear.See Fig. 4 - "ConF METER" menu, for ConF AUTO procedure.

    ConF MANUALThe selection of MANUAL configuration allows the user todefine manually CoMeter and ProMeter configuration, i.e.define the LRV (ZERO), the URV (FULL SC), and the UNIT, aswell as to decide for a LINEAR on SQR output function. LRVand URV can have a value between -99999 and +99999.Refer to Fig. 4 - ConF METER menu for detail on the procedure.For having the CoMeter to display the analog output current orthe output percentage, select respectively:

    ConF CURRENT and ConF PERCENT

  • - 28 -

    Under ConF PERCENT option, the user can decide for linearor SQR output. When SQR output is selected, the output islinear from 0 to 20% (to 4% of input).Refer to Fig. 4 - ConF METER for details on the procedures.

    ConF XMTR - TRANSMITTER CONFIGURATION(CoMeter only)Four are the operations under the ConF XMTR menu:CONF, TRIM, REVIEW and PV.By pressing ENTER on the ConF XMTR menu, the stringLOADING appears on the display, with the blinking star (*)indicating communication activity, i.e. the CoMeter is readingthe transmitter information.

    See below a list of the available operation under the selected option:

    CONF menu TRIM menu REVIEW menu PV menu

    Change LRV Reranging (RERANG.) TAG 8 Primary variable (PRIMARY)Change URV Loop test (LOOPTST) Final Assembly Nr. (XMTR N.) Secondary variable (2ND)Change DAMPING Output trim (OUTTRIM) Sensor Serial Nr. (SENS N.) Tertiary variable (3RD)Change UNITS Zero adjustment (SNSZERO) Up/Down scale (UP/DOWN) Fourth variable (4TH)Change OUTPUT UNITS

    LRVURVLRL (See Sensor Units)URL (See Sensor Units)DAMPINGOUTPUT

    Then the CONF option appears.Using PREV or NEXT key, the user can select CONF, TRIM,REVIEW or PV option, and with the ENTER key he moves intothe menu.When entering CONF and TRIM menu a message "LOOPIN_MAN" appears to remind that a modification can changethe transmitter output, so for security the loop should be put inManual.

    Use PREV or NEXT key to scroll through the options and ENTER key to change or view the values.The procedure to change the numeric value remains the one already explained for PASSWORD operation, i.e., the cursor startsblinking on the most significant digit, then use the NEXT and PREV key to increase or decrease the value of the single digit (theminus sign(-)automatically appears or disappears when the value increases above 9 or decreases below 0, as well as for thedecimal point(.). Use the ENTER key to move the cursor to the next digit, use the ESC key to move back to the previous digit.

    An ENTER on the last digit will cause the value to be sent to the transmitter.Refer to figures 5, 6, 7 and 8 for details.

    Fig. 5 - CONF menu

    CONF

    LOOPIN_MAN.

    ESC ENTER

    NEXTPREV

    ESC ENTER

    0.000LRV

    ESC ENTER

    00.00001.00001.00001.000

    01.000LRV

    ES

    C EN

    TE

    R

    NEXT PREV 20.000URV

    ESC ENTER

    20.00025.00025.00025.000

    25.000URV

    ES

    C EN

    TE

    R

    NEXT PREV 0.0000DAMPING

    ESC ENTER

    0.00000.20000.20000.2000

    0.2000DMP SEC

    ES

    C EN

    TE

    R

    NEXT PREV

    ENTER

    UNITS

    ENTER

    KPA

    NE

    XT

    PR

    EV

    ENTER

    ESC

    TORRATMMPA

    IN H2O

    KG/CM2

    OUTPUT

    ENTER

    LINEAR

    ESC

    SQR

    NEXT PREV

    NE

    XT

    PR

    EV

    ES

    C

    ES

    C

    ES

    C

    ES

    C

    ENTER ENTER

    NEXTPREV

    NEXT PREVTO MODIFY DIGIT,DECIMAL POINT,

    MINUS SIGN

    NEXT PREVTO MODIFY DIGIT,DECIMAL POINT,

    MINUS SIGN

    NEXT PREVTO MODIFY DIGIT,DECIMAL POINT,

    MINUS SIGN

    ADDENDUM FOR COMETER OR INDICATOR WITH HART PROGRAMMING CAPABILITYAND PROMETER - PROGRAMMABLE INDICATOR

  • - 29 -

    Fig. 6 - TRIM menu

    TRIM

    LOOPIN_MAN.

    ESC ENTER

    NEXTPREV

    ESC ENTER

    RERANG.

    ESC ENTER

    0.000SET 4 mA

    NEXT PREV

    LOOPTST

    ESC ENTER

    4 mA

    ES

    C

    NEXT PREV

    20 mA

    ESC ENTER

    20.000OUT mA

    NEXTPREV

    OUTTRIM

    ENTER

    SNSZERO

    ENTER

    APPLY PV

    ESC

    NEXT PREV

    ES

    CENTER

    40.000SET 20 mA

    ENTERESC ENTER

    4.000OUT mA

    NEXTPREV OTHER

    ESC

    10.000

    ENTER

    12.00012.00012.00012.000

    SEL OUT

    ES

    C

    EN

    TE

    R

    12000OUT mA

    ENTER

    MANUAL

    ENTER

    SET 4mA

    ENTER

    04.00004.00004.000

    ES

    C

    EN

    TE

    R

    04.000

    04.000REF VAL

    4.000REF - TX?

    ENTER

    SET20 mA

    ENTER

    ENTER

    20.00020.00020.000

    ES

    C

    EN

    TE

    R

    20.000

    20.000REF VAL

    20.000REF = TX?

    ENTER

    ENTER

    AUTO

    SET 4mA

    4.001TRIM ?

    ENTER

    ENTER

    NEXT PREV

    ENTER

    ENTER

    ENTER

    0.050 KPA

    ESC

    ENTER

    ESC

    NEXTPREV

    ESC

    ESC

    ESC

    ESC

    ESC

    ESC

    NEXT PREV

    SET 20mA

    20.000TRIM ?

    ENTER

    ENTER

    ESC

    ESC

    NEXT PREVTO MODIFY DIGIT,DECIMAL POINT,

    MINUS SIGN

    NEXT PREV TO MODIFY DIGIT,DECIMAL POINT, MINUS SIGN

    NEXT PREV TO MODIFY DIGIT,DECIMAL POINT, MINUS SIGN

    ADDENDUM FOR COMETER OR INDICATOR WITH HART PROGRAMMING CAPABILITYAND PROMETER - PROGRAMMABLE INDICATOR

  • - 30 -

    Fig. 7 - REVIEW menu

    REVIEW

    ENTER

    TAG 8

    ESC

    ENTER

    ABCDEFG

    NEXTPREV

    NE